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Abstract In this paper, an innovative method called extreme learning machine with hybrid
local receptive fields (ELM-HLRF) is presented for image classification. In this method,
filters generated by Gabor functions and the randomly generated convolution filters are incor-
porated into the convolution filter kernels of local receptive fields based extreme learning
machine (ELM-LRF). Extreme learning machine (ELM) is derived from single hidden layer
feed-forward neural networks, and the parameters of its hidden layer can be generated ran-
domly. As locally connected ELM, ELM-LRF directly processes information with strong
correlations such as images and speech. In this paper, two main contributions are proposed to
improve the classification performance of ELM-LRF. First, the Gabor functions are used as
one kind of convolution filter kernels of ELM-HLRF to execute image classification. Second,
we use a data augmentation method to preprocess training images to avoid overfitting. Exper-
iments on the Outex texture dataset, the Yale face dataset, the ORL face database and the
NORB dataset demonstrate that ELM-HLRF outperforms ELM-LRF, ELM and support vec-
tor machine in classification accuracy, and the presented data augmentationmethod improves
the classification performance.
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1 Introduction

Machine learning has been extensively studied in image classification and recognition nowa-
days. In some methods, features extraction and selection play an important role before
applying neural networks to execute classification. Whether the features can represent the
characteristics of imagesmatters a lot and determines the classification accuracy. Local binary
patterns (LBPs) (Pietikäinen 2010) and gray level co-occurrence matrix (GLCM) (Haralick
et al. 1973) are features widely used for texture classification. On the other hand, researchers
have utilized neural networks with local receptive field, such as convolutional neural network
(CNN) (LeCun et al. 1995), to process images directly without extra feature extraction step.
In CNN, the structure formed by convolutional layer and pooling layer performs like feature
extraction procedure.

Extreme learning machine (ELM) was proposed by Huang et al. (2006, 2012) and per-
formed well in both regression and classification. ELM is derived from single-hidden layer
feed-forward neural networks (SLFNs) which consists of one hidden layer and one output
layer. The advantages of ELM include that the hidden layer parameters of ELM can be gen-
erated randomly and it learns faster while keeping superior performance. ELM has been used
in image classification and recognition combined with other algorithms or various kinds of
image features. Li et al. (2015) employed ELM as the classifier with image features extracted
by LBPs, which presented better performance than the state-of-art methods. Meanwhile,
ELM and graph-based optimization methods were fused to boost remote sensing image clas-
sification (Bencherif et al. 2015). And Zeng et al. 2017 presented a traffic sign recognition
method in which CNN was used to extract features from images and ELM was also applied
as the classifier.

To utilize ELM to process images directly, Huang et al. (2015) proposed local receptive
field based extreme learning machine (ELM-LRF). ELM-LRF outperforms CNN on the
NORB dataset (LeCun et al. 2004a) in classification accuracy and time consumption. Huang
et al. (2017) proposed a modified ELM-LRF to perform texture image classification. The
modifiedmethod (Huang et al. 2017) employedmulti-scale convolution kernels in ELM-LRF
(ELM-MSLRF) and it could learn texture information of different scales. ELM-MSLRF is
superior to ELM-LRF according to the experimental results.

The Gabor filters (Fogel and Sagi 1989) have been successfully employed in object detec-
tion (Jain et al. 1997), image segmentation (Jain and Farrokhnia 1991) and classification
(Rajadell et al. 2013) and edge detection (Mehrotra et al. 1992) for more than two decades.
By providing information with different scales and orientations, Gabor filters perform like
human beings and are often used for texture representation and description. In practical appli-
cations, Gabor filters can extract the relevant features in different scales and orientations in
the frequency domain. Recently, Gabor filters also have been used as the convolution kernels
of CNN (GCNN) to carry out improved speech recognition (Chang and Morgan 2014).

On the other hand, data augmentation has been widely used in neural network to prevent
overfitting of small dataset (Cui et al. 2015; Krizhevsky et al. 2012). In these studies, label-
preserving transformationswere used to augment training data. Cui et al. (2015) proposed two
data augmentation methods to deal with data sparsity for both deep neural networks (DNNs)
and CNN. The proposed augmentation methods could increase the variations of training
data. Krizhevsky et al. (2012) introduced two data augmentation forms to reduce overfitting.
The first form was carried out by doing image translation and horizontal reflections, and the
second one included altering the intensities of the RGB channels in training images.
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Motivated by the aforementioned research, two main improvements are introduced in
this paper. First, to improve the performance of ELM-LRF in image classification, we use
Gabor functions as one kind of convolution kernel filters. The Gabor functions can provide
more image information by using filters with different scales and orientations. The proposed
method, extreme learning machine with hybrid local receptive fields (ELM-HLRF), can
provide maps generated by Gabor filters and randomly generated convolution filters in the
convolutional layer. Second, we propose a data augmentation method using label-preserving
transformations to improve classification performance. This data augmentation method uses
Gaussian blur to preprocess training images. Then the blurred images and the original training
images will be incorporated as augmented data to train classifiers. We evaluate the proposed
methods on these datasets: the Outex dataset (Ojala et al. 2002), the Yale face database
(Georghiades et al. 1997), the ORL face database (Samaria and Harter 1994) and the NORB
dataset (LeCun et al. 2004b). Experimental results demonstrate that: first, ELM-HLRF per-
forms better than ELM-LRF, ELM and support vector machine (SVM) (Cortes and Vapnik
1995) in classification accuracy; second, the proposed data augmentationmethod can improve
classification performance.

The rest of this paper begins with related works in Sect. 2. Section 3 gives a detailed
description of the proposedmethods. Section 4 reports and discusses the experimental results.
Finally Sect. 5 concludes.

2 Related works

2.1 Gabor filters in image processing

The two-dimensional discrete Gabor function can be written as follows

φ(x, y) = 1

2πδxδy
exp

[
− 1

2

(
x2

δ2x
+ y2

δ2y

)]
exp(2π jW x), (1)

whereW denotes the radial frequency of Gaborwavelet, δx and δy are parameters of Gaussian
envelope along the x-axis and y-axis respectively.

The Gabor filter with frequency W and orientation θ by coordinate rotation can be given
by

φ′(x, y) = 1

2πδxδy
exp

[
− 1

2

(
x ′2

δ2x
+ y′2

δ2y

)]
exp(2π jW x ′), (2)

where φ′(x, y) is the two-dimensional discrete Gabor function when x ′ = α−s(x · cos θl +
y · sin θl), y′ = α−s(− x · sin θl + y ·cos θl), s is the scale and l is the orientation; * represents
transpose conjugate; s = 1, 2, . . . , p; l = 1, 2, . . . , q; α is the scale factor and α > 1.
The (x, y) denotes initial coordinate, while (x ′, y′) denotes the transformed coordinate. The
symbols p and q are the number of scales and orientations of Gabor filters respectively. The
functions φ(x, y) and φ′(x, y) have the following relationship:

φ(x, y) = α−sφ′(x, y). (3)

The Fourier transform of φ(x, y) is

Φ(u, v) = exp

{
1

2

[
(u − W )2

δ2u
+ v2

δv

]}
, (4)

123



1152 Multidim Syst Sign Process (2019) 30:1149–1169

Fig. 1 b Gabor filtered results of a image. In b, each row shares the same scale and each column shares the
same orientation

where δu = 1/2πδx and δv = 1/2πδy . Let I (x, y) be the input image, I (x, y) filtered by
φ′(x, y) can be written as

F(x, y) =
∑
x1

∑
y1

I (x1, y1)φ
′∗(x − x1, y − y1), (5)

where F(x, y) is the filter response. The mean and standard deviation of the magnitude of
F(x, y) can be used as features (Manjunath and Ma 1996) of image tiles to perform texture
classification. The mean and standard derivative of F(x, y) are calculated as

μs,l =
∑
x

∑
y

|F(x, y)|, (6)

δs,l =
√∑

x

∑
y

(|F(x, y)| − μs,l)2. (7)

The feature vector for I (x, y) is represented as [μ1,1, δ1,1, μ1,2, δ1,2, . . . , μp,q , δp,q ].
Figure 1 presents an instance of Gabor filtered face image. In this instance, we set p = 5

and q = 8, so there are 40 Gabor filtered results.
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2.2 Brief review of ELM

ELM is proposed by Huang et al. (2006, 2012). When compared with traditional neural net-
works, ELM has faster learning speed and higher accuracy. The weights and biases in hidden
layer of ELMcan be assigned randomly. The flowchart of ELM is shown in Fig. 2. Let (X j , t j )
( j = 1, 2, . . . , N ) be the N input samples of SLFNs,where X j = [x j1, x j2, . . . , x jn]T ∈ Rn

denotes input feature vector and t j denotes target value of X j . The value domain of t j is
{1, 2, . . . ,m}. The SLFNs with L hidden nodes can be written as follows

L∑
i=1

βi g(Wi · X j + bi ) = o j , j = 1, . . . , N , (8)

where g(·) denotes the activation function, Wi = [wi,1, wi,2, . . . , wi,n] denotes the input
weights, βi denotes the output weight and bi denotes the bias of the i th hidden layer unit.
Function Wi · X j denotes the inner product of Wi and X j .

The goal of SLFNs is to minimize the output error, that is to say, the output of SLFNS o j

and the target output t j should satisfy the following equation:

N∑
j=1

∥∥o j − t j
∥∥ = 0. (9)

For the training dataset, we have the following assumption:

L∑
i=1

βi g(Wi · X j + bi ) = t j , j = 1, . . . , N , (10)

Hβ = T, (11)

where H is the output matrix of the hidden layer, β is the output weights and
T= [t1,t2, . . . ,tN ] is the target outputs of all inputs. Equation 11 can be written as

H(W1, · · · ,WL , b1, · · · , bL , X1, . . . , XL)

=
⎡
⎢⎣

g(W1 · X1 + b1) · · · g(WL · X1 + bL)
... · · · ...

g(W1 · XN + b1) · · · g(WL · XN + bL)

⎤
⎥⎦

N×L

,
(12)

where

β =
⎡
⎢⎣

β1
...

βL

⎤
⎥⎦

L×1

, T =
⎡
⎢⎣

t1
...

tN

⎤
⎥⎦

N×1

. (13)

After training, we get Ŵi , b̂i and β̂i which satisfy the following equation∥∥∥H(Ŵi , b̂i )β̂i − T
∥∥∥ = min

W,b,β
‖H(Wi , bi )βi − T ‖ , (14)

where i = 1, . . . , L . Equation (14) also means to minimize loss function also means to
minimize loss function

E =
N∑
j=1

(
L∑

i=1

βi g(Wi · X j + bi ) − t j

)2

. (15)
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Fig. 2 The flowchart of ELM
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β can be calculated as follows
β̂ = H†T, (16)

where H† is the Moore-Penrose generalized inverse of H .

2.3 Brief review of ELM-LRF

In ELM-LRF, the connection between the input layer and one node of hidden layer is gener-
ated according to a continuous probability distribution. These random connections constitute
local receptive fields. ELM-LRF consists of four layers: the hidden layer, the pooling layer,
the full-connected layer and the output layer.

In the hidden layer, the convolution kernel ai (i = 1, 2, . . . , k′) is randomly generated.
Assume that the initial input weights are Âini t , the size of each input weight is r × r and the
size of each input image is d×d . So the size of each feature map is (d−r +1)× (d−r +1).
Then

Âini t ∈ Rr2×k′
, Âini t = [âini t1 , âini t2 , · · · , âini tk′ ],

âini ti ∈ Rr2 , i = 1, . . . , k′,
(17)

where Âini t is orthogonalised using singular value decomposition (SVD). The orthogonalised
input weights are Â and Â = [â1, â2, . . . , âk′ ]. Each column of Â is the orthogonal basis of
Âinit . If r2 < k′, Âini t should be transposed at first and then orthogonalised and transposed
again at last. The convolution weight of the i th feature map is ai ∈ Rr×r and it is aligned of
âi by column. The convolution result of node (x1, x2) at the i th feature map is cx1,x2,i :

cx1,x2,i =
r∑

m1=1

r∑
m2=1

(Ix1+m1−1,x2+m2−1 · am1,m2,i )

x1, x2 = 1, . . . , (d − r + 1),
(18)

where Ix1+m1−1,x2+m2−1 is the pixel value of input image I at location (x1 + m1 − 1, x2 +
m2 − 1).

In the pooling layer, pooling size e denotes the distance between the center and the edge
of pooling. And the size of the pooled maps are the same as the feature maps ((d − r + 1) ×
(d − r + 1)). The symbol cx1,x2,i is node (x1, x2) of the i th feature map; h p1,p2,i is node
(p1, p2) of the i th pooled map; i = 1, 2, . . . , k′. And h p1,p2,i is obtained using

h p1,p2,i =
√

p1+e∑
x1=p1−e

p2+e∑
x2=p2−e

c2x1,x2,i

p1, p2 = 1, . . . , (d − r + 1).

(19)
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If (x1, x2) is out of bound, cx1,x2,i = 0.
In the full-connected layer, each pooling map is merged into a row vector. The size of

each pooling map is (d − r + 1) × (d − r + 1). If there are N input images, the matrix
H ′ ∈ RN×[k′·(d−r+1)2] is calculated as

H ′ =

⎡
⎢⎢⎢⎢⎣

ĥ1,1 ĥ1,2 · · · ĥ1,k′·(d−r+1)2

ĥ2,1 ĥ2,2 · · · ĥ2,k′·(d−r+1)2

...
... · · · ...

ĥN ,1 ĥN ,2 · · · ĥN ,(k′)·(d−r+1)2

⎤
⎥⎥⎥⎥⎦

N×[k′·(d−r+1)2]

, (20)

where ĥi, j = g(Wj · Ii + b j ), Ii is the i th (1 ≤ i ≤ N ) input image and 1 ≤ j ≤
k′ · (d − r + 1)2. The output weight β of ELM-LRF is calculated as (Huang et al. 2012,
2015)

β = H ′T
(

1
C + H ′H ′T

)−1
T

if N ≤ k′ · (d − r + 1)2,
(21)

β = ( 1
C + H ′T H ′)−1

H ′T T
if N > k′ · (d − r + 1)2.

(22)

3 Methods

Section 3.1 introduces the proposed method ELM-HLRF, and Sect. 3.2 presents the data
augmentation method.

3.1 Local receptive field based extreme learning machine with hybrid filter kernels

In this paper, we propose an innovative neural networkwhich uses Gabor filters and randomly
generated convolution kernels in the convolutional layer. The proposed method is called
hybrid local receptive field based extreme learning machine (ELM-HLRF). In this modified
topology, randomly generated convolution kernels used in ELM-LRF and Gabor filters of
different scales and orientations are combined to process input images.

In image processing, with different combinations of the scale and orientation parameters,
Gabor filters are employed to detect contours of various scales and orientations. Therefore
the scales and orientations of Gabor filters are important parameters, and these parameters
need to be chosen to get optimal training results in ELM-HLRF.

The flowchart of ELM-HLRF is shown in Fig. 3. In Fig. 3, Gi1 ∈ Rr×r (i1 = 1, . . . , k1)
is the convolution kernel provided by Gabor filters, k1=p · q and

Gi1 = φ′
i1(x, y), i1 = 1, . . . , k1. (23)

The convolution result when φ′
i1
(x, y) is applied to input image I is

Fi1(x, y) =
∑
x1

∑
y1

I (x1, y1)φ
′∗
i1 (x − x1, y − y1). (24)
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Fig. 3 The flowchart of ELM-HLRF

The other kind of convolution kernel a′
i2 (i2 = 1, 2, . . . , k2) is randomly generated.

According to (17), the initial input weights are Â′ini t , and

Â′ini t ∈ Rr2×k2 , Â′ini t =
[
â′ini t

1 , â′ini t
2 , . . . , â′ini t

k2

]
,

â′ini t
i2 ∈ Rr2 , i2 = 1, . . . , k2.

(25)

The orthogonalised result of Â′ini t is Â′ = [â′
1, â′

2, . . . , â′
k2 ]. The convolution result of

node (x1, x2) at the i2th feature map is c′
x1,x2,i2 , which is obtained using (18).

The convolution weights of the convolutional layer of ELM-HLRF consist of Gi1 ∈
Rr×r (i1 = 1, . . . , k1) and a′

i2 ∈ Rr×r (i2 = 1, . . . , k2). The pooling map h′
p1,p2,i (i =

1, 2, . . . , (k1 + k2)) can be calculated using (19).
As presented in Sect. 2.3, in the full-connected layer, thematrix Ĥ ∈ RN×[(k1+k2)·(d−r+1)2]

can be calculated as

Ĥ =

⎡
⎢⎢⎢⎢⎣

ĥ1,1 ĥ1,2 · · · ĥ1,(k1+k2)·(d−r+1)2

ĥ2,1 ĥ2,2 · · · ĥ2,(k1+k2)·(d−r+1)2

...
... · · · ...

ĥN ,1 ĥN ,2 · · · ĥN ,(k1+k2)·(d−r+1)2

⎤
⎥⎥⎥⎥⎦

N×[(k1+k2)·(d−r+1)2]

. (26)
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Fig. 4 b Gaussian blurred result
of the a original face image

The output weight ξ of ELM-HLRF is calculated as

ξ = Ĥ
T
(

1
C + Ĥ Ĥ T

)−1
T

if N ≤ (k1 + k2) · (d − r + 1)2,
(27)

ξ =
(

1
C + Ĥ T Ĥ

)−1
Ĥ T T

if N > (k1 + k2) · (d − r + 1)2.
(28)

3.2 Data augmentation

In supervised machine learning, we need sufficient data to train the neural networks to obtain
robustmodel and to avoid overfitting.Data augmentation is the commonly usedmethodwhich
can enlarge datasets by using label-preserving transformations. The related data augmentation
methods include color jittering, PCA jittering, random scale transformation, random crop,
horizontal flip, vertical flip, translation transform, rotation, reflection, affine transformation,
Gaussian noise and blurring, etc.

In this paper, we carry out a data augmentation method by altering the pixel intensities of
training images. A 5× 5 Gaussian blur function with standard deviation 1 is used to process
each training image. Each blurred image and its corresponding training image share the same
label. Then we train the network using the blurred images and the original training images.
Figure 4 gives an example of Gaussian blurred face image. Trained with the augmented
datasets, the learning machine will be more robust to blur details.

4 Experimental results and analysis

In this paper, we use five datasets to evaluate the performance of ELM-HLRF. Details about
the datasets, the parameters setup, the experimental results and the discussions are introduced
in this section.

4.1 Datasets for performance evaluation

In this paper, we use five datasets to evaluate the performance of ELM-HLRF: the
Outex_TC_00000, the Outex_TC_00012, the Yale face database, the ORL face database
and the NORB dataset.

We use two different databases of Outex: Outex_TC_00000 and Outex_TC_00012. The
Outex_TC_00000 consists of 8832 images of 24 different textures. Each texture has 368
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Fig. 5 24 different textures of the Outex_TC_00000 dataset

Fig. 6 24 different textures of the Outex_TC_00012 dataset

images, 184 for training and 184 for testing. We choose 099 folder in Outex_TC_00000 to
do training and testing in our experiment. The other Outex database we use in this paper
is Outex_TC_00012, which contains 1440 images of 24 different textures. Each texture has
60 samples, 20 of which for training and 40 of which for testing. These texture images are
recorded under different illuminations. Images of Outex_TC_00012 are with the resolution
of 128 by 128. We resize them into size of 32 by 32. Figures 5 and 6 give some texture image
samples of Outex_TC_00000 and Outex_TC_00012 respectively.

The Yale face database contains 165 grayscale images of 15 individuals. There are 11
images for each face with different facial expressions such as center-light, glasses, happy,
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Fig. 7 Images of the Yale face database

left-light, no glasses, normal, right-light, sad, sleepy, surprised and wink. Each image is 100
by 100 pixels in size. Images of Yale face database are also resized into a size of 32 by 32
pixels to speed up experiments in this paper. Figure 7 shows the face image samples of Yale
face database.

The ORL face database (Samaria and Harter 1994) consists of 400 images, 10 for each
of 40 distinct subjects. For some subjects, the images were taken at different times, lighting,
facial expressions (open or closed eyes, smiling or not smiling) and facial details (glasses
or no glasses). All the images were taken against a dark homogeneous background with the
subjects in an upright, frontal position. The size of each image is 92 by 112 pixels. Images
of the ORL face database are also resized into the size of 32 by 32 in this paper. Figure 8 are
the face image samples of the ORL face database.

The NORB dataset is a benchmark for object recognition (LeCun et al. 2004c). It contains
images of 50 toys belonging to 5 generic categories: four-legged animals, human figures,
airplanes, trucks, and cars. The objects were imaged by two cameras under 6 lighting con-
ditions, 9 elevations (30◦–70◦ every 5◦), and 18 azimuths (0–340 every 20◦). And there are
48,600 images (50 ∗ 6 ∗ 9 ∗ 18) in the NORB dataset, half of which (ie 24,300 images) are
used for training and the rest (ie 24,300 images) for testing. We downsize them to 32 × 32
in the experiments.

4.2 Parameters setup

The experiments are carried out on five datasets using the Matlab software on a windows 7
64 bit system with Intel(R) Core(TM) i5-4210U CPU and 64GB RAM.

In this paper, the number of the hidden nodes of ELM ranges from 100 to 2000. For each
experiment, we will find the parameters which generate the optimal classification results on
each dataset. Besides, six parameters have direct effect on classification accuracy: the number
of the Gabor filter scales p, the number of the Gabor filter orientations q , the number of the
convolution filters of ELM-HLRF k2, the number of the convolution filters of ELM-LRF k′
, the convolution size r , the pooling size e and the regularization parameter C . The value of
C can be {0.01, 0.1, 1, 10, 100}. The p ranges from 1 to 5 with stride 1, q is equal to 4 or 8,
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Fig. 8 Image samples of the ORL face database

Table 1 The parameters of
ELM-HLRF on dataset
Outex_TC_00000 and
Outex_TC_00012

k2 r e C p q

48 9 8 0.01 1, 2, 3, 4, 5 4, 8

k′ and k2 ranges from 4 to 80 with stride 4. The convolution size r ranges from 4 to 9 and
the pooling size e ranges from 3 to 8.

4.3 Results and analysis

4.3.1 Performance evaluation on dataset Outex_TC_00012

Figure 9 shows the relationship between the classification accuracy, the pooling size e and the
convolution size r of ELM-LRFwhen the number of the convolution filters k2 is set to 48.We
can see from Fig. 9 that when e = 8 and r = 9 we have the highest classification accuracy.
For Outex datasets Outex_TC_00000 and Outex_TC_00012, the parameters of ELM-HLRF
are listed in Table 1.

Table 2 presents the classification accuracy when ELM-HLRF and ELM-LRF are applied
to dataset Outex_TC_00012. It can be seen from Table 2 that the proposed method
ELM-HLRF can improve classification accuracy by providing Gabor filtered maps in the
convolutional layer. To evaluate the quality of Gabor filters as convolution kernels, we com-
pare the classification accuracy of ELM-HLRF with that of ELM-LRF, ELM and SVM.
Table 3 shows that when k′ = 60 ELM-LRF has the best result (82.50%); and when k2 = 48,

123



Multidim Syst Sign Process (2019) 30:1149–1169 1161

Fig. 9 Classification accuracy with different pooling size e, convolution size r of ELM-LRFwhen the number
of the convolution filters k2 is set to 48

Table 2 The classification accuracy (%) when ELM-HLRF and ELM-LRF are applied to dataset
Outex_TC_00012 and k′ is a constant

Methods ELM-LRF (k′ = 48) ELM-HLRF (k2 = 48)

q = 4 q = 8

Accuracy 76.77 90.63 (p = 1) 94.69 (p = 1)

94.69 (p = 2) 96.56 (p = 2)

95.31 (p = 3) 96.88 (p = 3)

94.90 (p = 4) 96.67 (p = 4)

95.00 (p = 5) 96.77 (p = 5)

Bold value represents the best result of all the compared methods

p = 3 and q = 4, ELM-HLRF has the highest accuracy (96.77%). It can be seen that
ELM-HLRF outperforms other methods in classification accuracy.

Figure 10 shows the classification results of ELM-LRF (k′ = 60) and ELM-HLRF (k2 =
48, p = 5 and q = 4) with different number of training samples. The classification accuracy
of ELM-HLRF is always higher than that of ELM-LRF. Figure 11 gives the time consumption
of ELM-LRF (k′ = 60) and ELM-HLRF (k2 = 48, p = 5 and q = 4)with varying number of
training samples. It should be noted that the time here includes the time to produce convolution
weights and the time to performGabor filtering procedure of ELM-HLRF in the training step.
The time consumption of ELM-HLRF is more than ELM-LRF but ELM-HLRF has more
convolution nodes and higher classification accuracy.

ELM-HLRF is also compared with the method presented by Yang et al. (2018). The
average classification accuracy of the method (Yang et al. 2018) on Outex_TC_ 00012 is
96.54%, while ELM-HLRF has higher accuracy (96.88%).

4.3.2 Performance evaluation on dataset Outex_TC_00000

The classification results when ELM-LRF and ELM-HLRF are applied to dataset
Outex_TC_00000 are shown in Tables 4 and 5. Several conclusions can be obtained from
the two tables: first, Gabor filters are efficient convolution kernels when doing image feature
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Table 3 The classification accuracy (%) when ELM-HLRF (k2 = 48) and ELM-LRF are applied to dataset
Outex_TC_00012 and k′ = (k2 + p · q)

Methods ELM-LRF Gabor + ELM Gabor + SVM ELM-HLRF

q = 4 q = 8 q = 4 q = 8 q = 4 q = 8

Accuracy 70.10 75.00 27.92 33.75 36.25 44.48 90.63 94.69

(k′ = 52) (k′ = 56) (p = 1) (p = 1) (p = 1) (p = 1) (p = 1) (p = 1)

75.00 76.46 32.40 32.81 33.13 37.81 94.69 96.56

(k′ = 56) (k′ = 64) (p = 2) (p = 2) (p = 2) (p = 2) (p = 2) (p = 2)

82.50 74.38 28.33 32.08 34.58 35.42 95.31 96.88

(k′ = 60) (k′ = 72) (p = 3) (p = 3) (p = 3) (p = 3) (p = 3) (p = 3)

76.46 80.31 27.19 30.00 34.69 33.96 94.90 96.67

(k′ = 64) (k′ = 80) (p = 4) (p = 4) (p = 4) (p = 4) (p = 4) (p = 4)

81.15 81.04 27.60 29.17 30.52 32.92 95.00 96.77

(k′ = 68) (k′ = 88) (p = 5) (p = 5) (p = 5) p = 5) (p = 5) (p = 5)

Bold value represents the best result of all the compared methods

Fig. 10 Classification accuracy (%) with varying number of training samples when ELM-HLRF and ELM-
LRF are applied to Outex_TC_00012

extraction; second, Table 5 shows that when k′ = (k2 + p · q) the classification accuracy
of ELM-HLRF is higher than that of ELM-LRF, so the hybrid filter kernels are superior to
the randomly generated convolution kernels. ELM-HLRF achieves its optimal performance
when k2 = 48, p = 3, q = 8 and does not increase with the increasing of p and q after then.

Figure 12 shows the classification results of ELM-LRF (k′ = 88) and ELM-HLRF (k2 =
48, p = 5 and q = 8) with different sizes of training samples. The classification accuracy of
ELM-HLRF is always higher than that of ELM-LRF. Figure 13 gives the time consumption
of ELM-LRF (k′ = 88) and ELM-HLRF (k2 = 48, p = 5 and q = 8) with varying number
of training samples. The convolution nodes of ELM-LRF and ELM-HLRF are the same in
this experiment, and it can be seen from Fig. 13 that the consumed time of ELM-LRF is more
than that of ELM-HLRF.

The results of ELM-HLRF on Outex_TC_00000 are also compared with those of other
methods. With the input images of the same size (32× 32), ELM-HLRF has higher classifi-
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Fig. 11 Time-consumption (s) with varying number of training samples when ELM-HLRF and ELM-LRF
are applied to Outex_TC_00012

Table 4 The classification accuracy (%) when ELM-HLRF and ELM-LRF are applied to dataset
Outex_TC_00000 and k′ = 48

Methods ELM-LRF (k′ = 48) ELM-HLRF (k2 = 48)

q = 4 q = 8

Accuracy 72.71 76.65 (p = 1) 78.78 (p = 1)

79.98 (p = 2) 81.82 (p = 2)

80.77 (p = 3) 83.54 (p = 3)

81.18 (p = 4) 83.51 (p = 4)

81.07 (p = 5) 83.54 (p = 5)

Bold values represent the best result of all the compared methods

Table 5 The classification accuracy (%) when ELM-HLRF (k2 = 48) and ELM-LRF are applied to dataset
Outex_TC_00000 and k′ = (k2 + p · q)

Methods ELM-LRF Gabor + ELM Gabor + SVM ELM-HLRF

q = 4 q = 8 q = 4 q = 8 q = 4 q = 8

Accuracy 71.76 74.32 26.36 34.13 32.27 51.02 76.65 78.78

(k′ = 52) (k′ = 56) (p = 1) (p = 1) (p = 1) (p = 1) (p = 1) (p = 1)

74.32 76.88 31.66 39.29 49.77 59.33 79.98 81.82

(k′ = 56) (k′ = 64) (p = 2) (p = 2) (p = 2) (p = 2) (p = 2) (p = 2)

76.49 76.20 34.19 41.33 53.71 59.58 80.77 83.54

(k′ = 60) (k′ = 72) (p = 3) (p = 3) (p = 3) (p = 3) (p = 3) (p = 3)

76.88 79.33 35.96 41.76 53.19 57.18 81.18 83.51

(k′ = 64) (k′ = 80) (p = 4) (p = 4) (p = 4) (p = 4) (p = 4) (p = 4)

76.34 78.44 37.07 39.06 51.63 56.39 81.07 83.54

(k′ = 68) (k′ = 88) (p = 5) (p = 5) (p = 5) (p = 5) (p = 5) (p = 5)

Bold values represent the best result of all the compared methods
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Fig. 12 Classification accuracy (%) with varying number of training samples when the proposed method and
ELM-LRF are applied to Outex_TC_00000

Fig. 13 Time-consumption (seconds) with varying number of training samples when ELM-HLRF and ELM-
LRF are applied to Outex_TC_00000

cation accuracy (83.54%) than the method ((76.7 ± 1.8)%) presented by Reininghaus et al.
(2015).

4.3.3 Performance evaluation on the Yale face database

Figure 14 shows the classification resultswhenELM-LRF is applied to theYale face database.
The number of training samples for each class is 5.We can see fromFig. 14 that the increasing
number of convolution maps contributes little to the classification accuracy. So we set k′ = 4
and k′ = 8 in this paper for the consideration of time-consumption.

Table 6 shows the classification accuracy of ELM, SVM, ELM-LRF, themethod presented
by Zhang et al. (2014) and ELM-HLRF. When the number of convolution filters is set to 8
(k2 = 4, p = 1 and q = 4), the classification accuracy of ELM-HLRF is higher than that
of other methods. Specifically, when the number of convolution nodes of ELM-LRF and
ELM-HLRF is the same, ELM-HLRF outperforms ELM-LRF.
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Fig. 14 The classification accuracy when ELM-LRF is applied to the Yale face database and the number of
training maps for each class is 5

Table 6 The comparison of classification accuracy (%) on the Yale face database

Methods The number of training images

5 6 7 8

ELM-LRF (k′ = 4) 86.67 81.33 96.67 95.56

ELM-LRF (k′ = 8) 88.89 84.00 96.67 97.78

Gabor + ELM (p = 1, q = 4) 15.56 14.67 16.67 22.22

Gabor + SVM (p = 1, q = 4) 28.89 25.33 28.33 20.00

Zhang et al. (2014) 89.40 92.35 93.87 95.51

ELM-HLRF (k2 = 4, p = 1, q = 4) 93.33 93.33 98.33 97.78

Bold values represent the best result of all the compared methods

Table 7 The comparison of classification accuracy (%) and training time (s) on the ORL face database

Methods Accuracy Training time

Xu et al. (2015) 91.50 –

ELM-LRF (k′ = 24, r = 9, e = 8, C = 0.01) 98.50 0.0548

ELM-HLRF (k2 = 20, p = 3, q = 4, r = 9, e = 8, C = 0.01) 98.50 0.0711

Bold values represent the best result of all the compared methods

4.3.4 Performance evaluation on the ORL face database

The classification results of ELM-HLRF on the ORL face database are shown in Table 7.
In this experiment, 5 images for each class are used for training and the rest 5 for testing.
We compare ELM-HLRF with ELM-LRF and the image classification method presented
by Xu et al. (2015). The optimal parameters of ELM-LRF and ELM-HLRF are shown in
Table 7. ELM-HLRF and ELM-LRF have the same classification accuracy (98.50%), but the
training time of ELM-HLRF is higher than that of ELM-LRF because the former has more
convolution kernels.
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Table 8 The parameters of
ELM-LRF and ELM-HLRF on
NORB

Methods Parameters

ELM-LRF k′ r e C

48 4 3 0.01

ELM-HLRF k2 p q r e C

4, 8, …, 80 1, 2 ,3, 4, 5 4, 8 4 3 0.01

Table 9 The comparison of classification accuracy (%) and training time (s) on NORB

Methods Accuracy Training time

Random weights (Saxe et al. 2011) 95.20 1778.74

K-means + soft activation (Coates et al. 2011) 97.20 6977.18

Tiled CNN (Ngiam et al. 2010) 96.10 15522.83

CNN (LeCun et al. 2004b) 93.40 53815.57

DBN (Nair and Hinton 2009) 93.50 86419.56

ELM-LRF (Huang et al. 2015) 97.26 397.39

ELM-MSLRF (Huang et al. 2017) 97.50 403.95

ELM-HLRF (k2 = 48, p = 2, q = 8) 97.45 516.08

Bold values represent the best result of all the compared methods

4.3.5 Performance evaluation on the NORB dataset

Table 9 shows the comparison of classification accuracy on the NORB dataset. The optimal
parameters of ELM-LRF are shown in Table 8. The parameters of ELM-HLRF are shown
in Table 8, and the optimal parameters are shown in Table 9. We can see from Table 9 that
ELM-HLRF achieves good performance (97.45%), which is comparable to ELM-MSLRF
(97.50%) and better than the other methods. Besides, the training time of ELM-HLRF is
longer than that of ELM-LRF and ELM-MSLRF because the former has more convolution
kernels.

4.3.6 Data augmentation

In this paper, data augmentation is considered to improve the overall classification accuracy.
We use Gaussian blur to preprocess the training images first. Then the Gaussian blurred
images combined with original training images will be provided as new training image
inputs of ELM-HLRF or ELM-LRF. We use a 5 × 5 Gaussian blur function with standard
deviation of 1 to preprocess the original training images. Table 10 shows the classification
results when data augmentation is applied to the five datasets. It can be concluded that the
results obtained by the proposed data augmentation method are better than those without data
augmentation.

4.4 Discussions

Figures 15 and 16 show the relationship between the number of Gabor filters and the number
of the random convolution kernels in ELM-HLRF on the Outex_TC_00012 dataset and the
ORL face database respectively. We can see from Figs. 15 and 16 that, the accuracy increases
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Table 10 Classification accuracy (%) of the three datasets before and after data augmentation

Methods Original Data augmentation

Outex_TC_00012 ELM-LRF (k′ = 60) 82.50 87.60

ELM-HLRF (k2 = 48, p = 3 and q = 8) 96.88 97.29

Outex_TC_00000 ELM-LRF (k′ = 88) 78.44 80.22

ELM-HLRF (k2 = 48, p = 5 and q = 8) 83.54 84.50

Yale face dataset ELM-LRF (k′ = 8) 88.89 88.89

ELM-HLRF (k2 = 4, p = 1 and q = 4) 93.33 95.56

ORL face dataset ELM-LRF (k′ = 24) 98.50 99.00

ELM-HLRF (k2 = 20, p = 3 and q = 4) 98.50 99.00

NORB ELM-LRF (k′ = 48) 97.26 97.33

ELM-HLRF (k2 = 48, p = 2 and q = 8) 97.45 97.52

Bold values represent the best result of all the compared methods

Fig. 15 The relationship between the number of Gabor filters and the number of random convolution kernels
in ELM-HLRF on the Outex_TC_00012

with the increasing number of random convolution kernels at first, and then the number of
random convolution kernels is not in evidence with the classification accuracy when k2 ≥ 24
for Outex_TC_00012 and k2 ≥ 20 for the ORL face database.

Furthermore, the results on the Outex_TC_00012, the ORL face database and the NORB
dataset show that ELM-HLRF needs themore number of convolution kernels than ELM-LRF
to achieve its highest classification accuracy. Therefore, ELM-HLRF spends more training
time to achieve its optimal performance. On the other hand, ELM-HLRF has higher accuracy
than ELM-LRF, which means that the Gabor filters can provide the features that the random
convolution kernels cannot extract from images.

5 Conclusions

In this paper, we propose an innovative method local receptive field based extreme learning
machine with hybrid filter kernels (ELM-HLRF) to carry out image classification. Two kinds
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Fig. 16 The relationship between the number of Gabor filters and the number of random convolution kernels
in ELM-HLRF on the ORL face database

of convolution kernels are included in ELM-HLRF: the kernels of ELM-LRF and Gabor
filter kernels. In parallel, a data augmentation method based on Gaussian blur is used to
improve classification performance. We evaluate the performance of ELM-HLRF and the
data augmentation method using five datasets: Outex_TC_00000, Outex_TC_00012, the
Yale face database, the ORL face database and the NORB dataset. It can be concluded
that ELM-HLRF has higher classification accuracy than ELM-LRF, SVM and ELM, which
proves that Gabor filter kernels are efficient convolution kernels. Also, the experiment results
indicate that the training data augmented using data augmentation is more effective than the
original training data.
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