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Abstract In this paper, we present new computer algebra based methods for testing the
structural stability of n-D discrete linear systems (with n ≥ 2). More precisely, we show
that the standard characterization of the structural stability of a multivariate rational transfer
function (namely, the denominator of the transfer function does not have solutions in the unit
polydisc of C

n) is equivalent to the fact that a certain system of polynomials does not have
real solutions. We then use state-of-the-art computer algebra algorithms to check this last
condition, and thus the structural stability of multidimensional systems.

Keywords Multidimensional systems · Structural stability · Stability analysis · Computer
algebra

1 Introduction

Multidimensional systems is a class of systems for which the information propagates in more
than just one dimension as for the classical dynamical systems (this dimension being the
continuous/discrete time). The latter class of systems is usually referred as 1-D systems
whereas multidimensional systems are also called n-D systems, where n denotes the number
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of dimensions in which the information propagates. Within the frequency domain approach,
such a system is defined by means of a transfer function G of the following form

G(z1, . . . , zn) = N (z1, . . . , zn)

D(z1, . . . , zn)
, (1)

where D and N are twopolynomials in the complex variables z1, . . . , zn with real coefficients,
i.e., D, N ∈ R[z1, . . . , zn], which are supposed to be factor prime i.e., gcd(D, N ) = 1,
where gcd stands for the greatest common divisor of D and N . As for 1-D systems, a
fundamental issue in the multidimensional systems theory is stability analysis. In this paper,
we are interested in testing the structural stability of discrete linearmultidimensional systems
definedbymultivariate rational transfer function.A systemsuch as (1) is said to be structurally
stable if the denominator D of G is devoid of zeros in the complex unit polydisc U

n defined
by:

U
n :=

n∏

k=1

{zk ∈ C | |zk | ≤ 1}.

In other words, if VC(D) = {z = (z1, . . . , zn) ∈ C
n | D(z) = 0} denotes the hypersurface

formed by the complex zeros of D, then (1) is structurally stable if the following condition
holds:

VC(D) ∩ U
n = ∅. (2)

In the context of discrete linear multidimensional systems, structural stability implies
bounded-input bounded-output (BIBO) stability and, under certain conditions, other types
of stability such as asymptotic or exponential stability. For further details on the connections
between the different concepts of stability of multidimensional systems, see Bachelier et al.
(2017) and the references therein.

The simplicity of (2) significantly contrasts with the difficulty to develop effective algo-
rithms and efficient implementations for testing it. One important first step toward this
objective was the formulation of new conditions that are equivalent to the above condition
[see (2)] but easier to handle. The following theorems, due to Strintzis (1977) and Decarlo
et al. (1977), are two good representatives of these reformulations.

Theorem 1 (Strintzis 1977) Condition (2) is equivalent to:

D(0, . . . , 0, zn) �= 0, |zn | ≤ 1,
D(0, . . . , 0, zn−1, zn) �= 0, |zn−1| ≤ 1, |zn | = 1,

...
...

D(0, z2, . . . , zn) �= 0, |z2| ≤ 1, |zi | = 1, i = 3, . . . , n,

D(z1, z2, . . . , zn) �= 0, |z1| ≤ 1, |zi | = 1, i = 2, . . . , n.

Theorem 2 (Decarlo et al. 1977) Condition (2) is equivalent to:

D(z1, 1, . . . , 1) �= 0, |z1| ≤ 1,
D(1, z2, 1, . . . , 1) �= 0, |z2| ≤ 1,

...
...

D(1, . . . , 1, zn) �= 0, |zn | ≤ 1,
D(z1, . . . , zn) �= 0, |z1| = · · · = |zn | = 1.
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Recent algebraicmethods for testing the stability of n-D discrete linear systems aremainly
based on the conditions of Theorems 1 and 2.

However, note that the specific case of 2-D systems has attracted considerable attention
and numerous efficient tests have been proposed. See, e.g., Bistritz (1994, 2004), Hu and
Jury (1994), Xu et al. (2004), Fu et al. (2010) and the references therein. Common to all
these tests is the fact that they proceed recursively on the number of variables, reducing the
computations with polynomials in two variables to computations with a set of univariate
polynomials with algebraic coefficients by means of symbolic computation tools such as
resultant and subresultantpolynomials (see, e.g., Basu et al. 2006). Such a recursive approach,
which shows its relevance for 2-D systems, becomes rather involved when it comes to n-D
systems with n > 2, mainly due to the exponential increase of the degree of the intermediate
polynomials. This fact prevents these 2-D tests from being efficiently generalized to n-D
systems.

For n-D systems with n > 2, very few implementations for the stability analysis exist.
Among the recent work on this problem, one can mention the work of Serban and Najim
(2007) where, using an extension of the 1-D Schur–Cohn criterion, a new stability condition
is proposed as an alternative to the conditions of Theorems 1 and 2. As a result, the stability
is expressed as a positivity condition of n − 1 polynomials on the unit polycircle:

T
n−1 :=

n−1∏

k=1

{zk ∈ C | |zk | = 1} .

Unfortunately, such a condition becomes considerably hard to effectively test when the
involved systems are not of low degree in few variables. To achieve practical efficiency,
Dumitrescu (2006, 2008) proposes a sum of squares approach to test the last Decarlo’s con-
dition (Theorem 2). The proposed method is however conservative, i.e., it provides only a
sufficient stability condition. Finally, LMI test also exist for n = 2 (Bachelier et al. 2016a, b).
To sum up, the existing stability tests for n-D systems with n > 2 are either nonconservative
but inefficient or efficient (polynomial time) but conservative.

The contribution of this paper is threefold. First, a new algebraic approach for testing the
stability of n-D systems is presented. Our approach, which starts with the stability conditions
given by Decarlo et al. (1977) (see Theorem 2), transforms the problem of testing these
conditions into that of deciding the existence of real zero in some algebraic or semi-algebraic
sets. Hence, state-of-the-art real algebraic geometry techniques can then be used for this
purpose. Unlike the existing counterparts, this new approach is not conservative. Moreover,
our approach shows good practical performances for relatively small dimensions n.

Secondly, we address the specific case of 2-D systemswith themain objective of achieving
practical efficiency. Following the same approach as for n-D systems but taking advantage
from the recent developments in solving bivariate algebraic systems of equations (seeBouzidi
2014b), we propose a stability test based on the existence of real solutions of bivariate
algebraic systems which is efficient in practice. Namely, this test makes use of the software
RS3 (Rouillier 2012) which provides very efficient tools for the symbolic solving of bivariate
systems of equations.

Finally, the above 2-D stability test is extended in order to handle system parameters.
More precisely, using the concept of discriminant variety developed in the computer algebra
community (Lazard andRouillier 2007), we provide a newmethodwhich, given a 2-D system
depending on an arbitrary set of real parameters, decomposes the parameter space into regions
inside which the stability is guaranteed.
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The plan of the paper is the following. In Sect. 2.1, we first reformulate the last condition
of Theorem 1 as the emptiness of a certain semi-algebraic set. We then present state-of-part
computer algebra techniques (namely, Cylindrical Algebraic Decomposition, critical point
methods and Rational Univariate Representation) which can be used to effectively study this
last problem. In Sect. 2.2, we present a new approach for testing the last condition of Theo-
rem 1 based on the Möbius transform and a critical point method. Algorithms are presented.
They are then illustrated with explicit examples in Sect. 2.3 and their implementations in
Maple are discussed and timings are shown. A new stability test for 2-D systems is pre-
sented in Sect. 3 based on a recent approach, developed by two of the authors, for the efficient
computation of real solutions of systems of two polynomial equations in two variables. This
approach is based on the efficient computation of Rational Univariate Representations using
resultants, subresultant sequences and triangular polynomial systems. Finally, Sect. 4 shows
how to use the mathematical concept of a characteristic variety, developed by one of the
author, to study the stability of 2-D systems with parameters. We show how the parame-
ter space can be explicitly decomposed into cells so that the 2-D system is either stable or
unstable for all values of the parameters belonging to each cell.

2 Stability of n-D discrete linear systems

In this section, Sect. 2.1 overviews in broad lines computer algebra methods for computing
the real zeros of semi-algebraic sets (namely, unions of sets defined by a finite number of
polynomial equations and inequalities) and recall the basic ideas behind thesemethods. Then,
Sect. 2.2 shows howwe can obtain new stability conditions that can be tested efficiently using
the previously introduced computer algebramethods. Finally, Sect. 2.3 illustrates our stability
test on non-trivial examples and show its practical efficiency thanks to experimental tests.

2.1 Computer algebra methods

Recall that the transfer function G defined by (1) is said to be structurally unstable if the set

E := VC(D) ∩ U
n = {(z1, . . . , zn) ∈ C

n | D(z1, . . . , zn) = 0, |z1| ≤ 1, . . . , |zn | ≤ 1}
is not empty. The set E is a semi-algebraic subset of R

2n . Indeed, if we note zk := xk + i yk ,
where xk (resp., yk) is the real part (resp., the imaginary part) of zk and i is the imaginary
unit, then the polynomial D can be rewritten as follows

D(z1, . . . , zn) = R(x1, . . . , xn, y1, . . . , yn) + i I(x1, . . . , xn, y1, . . . , yn),

where R, I ∈ R[x1, . . . , xn, y1, . . . , yn], and the inequalities |zk | ≤ 1 are equivalent to
x2k + y2k ≤ 1 for k = 1, . . . , n, which shows that E is equivalently defined by the following
semi-algebraic set:

E ∼= {(x1, . . . , xn, y1, . . . , yn) ∈ R
2n |

R(x1, . . . , xn, y1, . . . , yn) = 0, I(x1, . . . , xn, y1, . . . , yn) = 0,

x2k + y2k ≤ 1, k = 1, . . . , n}.
(3)

Testing (2) is thus equivalent to testing that the above semi-algebraic set is empty. This
test can be performed using classical computer algebra methods for computing the real zeros
of semi-algebraic systems which will be briefly overviewed in the next section.
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2.1.1 Cylindrical algebraic decomposition and critical point methods

To study the real zeros of semi-algebraic sets, two classes of symbolic algorithms are avail-
able: the algorithms based on Cylindrical Algebraic Decompositions (CAD) and those based
on the study of the critical points of well-chosen functions (see, e.g., Basu et al. 2006).

The Cylindrical Algebraic Decomposition (CAD) Introduced originally by Collins (1975)
in the seventies, the CAD has become a standard tool for the study of real zeros of semi-
algebraic sets. CAD refers to both an object and an algorithm for computing this object. In
short, a CAD associated to a finite set of polynomial F = {P1, . . . , Ps} ⊂ R[x1, . . . , xn] is
a partition of R

n into connected semi-algebraic sets, called cells, on which each polynomial
Pi has a constant sign (i.e., either +, − or 0). For instance, the CAD of a set of univariate
polynomials in R[x] is an union of points and open intervals that form a partition of R. Such
a partition is called F-invariant. Let Πk : R

n −→ R
n−k denote the projection onto the first

n − k components of R
n . The CAD is called cylindrical since for every two cells c1 and c2,

we either have Πk(c1) = Πk(c2) or Πk(c1) ∩ Πk(c2) = ∅. This implies that the images of
the cells by Πk define a cylindrical decomposition of R

n−k .

Example 1 A CAD associated to P = x21 + x22 − 1 ∈ R[x1, x2] is a partition of R
2 into the

following algebraic sets (cells) in each of which the polynomial P has a constant sign:

– C1 = {(x1, x2) ∈ R
2 | x1 < −1},

– C2 = {(x1, x2) ∈ R
2 | x1 = −1, x2 < 0},

– C3 = {(x1, x2) ∈ R
2 | x1 = −1, x2 = 0},

– C4 = {(x1, x2) ∈ R
2 | x1 = −1, x2 > 0},

– C5 = {(x1, x2) ∈ R
2 | − 1 < x1 < 1, x21 − x22 − 1 > 0, x2 < 0},

– C6 = {(x1, x2) ∈ R
2 | − 1 < x1 < 1, x21 − x22 − 1 = 0, x2 < 0},

– C7 = {(x1, x2) ∈ R
2 | − 1 < x1 < 1, x21 − x22 − 1 < 0},

– C8 = {(x1, x2) ∈ R
2 | − 1 < x1 < 1, x21 − x22 − 1 = 0, x2 > 0},

– C9 = {(x1, x2) ∈ R
2 | − 1 < x1 < 1, x21 − x22 − 1 > 0, x2 > 0},

– C10 = {(x1, x2) ∈ R
2 | x1 = 1, x2 < 0},

– C11 = {(x1, x2) ∈ R
2 | x1 = 1, x2 = 0},

– C12 = {(x1, x2) ∈ R
2 | x1 = 1, x2 > 0},

– C13 = {(x1, x2) ∈ R
2 | x1 > 1}.

The CAD algorithm mainly consists of two distinct phases: a projection phase and a lift-
ing phase. During the projection phase, one proceeds recursively on the number of variables.
Starting from the initial set of polynomials F1 = {P1, . . . , Ps}, a first set of polynomials
F2 ⊂ R[x1, . . . , xn−1] is computed which has the property that a partition of R

n−1 that is
F2-invariant, naturally lifts to a partition of R

n that is F1-invariant. Then, from F2, another
set F3 ⊂ R[x1, . . . , xn−2] with the same property is computed and so on, until obtaining a
set of univariate polynomials Fn . At each step, the projection essentially consists in com-
puting resultants (and subresultants) for all possible pairs of polynomials as well as their
discriminants (see, e.g., Basu et al. 2006).

Example 2 The projection phase for Example 1 consists in only one projection and yields
the discriminant −4 x21 + 4 of P = x21 + x22 − 1 with respect to x2.

Starting from the set of univariate polynomials, the lifting step, which also proceeds
recursively, consists in isolating the real roots of univariate polynomials with real algebraic
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numbers as coefficients, which can be viewed as solving a so-called triangular zero-
dimensional system, namely, a system with a finite number of complex solutions having
a triangular form.

Example 3 Continuing Example 2, the real roots of−4 x21 +4 are first isolated, which yields
a partition of R that consists of the cells ]−∞,−1[, {−1}, ]− 1, 1[, {1} and ]1,+∞[. Then,
the real roots of the polynomial x21 + x22 − 1 are isolated for each x1 in these cells, which
yields the partition of R

2 given in Example 1.

Although the computation of the CAD answers our problem i.e,. deciding the existence
of real zeros, the partition of R

n given by the CAD gives more information than required.
Moreover, its computation requires a number of arithmetic operations which is doubly expo-
nential in the number of variables of the polynomial ring, i.e., n, due to, at least, the iterative
computation of the resultants (and subresultants). Despite of this, it is worth mentioning that,
to some extent, most of the existing algorithms for testing the stability of multidimensional
systems can be viewed as particular variants of the CAD.

Critical point methods Instead of a complete partition of the real space, critical points based
methods basically compute at least one point in each real connected component of a given
semi-algebraic set, which is sufficient to answer our question. Roughly speaking, the basic
principle of these methods consists in computing the critical points of a well-chosen function
restricted on an algebraic set. Under certain conditions, the set of critical points is defined by
a zero-dimensional polynomial system (i.e., which admits a finite number complex solutions)
and it meets each real connected component of the original semi-algebraic set.

Example 4 We consider again the polynomial given in Example 1, i.e., P = x21 +x22 −1. Our
goal is to compute at least one point in the single real connected component of the algebraic
set VR(P) = {α = (α1, α2) ∈ R

2 | P(α) = 0}. Let Π : R
2 −→ R denote the projection

onto the first component x1 of (x1, x2) ∈ R
2. The critical points of Π restricted to VR(P)

are the points of VR(P) on which the derivative ∂ P
∂x2

vanishes. They are given as the real zeros
of the following system

P = x21 + x22 − 1 = 0,

∂ P

∂x2
= 2 x2 = 0,

which yields (1, 0) and (−1, 0). These points belong to the real connected component of
P = 0.

Let us consider the real hypersurface

VR(P) := {α = (α1, . . . , αn) ∈ R
n | P(α) = 0}

defined by P ∈ Q[x1, . . . , xn]. Let us suppose that VR(P) is smooth, i.e., it does not contain
singular points, namely, points where the rank of the Jacobian matrix is not maximal, and
VR(P) is compact (i.e., closed and bounded) for the so-called Zariski topology (see, e.g.,
Cox et al. 2007). The set of critical points of the projection with respect to some variable xi

restricted to VR(P) defined by

CΠ(VR(P)) :=
{
α ∈ VR(P) | ∂ P

∂xk
(α) = 0, ∀ k ∈ {1, . . . , i − 1, i + 1, . . . , n}

}
, (4)
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is finite and meets each real connected component of VR(P) (see Bank et al. 2001; Safey
El Din and Schost 2003).

There are several ways to circumvent the hypotheses (i.e., compactness and smoothness).
For instance, we can use a distance function to a fixed point instead of the projection function
to get rid of the compactness assumption (Seidenberg 1954), deform the variety to get a
compact and smooth one (Rouillier et al. 2000), introduce more general notions of critical
points (Bank et al. 2005), or separately study the subsets of singular points of the variety
(Aubry et al. 2002).

For systems of polynomial equations and, more generally systems of polynomial inequal-
ities, several strategies have been proposed by different authors (see, e.g., Basu et al. 2006;
Bank et al. 2001). Some are based on the use of sums of squares to reduce the problem of
studying an algebraic set to the problem of studying an hypersurface (Basu et al. 2006), on
the use of infinitesimal deformations by adding some variables to avoid singularities and to
deal with inequalities (Basu et al. 2006), or on the introduction of a special kind of critical
points (generalized critical values) to circumvent the compactness hypothesis. But the basic
ideas stay the same.

As already said, critical points methods compute less information than the CAD but
they are sufficient in our case since we just have to decide if a semi-algebraic set is empty.
Moreover, a key advantage of these methods is that they transform the problem into solving a
zero-dimensional polynomial system and this transformation is performed within a number
of arithmetic operations that is single exponential in the number n of variables.

Remark 1 In practice, for systems depending on strictly less than 3 variables, the use of CAD
is usually preferred since, it provides more information than the critical point methods for a
negligible additional cost.

2.1.2 Symbolic resolution of univariate polynomials and zero-dimensional systems

The methods described in Sect. 2.1.1 are based on the resolution of univariate polynomials
and, more generally, on zero-dimensional polynomial systems. For stability analysis of mul-
tidimensional systems, we mainly have to decide whether or not a polynomial system admits
real solutions. For polynomial systems with a finite number of solutions, we can use an addi-
tional processing that turns this last problem into computing a univariate parameterization of
all the solutions.

Given a zero-dimensional polynomial system and I ⊂ Q[x1, . . . , xn] the ideal generated
by the corresponding polynomials, a Rational Univariate Representation (RUR) of VC(I )
is defined by a separating linear form t := a1 x1 + · · · + an xn and univariate polynomi-
als f, f1, fx1 , . . . , fxn ∈ Q[t] such that we have the following one-to-one correspondence
between VC(I ) and VC( f ):

φt : VC(I ) ≈ VC( f ) := {β ∈ C | f (β) = 0}
α �−→ t (α) = a1 α1 + · · · + an αn(

fx1(β)

f1(β)
, . . . ,

fxn (β)

f1(β)

)
←−� β.

(5)

If (5) is a RUR of VC(I ), then the bijection φt between the zeros of I and those of f
preserves the multiplicities and the real zeros (Rouillier 1999).

According to its definition, the computation of a Rational Univariate Representation can
be divided in two independent parts. The first one consists in computing a separating linear
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form for V (I ), that is a linear combination of the variables a1 x1 + · · · + an xn so that the
following map

V (I ) −→ C

(α1, . . . , αn) �−→ a1 α1 + · · · + an αn

is injective. The second part consists in computing the univariate polynomials f, f1, fx1 , . . . ,

fxn that define the one-to-one mapping given in (5).
Ifwe suppose that a separating linear form t := a1 x1+· · ·+an xn is given, the polynomials

of the RUR can be computed by means of simple linear algebra operations. Indeed, provided
that I is a zero-dimensional ideal, the quotient algebraA := Q[x1, . . . , xn]/I is then a finite-
dimensional Q-vector space which dimension is equal to the number of complex zeros of

VC(I ) = {α = (α1, . . . , αn) ∈ C
n | ∀ P ∈ I : P(α) = 0}

countedwithmultiplicities, and usingGröbner bases (see, e.g., Cox et al. 2007), one can com-
pute a basis of theQ-vector spaceA aswell as thematrix associatedwith theQ-endomorphism
of A defined by multiplying any element of A by an element P ∈ Q[x1, . . . , xn] as follows

MP : A −→ A
π(a) �−→ π(P a),

(6)

where π : Q[x1, . . . , xn] −→ A denotes the Q-algebra epimorphism which sends a to
its residue class π(a) in A. Then, the first polynomial of the RUR f is the characteristic
polynomial of Mt where t = a1 x1+· · ·+an xn is the separating form for V (I ). Moreover, if

f (t) := f

gcd( f, ∂ f/∂t)
=

d∑

i=0

ai td−i ∈ Q[t]

denotes the square-free part of f and if we note

Hj (t) :=
j∑

i=0

ai t j−i , j = 0, . . . , d − 1,

then, the other polynomials of the RUR are defined as follow:

f0 :=
d−1∑

i=0

Trace(Mi
t ) Hd−i−1(t),

fxk :=
d−1∑

i=0

Mxk Mi
t Hd−i−1(t), k = 1, . . . , n.

Asmentioned above, the computation of the RUR requires to find a separating linear form.
Such a separating form can be sought in a set of infinite number of linear forms that contains
only afinite number of bad-separating forms. For instance, the set {x1+i x2+· · ·+in−1 xn | i ∈
Q} contains at most (n −1) d(d−1)

2 bad separating forms (see Basu et al. 2006, Lemma 4.9). A
random choice of a linear form then yields a form which is separating with probability close
to one. Therefore, a standard strategy consists in choosing an arbitrary linear form, computing
a RUR candidate using this form, and then checking whether or not this RUR candidate is a
RUR. A well-known fact is that checking that a RUR candidate is a RUR, and thus that the
chosen linear form is separating, is closely related to the problem of computing the number
of distinct complex solutions of the system. Indeed, given the number of distinct solutions
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of the system, one can check that a linear form t is separating by checking whether or not
the squarefree part of the first polynomial of the candidate RUR, i.e., f , has a degree equal
to this number. In practice, several strategies can be used to compute the number of distinct
complex solutions [e.g., computing the radical ideal of the polynomial ideal defined by the
system, computing the rank of awell-chosen quadratic form (Rouillier 1999)]. To avoid costly
computations resulting from many trials, the separation test is usually performed modulo a
prime number, which allows one to obtain a good prediction (Rouillier 1999).

Finally, note that alternative algorithms exist for the computation of univariate represen-
tations which do not require the pre-computation of a Gröbner basis (see, e.g., Giusti et al.
2001). In addition, for the specific case of polynomial systems with only two variables,
univariate representations as well as separating forms can be efficiently obtained using algo-
rithms based on resultants and subresultants sequence (see Bouzidi 2014a). For more details,
see Sect. 3.

Once a RUR (5) is known, computing the real solutions of I , namely computing VR(I ) =
{(x1, . . . , xn) ∈ R

n | ∀ P ∈ I : P(x1, . . . , xn) = 0} (resp., deciding whether or not the
polynomial system defined by I has real solutions) reduces to computing the real roots of
the univariate polynomial f1 ∈ Q[t] (resp., deciding whether or not f1 has real roots). This
can be done using classical bisection algorithms such as Sturm’s sequences or methods based
on Descartes’ rule of signs (see, e.g., Basu et al. 2006) which gives a set of intervals which
isolate the real roots of f1.

Example 5 Let us illustrate the concept of univariate representation with the polynomial
system which encodes the critical points of P = x21 + x22 − 1 = 0 as defined in Example 4,
namely:

x21 + x22 − 1 = 0,

∂ P

∂x2
= 2 x2 = 0.

(7)

We note that (7) forms a Gröbner basis of the ideal I =
〈

P,
∂ P

∂x2

〉
for the graded reverse

lexicographic order (see, e.g., Cox et al. 2007) and a basis of the Q-vector space A =
Q[x1, x2]/I is given by the monomials {1, x1}, which implies that the number of complex
solutions counted with their multiplicities is equals to two. Since the univariate polynomial
in x2 i.e., 2 x2, has degree one, t = x2 is not a separating form. We can obtain a RUR of (7)
by computing a Gröbner basis of I for a monomial ordering that eliminates x2 such as:

x21 − 1 = 0,

x2 = 0.

Example 6 Another example is given by the following polynomial system:

P1 = 36 x21 x2 − 10 x1 − 6 x2 = 0,

P2 = 12 x21 + 30 x1 x2 − 2 = 0.
(8)

Computing a Gröbner basis of the ideal I = 〈P1, P2〉 generated by (8) for the graded reverse
lexicographic order, we obtain that I = 〈9 x22+1, 6 x21+15 x1 x2−1〉, which shows that (8) is
equivalently defined by these two polynomials. On the above Gröbner basis of I , we can then
read that the dimension of the Q-vector space A = Q[x1, x2]/I is 4: the set of monomials
{1, x1, x2, x1 x2} does not satisfy Q-linear relations which are algebraic consequences of (8).
As a consequence, (8) admits 4 complex solutions counted with their multiplicities. Let us
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solve (8). Computing a Gröbner basis of I for an order which eliminates x2 (Cox et al. 2007),
we get that the ideal I = 〈36 x41 + 13 x21 + 1, 36 x31 + 19 x1 + 15 x2〉. Hence, (8) can be
parametrized as follows:

x2 = − 1

15
x1

(
36 x21 + 19

)
,

36 x41 + 13 x21 + 1 = 0.

Solving the last univariate equation, we obtain that the four solutions of (8) are of the form
of:

(
x�
1, x�

2 = − 1

15
x�
1 (36 x�

1
2 + 19)

)
, x�

1 ∈
{
± i

2
,± i

3

}
.

In particular, (8) does not admit real solutions, a fact that could be directly checked by
applying Descartes’ rule of signs on the univariate polynomial 36 x41 + 13 x21 + 1.

2.2 Real algebraic stability conditions

As shown at the beginning of Sect. 2.1, (2) can be reduced to checking the emptiness of the
semi-algebraic set of R

2n defined by (3). This problem can be achieved using the methods
described in Sect. 2.1.2. However, such an approach presents an important drawback: it
doubles the number of variables [see (3)], which yields an overhead of computations in
practice due to the exponential cost of the methods described in Sects. 2.1.1 and 2.1.2.

To avoid this computational issue, we can start directly with the DeCarlo et al.’s stability
conditions (see Theorem 2). From the computational point of view, the first n conditions of
Theorem 2 can easily be checked using classical univariate stability tests (see, e.g., Marden
1949; Jury 1964; Bistritz 1984, 2002). We are then left with the last condition of Theorem 2,
i.e.:

VC(D) ∩ T
n = ∅. (9)

This condition replaces the search for zeros of D in the unit polydisc U
n [see (2)] by the

search for zeros over the unit polycircleT
n . Now, our approach to test the above condition (9)

consists in applying a transformation that maps the unit poly-circle T
n to the real space R

n .
More precisely, for each complex variable zk , we perform a change of variable zk := φ(xk)

such that zk ∈ T if and only if xk ∈ R. In particular, such a transformation allows us to
keep unchanged the number of variables. A classical transformation that satisfies the above
requirement is the so-called Möbius transformation which definition is recalled in the next
definition.

Definition 1 Denoting the extended complex plane by C, namely, C := C ∪ {∞}, a Möbius
transformation is the following rational function

φ : C −→ C

z �−→ a z + b

c z + d
,

where a, b, c, d ∈ C are fixed and satisfy a d − b c �= 0. We formally write:

φ

(
−d

c

)
= ∞, φ(∞) = a

c
.
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Denoting byH the class of circles of arbitrary radius in C (this class includes lines which
can be considered as circles of infinite radius). Then, the set of Möbius transformations have
the property of mapping H to itself, i.e., each circle in C is mapped to another circle in C.

In particular, the following transformation φ(z) = z − i

z + i
, which corresponds to the Möbius

transformation with a = 1, b = −i , c = 1 and d = i , maps the real line R to the complex
unit circle deprived from the point 1, that is, T\{1}.
Remark 2 Different transformations such as the classical parametrization of T\{−i} defined
by

∀ tk ∈ R, xk = 2 tk
1 + t2k

, yk = 1 − t2k
1 + t2k

, k = 1, . . . , n,

with the notation zk = xk + i yk , also fulfill the above requirement but usually yield a
polynomial with higher degree than the one obtained by a Möbius transformation.

Accordingly, the following result holds.

Proposition 1 Let D ∈ R[z1, . . . , zn]. Two polynomials R and I can be obtained such that:

VC(D) ∩ [T\{1}]n = ∅ ⇐⇒ VR(〈R, I〉) = ∅.

Proof Given a polynomial D(z1, . . . , zn), we can handle the following substitution

zk = xk − i

xk + i
= x2k − 1

x2k + 1
− i

2 xk

x2k + 1
, k = 1, . . . , n, (10)

which yields a rational function in C(x1, . . . , xn) whose numerator can be written as

R(x1, . . . , xn) + i I(x1, . . . , xn),

where R, I ∈ R[x1, . . . , xn]. If (z1, . . . , zn) is a zero of D(z1, . . . , zn) that belongs to
[T\{1}]n , then, by construction,

(x1, . . . , xn) =
(

i (z1 + 1)

1 − z1
, . . . ,

i (zn + 1)

1 − zn

)

is a real zero of R(x1, . . . , xn) + i I(x1, . . . , xn). Conversely, if (x1, . . . , xn) is a real zero
of R(x1, . . . , xn) + i I(x1, . . . , xn), then

(z1, . . . , zn) =
(

x1 − i

x1 + i
, . . . ,

xn − i

xn + i

)

is also a zero of D(z1, . . . , zn) that belongs to [T\{1}]n . ��
Remark 3 If we denote by dk the degree of D with respect to the variable zk , then we can
easily check that the transformation used in the proof of Proposition 1 [see (10)] yields two
polynomials R and I of total degrees at most

∑n
k=1 dk .

Example 7 Let us consider D(z1, z2) = (2 z21 + 10 z1 + 12) + (z21 + 5 z1 + 6) z2. Applying
the transformation (10) for k = 1, 2, we obtain the following polynomial system of total
degree 3

R = 36 x21 x2 − 10 x1 − 6 x2 = 0,

I = 12 x21 + 30 x1 x2 − 2 = 0,
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which was considered in (8).
We can also consider

D(z1, z2) = −3 z21 z22 + 2 z21 z2 + 2 z1 z22 − 3 z21 + 4 z1 z2 − 3 z22 + 2 z1 + 2 z2 − 3

which, after transformation (10) for k = 1, 2, yields the following two polynomials of total
degree 2:

R = 0,

I = x21 + x22 − 1 = 0.

According to Proposition 1, we can test that a polynomial D ∈ R[z1, . . . , zn] does
not have complex zeros in [T\{1}]n by first computing the polynomials R(x1, . . . , xn) and
I(x1, . . . , xn) and then checking that the following polynomial system

R(x1, . . . , xn) = 0,

I(x1, . . . , xn) = 0,
(11)

does not have any solution in R
n by means of the techniques described in Sect. 2.1.

Note that to check the last condition of Theorem 2, the above test is not sufficient since
it excludes the points of the poly-circle that have at least one coordinate equal to 1. Hence,
we also have to check that the polynomial D does not vanish at any of these points. Let us
explain how this can be done in a systematic manner. Starting with D, we first compute the
following polynomials:

Di (z1, . . . , zk−1, zk+1, . . . , zn) := D(z1, . . . , zk−1, 1, zk+1, . . . , zn), k = 1, . . . , n.

To each Dk , we then apply the Möbius transformation (10) for z j with j = 1, . . . , k −
1, k + 1, . . . , n, followed by the test of Proposition 1. Similarly as above, this test allows us
to check whether or not each Dk does not have complex zeros on [T\{1}]n−1. But we still
need to check that Dk does not vanish at the excluded points, namely, points having at least
one coordinate in {z1, . . . , zk−1, zk+1, . . . , zn} equal to 1. This can then be done in the same
way as above by considering the polynomials Dkl obtained by substituting the variable zl

by in the Dk’s. Proceeding recursively until obtaining univariate polynomials of the form
D(1, . . . , 1, zk, 1, . . . , 1), we can then check that D does not vanish on the unit poly-circles
T.

Note that at the step m of the above process, the set of polynomials we have to consider
are exactly the polynomials obtained from D after substituting m of the n variables zi ’s by 1.
From this observation, we obtain the following algorithm to check (10) based on Theorem 2.

Algorithm 1 1: procedure IntersectionEmpty(D(z1, . . . , zn)) � return true if D
satisfies (9)

2: for k = 0 to n − 1 do
3: Compute the set Sk of polynomials obtained by substituting k of the variables zi ’s

by 1 in D(z1, . . . , zn)

4: for each Dk in Sk do
5: {R, I} = Möbius_transform(Dk)

6: if VR({R, I}) �= ∅ then
7: return False
8: end if
9: end for
10: end for
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11: return True
12: end procedure

Let us now state our n-D stability test.

Algorithm 2 1: procedure IsStable(D(z1, . . . , zn)) � return true if D satisfies (2)
2: for k = 1 to n do
3: if D(1, . . . , zk, . . . , 1) is not stable then
4: return False
5: end if
6: end for
7: return IntersectionEmpty(D(z1, . . . , zn))
8: end procedure

Remark 4 InAlgorithm1, the polynomials considered at the last step are D(1, . . . , zk, . . . , 1)
for k = 1, . . . , n. Since the stability of these polynomials are checked at step 1 ofAlgorithm2,
we can skip this test in Algorithm 2 by stopping Algorithm 1 at step n − 2.

Remark 5 From the computational cost viewpoint, it should be stressed that the most dom-
inant part of Algorithm 1 is the first iteration of the outer loop which consists in checking
that the polynomial D(z1, . . . , zn) is devoid from zero in the poly-circle T

n . Indeed, for any
iteration k of the outer loop, the algorithm performs

(n
k

)
calls to the routine for checking

the existence of real zeros of an algebraic system with n − k variables. Since this checking
step requires a cost that is at least single exponential in the number of variables (see Basu
et al. 2006), this implies that the cost of the outer loop, and thus of the whole algorithm, is
dominated by the cost of the first iteration.

2.3 Examples and experiments

Let us illustrate Algorithms 1 and 2 with some explicit examples.

Example 8 We consider D(z1, z2) = (2 z21 + 10 z1 + 12)+ (z21 + 5 z1 + 6) z2 which appears
in several articles on the stability analysis (Xu et al. 2004; Li et al. 2013). It is known that D
is structurally stable. Let us check again this result.

The first step of our procedure consists in checking that the two polynomials D(z1, 1) =
3 z21 + 15 z1 + 18 and D(1, z2) = 12 z2 + 24 are stable, which can be directly checked by,
e.g., inspecting their solutions (i.e., {-3, -2} and {-2}).

In a second step, we apply Algorithm 1 to D(z1, z2). As we have already checked that
D(z1, 1) and D(1, z2) are stable, we only have to consider D(z1, z2) itself. Using theMöbius
transformation (10), this polynomial yields the polynomial system defined by (8). In Exam-
ple 6, we proved that (8) does not admit real solutions.

Example 9 If we consider

D(z1, z2) = −3 z21 z22 + 2 z21 z2 + 2 z1 z22 − 3 z21 + 4 z1 z2 − 3 z22 + 2 z1 + 2 z2 − 3,

then, theMöbius transformation (10) yields only one polynomial x21 +x22 −1 (see Example 7)
that admits an infinite number of zeros. Checking for the existence of real zeros of this
polynomial can be done by checking for the existence of real solutions for the system of its
critical points [see (7)].
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Example 10 We consider D(z1, z2, z3) = (z21 + z22 + 4) (z1 + z2 + z3 + 5) which is known
to be structurally stable (Li et al. 2013). Our procedure first checks that the polynomials
D(z1, 1, 1) = (z21 +5) (z1 +7), D(1, z2, 1) = (z22 +5) (z2 +7) and D(1, 1, z3) = 6 z3 +42
are stable. Then, applying Algorithm 1 to D, we have to test the existence of zeros on the
polycircle of the following polynomials

D(z1, z2, z3) = (
z21 + z22 + 4

)
(z1 + z2 + z3 + 5),

D(z1, 1, z3) = (
z21 + 5

)
(z1 + z3 + 6),

D(1, z2, z3) = (
z22 + 5

)
(z2 + z3 + 6),

D(z1, z2, 1) = (
z21 + z22 + 4

)
(z1 + z2 + 6),

(12)

by considering the set of polynomial systems obtained by applying theMöbius transformation
(10) to each of them. Themain difficult computation is to decide whether or not the following
polynomial system, which corresponds to D(z1, z2, z3), has real solutions:

48 x31 x32 x3 − 72 x31 x22 − 96 x31 x2 x3 − 72 x21 x32 − 184 x21 x22 x3 − 96 x1 x32 x3

+ 24x31 + 120 x21 x2 + 72 x21 x3 + 120 x1 x22 + 176 x1 x2 x3 + 24 x32 + 72 x22 x3

− 40 x1 − 40 x2 − 24 x3 = 0,

36 x31 x32 + 100 x31 x22 x3 + 100 x21 x32 x3 − 68 x31 x2 − 36 x31 x3 − 124 x21 x22

− 180 x21 x2 x3 − 68 x1 x32 − 180 x1 x22 x3 − 36 x32 x3 + 44 x21 + 116 x1 x2

+ 68 x1 x3 + 44 x22 + 68 x2 x3 − 12 = 0.

Using one of themethods described in Sect. 2.1.1, we can check that the above polynomial
system does not have real zeros. Similarly, the second, third and fourth polynomials of (12)
can be proved to be devoid from zeros in the corresponding polycircle, and we find again
that D is stable.

Our stability test was implemented in a Maple routine named IsStable. It takes
a polynomial defining the denominator of a transfer function in input and returns true if
this polynomial satisfies (9) and false otherwise. For testing the first n conditions of Theo-
rem 2, we use the classical 1-D Bistritz test (see Bistritz 1984) that was also implemented in
Maple. To test the emptiness of a real algebraic set, which is the main critical step in Algo-
rithm 1, we have implemented the two presented methods.1 The first one uses the classical
cylindrical algebraic decomposition. Such a decomposition is provided by the Maple rou-
tine CylindricalAlgebraicDecompose which can be found in the native package
RegularChains[SemiAlgebraicSetTools]. The second method is based on the
computation of the set of critical points of a given function restricted to the real algebraic set
under consideration. An efficient implementation of this method has been done is the external
Maple library RAGlib (Safey El Din 2007) (see the command HasRealSolutions).
Finally, we use the routine Isolate of the Maple package RootFinding in order to
compute numerical approximations of the solutions through the computation of a univariate
representation.

In Table 1, we show the average running times in CPU seconds of the IsStable
routine for random (sparse or dense) polynomials in 2 and 3 variables with rational coeffi-
cients.2 The two running time columns correspond to the two variants IsStableCAD and

1 The user can choose one of these two methods by means of an option in the routine IsStable.
2 The experiments were conducted on 1.90 GHz 3-Core Intel i3-3227U with 3MB of L3 cache under a Linux
platform.

123



Multidim Syst Sign Process (2019) 30:1205–1235 1219

Table 1 CPU times in seconds of IsStableCAD and IsStableCRIT run on random polynomials in 2
and 3 variables with rational coefficients

Data Running time

nbvar Degree Density IsStableCAD IsStableCRIT

2 3 Sparse 0.039 0.074

Dense 0.047 0.078

5 Sparse 0.055 0.087

Dense 0.17 0.13

8 Sparse 0.29 0.21

Dense 2.74 0.61

10 Sparse 1.91 0.38

Dense 8.59 1.82

3 3 Sparse t/o 0.31

Dense t/o 0.36

5 Sparse t/o 0.51

Dense t/o 1.05

8 Sparse t/o 2.31

Dense t/o 9.77

10 Sparse t/o 4.71

Dense t/o 38.70

t/o time out

IsStableCRIT (depending on themethod used for testing the emptiness of a real algebraic
set) of the routine IsStable.

Remark 6 Note that Algorithm 2 can check the structural stability of polynomials in 4 vari-
ables with degree up to 12 in less than 20 min. However, when the polynomials have more
variables (i.e., larger than 4) or have larger degrees, these methods do not return a result in a
reasonable time.

3 A stability test for 2-D systems

In Sect. 2, a general framework was proposed for the stability analysis of n-D systems with
n ≥ 2. In this section, we restrict the study to the particular case of n = 2 and we show
that substantial improvements with respect to practical efficiency can be obtained by using
state-of-the-art algorithms developed in Bouzidi (2014b) for the computation of the solutions
of bivariate algebraic systems of equations.

Recall that testing the stability of a 2-D system can be reduced to deciding whether an
algebraic system of the form of {R(x1, x2) = I(x1, x2) = 0} admits real solutions. In the
present case, without loss of generality, we can assume that the ideal I generated by the two
polynomials R and I is zero-dimensional, i.e., gcd(R, I) = 1.3 Our contribution in this

3 If gcd(R,I) is non-trivial, then it is sufficient to compute their gcd G in Q[x1, x2] and to consider the two
zero-dimensional systems: the system

{R
G , I

G
}
and the system

{
G, ∂G

∂x1

}
which encodes the critical points

of G with respect to x1.
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section is a dedicated method for deciding if a system of two polynomial equations in two
variables, having a finite number of complex solutions, admits real solutions.

Since the ideal I is zero-dimensional, we can use the univariate representation techniques
described in Sect. 2.1.2 to reduce the problem of deciding the existence of real solutions of
I to that of deciding the existence of real roots of a univariate polynomial. Indeed, under
the hypothesis that I is zero-dimensional, the quotient algebra A := Q[x1, x2]/I inherits a
finite-dimensional Q-vector space structure and, for any polynomial P ∈ Q[x1, x2], we can
define the Q-endomorphism MP of A defined by (6) whose the characteristic polynomial
can be written as follows

CP (t) = det(t Id − MP ) =
∏

(α1, α2)∈V (I )

(t − P(α1, α2))
μ(α1, α2), (13)

where Id denotes the identity matrix of size d = dimQ(A) and μ(α1, α2) the multiplicity of
(α1, α2) as a zero of I .

Furthermore, if P = x1 + a x2 is a separating form of V (I ),4 then the polynomial CP

coincides with the polynomial f of the Rational Univariate Representation of I computed
with respect to P [see (5) and Sect. 2.1.2] which yields an important property regarding to the
existence of real solutions of V (I ) and ofCP . The following result can be proved considering
a univariate representation of the solutions (see, e.g., Rouillier 1999).

Theorem 3 Let P = x1 + a x2 be a separating form for V (I ). Then, the univariate polyno-
mial CP has real roots if and only if V (I ) has real solutions.

Consequently, the computation of a separating form of V (I ) and the corresponding poly-
nomial CP reduces the problem of searching for real solutions of V (I ) to the problem of
searching for real roots ofCP . In the following, instead of the classical strategywhich requires
computations in the quotient algebra A := Q[x1, x2]/I , we propose an alternative approach
based on the computation of the so-called resultant polynomial as well as the computation
of a generic position. Thus, before going further, let us introduce the concept of resultant
and subresultant sequences, as well as some of their basic properties which are useful for the
description of our algorithm.

3.1 Resultant and subresultant sequence

LetA be a unique factorization domain (Cox et al. 2007), e.g.,A := K[y], whereK is a field.
Let f = ∑p

i=0 ai xi ∈ A[x] and g = ∑q
j=0 b j x j ∈ A[x], that is, the ai ’s and b j ’s belong to

A. Let us suppose that ap �= 0 and bq �= 0 so that degx f = p and degx g = q , and p ≥ q .
Let A[x]n = {P ∈ A[x] | degx P ≤ n} be the set of polynomials with degree at most n and
{xi }i=0,...,n the standard basis of the free A-module A[x]n of rank n. We set A[x]n = 0 for
negative integer n. For 0 ≤ k ≤ q , we can consider the following homomorphism of free
A-modules:

ϕk : A[x]q−k−1 × A[x]p−k−1 −→ A[x]p+q−k−1

(U, V ) �−→ U f + V g.

4 It has been shown that a separating form can be sought in the following set of linear forms{
x1 + a x2 | a = 0, . . . , d (d−1)

2

}
, where d denotes the cardinal of V (I ), i.e., the dimension dimQ(A) ofA

as aQ-vector space. Indeed, such a set contains at least one separating form since the number of non-separating
forms is bounded by the number d (d−1)

2 of lines passing through two distinct points among d points in the
plane.
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Using the standard basis of A[x]q−k−1 (resp., A[x]p−k−1, A[x]p+q−k−1) and identifying the

polynomial
∑q−k−1

i=0 ui xi ∈ A[x]q−k−1 with the row vector (u0, . . . , uq−k−1) ∈ A
1×(p−k),

we obtain that

ϕk(u0, . . . , uq−k−1, v0, . . . , vp−k−1) = (u0, . . . , uq−k−1, v0, . . . , vp−k−1) Sk,

where the matrix Sk is the matrix defined by:

Sk =
(

Uk

Vk

)
∈ A

(q−k+p−k)×(p+q−k),

Uk =

⎛

⎜⎜⎜⎝

a0 a1 . . . aq−k . . . ap 0 . . . 0
0 a0 . . . aq−k−1 . . . ap−1 ap . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 a0 . . . . . . . . . . . . ap

⎞

⎟⎟⎟⎠ ∈ A
(q−k)×(p+q−k),

Vk =

⎛

⎜⎜⎜⎝

b0 b1 . . . bp−k . . . bq 0 . . . 0
0 b0 . . . bq−k−1 . . . bq−1 bq . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 b0 . . . . . . . . . . . . bq

⎞

⎟⎟⎟⎠ ∈ A
(p−k)×(p+q−k).

To be coherent with the degree of polynomials, we attach index i − 1 to the i th column
of Sk so that the index of the columns goes from 0 to p + q − k − 1.

Definition 2 For 0 ≤ j ≤ p + q − k − 1 and 0 ≤ k ≤ q , let srk, j be the determinant of the
submatrix of Sk formed by the last p +q −2 k −1 columns, the column of index j and all the
p +q −2 k rows. The polynomial Sresk( f, g) = srk,k xk +· · ·+ srk,0 is the kth subresultant
of f and g, and its leading term srk,k is the kth principal subresultant of f and g. The matrix
S0 ∈ A(p+q)×(p+q) is the Sylvester matrix associated with f and g, and Resx ( f, g) = det S0
is the resultant of f and g.

Remark 7 For k < j ≤ p +q −2 k −1, we note that srk, j = 0 since srk, j is the determinant
of a matrix having twice the same column. Moreover, we can check that we have:

srq,q = bp−q
q , ∀ q < p, Sresq( f, g) = bp−q−1

q g.

Since A is an integral domain, we can consider its field of fractions which we denotes by
F, namely, F := { n

d | 0 �= d, n ∈ A}, and the Euclidean domain F[x]. Since f, g ∈ F[x], we
can define the greatest common factor gcd( f, g), which is defined up to a non-zero element
of F, so that we can suppose that gcd( f, g) ∈ A.

Theorem 4 (Basu et al. 2006) The first Sresk( f, g) such that srk,k �= 0 is equal to gcd( f, g).

Now, if we consider two polynomials in two variables f = ∑p
i=0 ai (x1) xi

2 and g =
∑q

j=0 b j (x1) x j
2 , and x = x2 so that A = K[x1] and A[x] = K[x1, x2], then we have the

important results.

Theorem 5 (Basu et al. 2006) Let f (x1, x2), g(x1, x2) ∈ K[x1, x2] be two bivariate poly-
nomials.

– The roots of Resx2( f, g)(x1) are the projection onto the x1-axis of the common solutions
of f and g and of the common roots of ap and bq .
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– For any α root of Resx2( f, g) such that ap(α) and bq(α) do not both vanish, the first
polynomial Sresk(α, x2), for increasing k, that does not identically vanish is of degree k
and is the gcd of f (α, x2) and g(α, x2), up to a nonzero constant in the field of fractions
of A(α).

The subresultant sequences can be computed either bymeans of determinant computations
or by applying a variant of the classical Euclidean algorithm (see Basu et al. 2006). The
latter method, combined with evaluation/interpolation strategies, turns out to be much more
efficient in practice, especially for the case of univariate or bivariate polynomials.

3.2 Computation of a separating form of bivariate polynomial systems

Given a linear form x1 +a x2 (not necessarily separating), the following theorem shows that,
up to a non-zero factor in Q, the univariate polynomial Cx1+a x2 [see (13)] is equal to the
resultant of the two polynomials obtained by applying a change of variables to R and I.

Theorem 6 (Bouzidi et al. 2015b) Let R, I ∈ Q[x1, x2] and let us define the polynomials

R′(t, x2) := R(t − a x2, x2), I ′(t, x2) := I(t − a x2, x2), (14)

where a ∈ Z is such that the leading coefficient of R′ and I ′ with respect to x2 are coprime.
Then, the resultant of R′ and I ′ with respect to x2, denoted by Resx2(R′, C′), is equal to:

c
∏

(α1, α2)∈V (I )

(t − α1 − a α2)
μ(α1,α2), c ∈ Q\{0}.

In practice, the computation of Cx1+a x2 as a resultant (see Theorem 6) is much more
efficient than computing the characteristic polynomial of theQ-endomorphism Mx1+a x2 [see
(6)] since the computation of the matrix Mx1+a x2 usually requires the costly pre-computation
of a Gröbner basis of the ideal I = 〈R, I〉 for the graded reverse lexicographic order.

Let us now focus on the computation of a separating form for V (I ). Below, we propose
a method that consists in applying a change of variables to the initial system and then, using
resultant and subresultants, to check whether or not the resulting system is in generic position
as defined below.

Definition 3 Let f (x1, x2), g(x1, x2) ∈ Q[x1, x2]. If 
S denotes the cardinality of a finite
set S, then the system { f, g} is said to be in generic position with respect to x1 if we have:

∀ α ∈ C, 
 {β ∈ C | f (α, β) = g(α, β) = 0} ≤ 1.

Let us first illustrate our approach with an example.

Example 11 Consider the ideal I = { f = x2 − x21 , g = x21 + x22 −2} whose set of solutions
V (I ) consists in four points of C

2. The resultant Resx2( f, g) of f and g with respect to x2
is equal to x41 + x21 − 2. The roots of Resx2( f, g) correspond to the projections of the four
solutions of V (I ) onto the x1-axis. Since all these roots are distinct, x1 is a separating form
(see Fig. 1 for the real solutions of V (I )). The fact that the solutions of V (I ) project distinctly
onto x1 can be algebraically described by the fact that for each root α of Resx2( f, g), the gcd
x2 + α2 of f (α, x2) = x2 − α2 and g(α, x2) = x22 + α2 − 1 has only one root.

Let us now consider the ideal I ′ = { f = (x1 − 2)2 + x22 − 2, g = x21 + x22 − 2}. The
resultant Resx2( f ′, g′) of f ′ and g′ with respect to x2, namely, 16 (x1 − 1)2, has a single
(real) root 1 of multiplicity 2, and gcd( f ′(1, x2), g′(1, x2)) = x22 − 1 admits two distinct
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Fig. 1 Intersection between a circle and a parabola

Fig. 2 Intersection between two circles

roots −1 and 1 which correspond to two different solutions of V (I ′). This means that the
system is not in generic position, and thus that x1 is not a separating form (see Fig. 2). In
order to compute a separating form for V (I ′), we can apply a change of variables to f ′
and g′, for instance t = x1 + x2, and then compute the resultant of these new polynomials
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Fig. 3 After the change of variables (x1 = t − x2, x2)

f ′(t −x2, x2) and g′(t −x2, x2)with respect to x2. This yields the polynomial t (t −2)whose
two distinct roots {0, 2} are the projections of the solutions onto the t-axis (see Fig. 3). For
α1 = 0 (resp., α2 = 2), the gcd of f ′(−x2, x2) and g′(−x2, x2) (resp., of f ′(2− x2, x2) and
g′(2− x2, x2)) is x2 +1 (resp., x2 −1). Since both gcds admit only one root, then the system
{ f ′(t − x2, x2), g′(t − x2, x2)} is in generic position with respect to t and thus x1 + x2 is a
separating form for V (I ′).

Given a linear form t = x1 + a x2, it can be shown that it is separating for V (〈R, I〉) if
and only if the system {R′, I ′} is in generic position (see Definition 3). Algebraically, this
means that for each root α of Resx (R′, I ′) (where R′ and I ′ are defined as in Theorem 6),
the gcd of R′(α, x) and I ′(α, x), denoted G(α, x), has exactly one distinct root.

To check the above genericity condition, we can consider a triangular description of the
solutions of {R′, I ′} given by a finite union of triangular systems:

V (〈R′, I ′〉) =
l⋃

k=1

{
(α, β) ∈ C

2 | rk(α) = Gk(α, β) = 0
}
.

Such a triangular description can be obtained via a triangular decomposition algorithm
based on the resultant and subresultant polynomials (see Algorithm 1 of Bouzidi et al. 2015b
for more details). Such a triangular decomposition yields a set of triangular systems of
the form {rk(t),Sresk(t, x2)}k=1,...,l , where l = min{degx2 R′, degx2 I ′}, Resx2(R′, I ′) =∏l

k=1 rk(t), rk ∈ K[t] is the factor of Resx2(R′, I ′) (possibly equal to 1) whose roots α’s
satisfy the property that the degree of G(α, x2) [i.e., gcd(R′(α, x2), I ′(α, x2))] in x2 is equal
to k and Sresk(t, x2) = ∑k

i=0 srk,i (t) xi
2 is the kth subresultant ofR′ and I ′. Once a triangular

decomposition {rk(t),Sresk(t, x2)}k=1,...,l of {R′, I ′} is computed, the genericity condition
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is equivalent to the fact that Sresk(t, x2) can be written as (ak(t) x2 − bk(t))k modulo rk(t),
with gcd(ak, bk) = 1. The next theorem checks this last condition.

Theorem 7 (Daouda et al. 2008) LetR(x1, x2), I(x1, x2) ∈ Q[x1, x2]. Define the polynomi-
als R′(t, x2), I ′(t, x2) as in Theorem 6, and let {rk(t),Sresk(t, x2)}k=1,...,l be the triangular
decomposition of {R′, I ′}. Then, {R′, I ′} is in generic position if and only if we have

k (k − i) srk,i srk,k − (i + 1) srk,k−1 srk,i+1 = 0 mod rk, (15)

for all k ∈ {1, . . . , l} and for all i ∈ {0, . . . , k − 1}.
Finally, our algorithm for checking whether the system {R, I} admits real solutions

consists in computing the above triangular decomposition for the system {R′, I ′} obtained
after applying an arbitrary linear change of variable t = x1 + a x2. If the condition of
Theorem 7 is satisfied, then x1 + a x2 is a separating form. It then remains to check if the
resultant Resx2(R′, I ′) of R′ and I ′ with respect to x2 has real roots, a fact which can be
done using, for instance, Sturm sequences (Basu et al. 2006).

Remark 8 In practice, several strategies are used in order to reduce the computational time of
the above algorithm. For instance, the computation is stopped when the resultant, computed
for some linear form x1+a x2, that is the resultant ofR(t −a x2, x2) and I(t −a x2, x2)with
respect to x2, is devoid frommultiple factors, which implies that the form x1+a x2 is separat-
ing byTheorem6.The computation is also stoppedwhen the computed resultant does not have
real zeros, since it implies that the system does not have real zeros as well. Another improve-
ment is the way we can choose the form x1 + a x2 candidate to be a separating form. Indeed,
in order to increase the probability that a form is separating, a first computation is performed
modulo a prime number p (coefficients are then considered in the finite field Fp = Z/Z p).
Such a computation turns out to be very fast since it avoids coefficient swells in the algorithm.
Providing that a linear form is separating modulo a prime p, then, with high probability, it
is also separating over Z and we can choose it as a candidate for the algorithm over Z.

3.3 Experiments

In order to measure the gain of our algorithm with respect to the general algorithm described
in Sect. 2, we compare it with the general method Isolate partially developed by the
same authors and available in the package RootFinding of the Maple computer algebra
system. This function first computes a Rational Univariate Representation (Rouillier 1999)
from a Gröbner basis computed with the F4 algorithm (Faugère 1999), and then uses of a
variant of Descartes algorithm (Rouillier and Zimmermann 2003) as well as multi-precision
interval arithmetic (Revol and Rouillier 2005) to isolate the real roots of the system.

For the present experiments, we re-use black boxes developed for the algorithms described
in Bouzidi et al. (2013, 2015a), Bouzidi (2014a) which use exactly the same technical base
to design the component of the algorithm that computes the univariate polynomial Cx1+a x2
and performs the separation check. All the other components are shared with the Maple
RootFinding[Isolate] function.

For dense polynomials with coefficients that can be encoded on 23 bits (such as if there
were coming from floating point numbers), the results—obtained on a core i7 3.5 Ghz
with 32 GB of memory—are summarized in the following table in which Degree denotes the
total degree of the polynomial D(z1, z2) to be studied, 
V (I ) the number of complex roots
of the bivariate system to be solved to decide stability, Root Finding the computational time
of the function RootFinding[Isolate] and Dedicated the computational time of our
new dedicated algorithm.
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Degree 
V (I ) RootFinding Dedicated

10 200 2.3 < 1
15 450 29.8 < 1
20 800 223.4 < 1
25 1280 866.9 1.42
30 1800 3348.2 2.79
35 2450 > 1 h 7.81
40 3200 > 1 h 15.51

For these examples, note that we did not report the computation times required for the
two 1-D stability tests (i.e., the stability test for D(1, z2) and D(z1, 1)) since they are small
compared with the resolution of the bivariate polynomial system.

Finally, we point out that our naive implementation of the Möbius transform in Maple is
themainbottleneckof our dedicated algorithmcomparewith the extremely efficient algorithm
for the real solution computation of systems of two polynomials in two variables.

4 A stability test for 2-D systems with parameters

In what follows, let u = {u1, . . . , um} denote a set of parameters. Throughout this section,
these parameters are assumed to be real (for complex parameters, see Remark 10 at the end
of the present section). In this last section, we study the structural stability of 2-D systems
given by a transfer function of the form of (1) that depends on the set of parameters u, i.e.,
where n = 2 and D ∈ Q[z1, z2, u].5 In other words, our goal is to study (2) in terms of the
parameters uk’s. Roughly speaking, our approach consists in computing a set of polynomials
{h1, . . . , hs}, where hk ∈ Q[u1, . . . , ur ] for k = 1, . . . , s, satisfying the property that the
stability of (1) does not change provided that the sign of the sequence {h1, . . . , hs} does not
change. Then, R

m can be decomposed into cells in which the signs of {h1, . . . , hs} remain
the same and the cells for which the system is structurally stable can then be selected by
testing the structural stability of the system for a single parameter’s value in each cell.

Considering D(z1, z2, u) as a polynomial in the variables z1 and z2 with coefficients in
Q[u1, . . . , ur ], we can apply the transformation given in Sect. 2.2, which yields the following
set of conditions:

D(z1, 1, u) �= 0, |z1| ≤ 1,

D(1, z2, u) �= 0, |z2| ≤ 1,

V (〈R(x1, x2, u), I(x1, x2, u)〉) ∩ R
2 = ∅.

(16)

We start with the study of the first two conditions involving univariate polynomials with
parameters. We first transform these conditions so that continuous stability tests can be
applied. More precisely, we can apply the following change of variables

s1 = 1 − z1
1 + z1

, s2 = 1 − z2
1 + z2

5 For particular values of u�, gcd(D(z, u�), N (z, u�)) can become non-trivial. In this case, to test structural
stability, we have to consider D(z, u�)/gcd(D(z, u�), N (z, u�)) instead of D(z, u�).
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to the polynomials D(z1, 1, u) and D(1, z2, u). We denote by D1(s1, u) (resp. D2(s2, u)),

the numerator of D

(
−1 − s1
1 + s1

, 1, u

)
(resp. D

(
1,−1 − s2

1 + s2
, u

)
). The first two conditions

of (16) then become:

D1(s1, u) �= 0, ∀ s1 ∈ C: Re(s1) ≥ 0,

D2(s2, u) �= 0, ∀ s2 ∈ C: Re(s2) ≥ 0.

Then,we can use a classical result of Liénard andChipart (Basu et al. 2006, Thm. 9.30) that
expresses the stability condition of a continuous polynomial D(s) as a positivity condition of
its coefficients as well as a certain signed principal subresultant sequence of two polynomials
F(s) andG(s) satisfying D(s) = F(s2)+s G(s2) (seeBasu et al. 2006, Thm. 9.30).Using the
specialization property of subresultants (see Basu et al. 2006), we can generalize this result
to the case of univariate polynomials depending on parameters. In particular, applying this
test to the polynomials D1(s1, u) and D2(s2, u) yields a set of polynomials depending only
on the parameters u, and the stability of D1(s1, u) and D2(s2, u), and thus of D(z1, 1, u) and
D(1, z2, u), is then satisfied providing that these polynomials {hi (u)}i=1,...,t are all positive.

The next problem is to decide whether or not the following system

R(x1, x2, u) = 0,

I(x1, x2, u) = 0,
(17)

admits real solutions. In what follows, we can assume that (17) is generically zero-
dimensional, that is, for almost all values of the parameters u ∈ R

m , (17) admits a finite
number of complex solutions. The main tool we use to solve this problem is the so-called
discriminant variety, first introduced in Lazard and Rouillier (2007), and recalled in the next
section.

4.1 Discriminant varieties: definition and properties

Before recalling the definition of a discriminant variety of an algebraic set, let us start with
some useful notations.

For a set of polynomials p1, . . . , pl ∈ Q[x1, . . . , xn−m, u1, . . . , um], the corresponding
algebraic set is defined as:

S = {α ∈ C
n | p1(α) = 0, . . . , pl(α) = 0}. (18)

We consider the canonical projection onto the parameter space C
m , namely, the following

map

Πu : C
n −→ C

m

(x1, . . . , xn−m, u1, . . . , um) �−→ (u1, . . . , um),

andwedenote byΠu(S) the so-calledZariski closureof the projection ofS onto the parameter
space C

m . For more details, see Cox et al. (2007).

Definition 4 (Lazard and Rouillier 2007) With the above notations, an algebraic set V of
C

m is called a discriminant variety of S if and only if:

1. V is contained in Πu(S).
2. The connected components U1, . . . ,Us of Πu(S)\V are analytic sub-manifolds (note

that if Πu(S) is connected, there is only one component).
3. For j = 1, . . . , s, (Π−1

u (U j ) ∩ S,Πu) is an analytic covering of U j .
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In broad terms, a discriminant variety yields a partition of the parameter’s space C
m into

cells U , such that for each cell, the cardinal of Π−1
u (μ) ∩ S, where μ ∈ C

m , is locally
constant on U , and Π−1

u (U) ∩ S consists of a finite collection of sheets which are all locally
homeomorphic to U .

A consequence of Definition 4, stated in the following theorem, is a fundamental property
of the discriminant variety regarding to the number of solutions. In this theorem, we assume
that the polynomial system S defined by (18) is generically zero-dimensional, i.e., for almost
all values of the parameters μ ∈ C

m , the polynomial system Su=μ, obtained by substituting
the parameters u to μ admits a finite number of complex solutions.

Theorem 8 (Lazard andRouillier 2007)LetS be an algebraic system andU1, . . . ,Us defined
as in Definition 4. Then, for two vectors of parameters μ, ν ∈ U j , the specialized polynomial
systems Su=μ and Su=ν have exactly the same number of distinct zeros.

For a given set S, the smallest algebraic variety V that satisfies the conditions of Defini-
tion 4 is called the minimal discriminant variety (see Lazard and Rouillier 2007).

Example 12 A classical example of a discriminant variety is the zeros of the discriminant
of a quadratic univariate polynomial f := a x2 + b x + c whose coefficients are given as
parameters. This discriminant is given as b2 − 4 a c and satisfies that for all a0, b0 and c0
such that b20 − 4 a0 c0 �= 0, the polynomial a0 x2 + b0 x + c0 has exactly two distinct roots.

In the sequel, we simplify say “discriminant variety” for “minimal discriminant variety”.

4.2 Computation of discriminant varieties

For a system F defined by a set {p1, . . . , pl} ⊂ Q[x1, . . . , xn−m, u1, . . . , um], by means of
variable eliminations using, e.g. standard Gröbner bases computations (see, e.g., Lazard and
Rouillier 2007), we can compute a sequence of polynomials {h1, . . . , hs} ⊂ Q[u1, . . . , um]
whose zeros define the discriminant variety of F . For instance, in the case of the quadratic
polynomial given in Example 12, the discriminant is computed by eliminating the variable
x in the system defined by f and its derivative ∂ f

∂x with respect to x , which can be done, e.g.

by computing the resultant of f and ∂ f
∂x with respect to x .

In our setting, namely a system of two polynomial equations in two variables S =
V (〈R, I〉), the discriminant variety, denoted by VD , consists in the union of the follow-
ing two subsets (see Lazard and Rouillier 2007 for details):

– The set O∞ of α ∈ C
m such that Π−1

u (U)∩S is not compact for any compact neighbor-
hood U of α in C

m .
– The set Oc of the union of the critical values of Πu and of the projection of the singular

points of V (S) onto C
m .

Intuitively, O∞ represents parameter values such that there exist either vertical leafs of
solutions or leafs that go to infinity above some of their neighborhoods, while Oc represents
parameter values such that above some of their neighborhoods, the number of leafs varies.
Thus, the minimal discriminant variety VD roughly represents parameter values over which
the number of solutions of (17) changes. Furthermore, an important remark for the computa-
tion of the discriminant variety of S is that both O∞ and Oc are algebraic sets. VD can thus
be described as the union of two algebraic sets that can be computed independently.

Both O∞ and Oc are projections of algebraic set. Computing these varieties remains to
eliminating variables in the systems of equations corresponding to these varieties, which
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corresponds to the following problem: given I = 〈 f1, . . . , fl〉 ⊂ K[x1, x2, u], compute
Πu(V (I )) = V (Iu), where Iu ⊂ K[u] is defined by Iu = I ∩ K[u]. Algorithmically, Iu can
be obtained bymeans of aGröbner basis for any elimination ordering< satisfying u < x1, x2.
More precisely, it suffices to compute a Gröbner basis for such an ordering and to keep only
the polynomials that belong to K[u].

In Lazard and Rouillier (2007), it was shown that the set Oc is equal to Πu(V (〈R, I,

Jacx1,x2(R, I)〉)), where Jacx1,x2(R, I) denotes the determinant of the Jacobian matrix with
respect to the variables x1 and x2. Hence, computing an ideal Ic such that Oc = V (Ic)

remains to computing the determinant Jacx1,x2(R, I) and a Gröbner basis of the ideal
〈R, I, Jacx1,x2(R, I)〉 for any elimination monomial ordering < satisfying u < x1, x2. It
was also noticed that such an elimination ordering allows us to compute an ideal I∞ ⊂ Q[u]
such that O∞ = V (I∞). Precisely, suppose that G is a reduced Gröbner basis of 〈R, I〉
for a monomial ordering <u,x1,x2 , that is, the product of two degree reverse lexicographic
orderings <u for the parameters and <x1,x2 for the variables. For more details, see Cox et al.
(2007). Let us define the following ideal

I i∞ =
{
LM<x1,x2

(g) | g ∈ G, ∃ m ≥ 0, 1 ≤ i ≤ 2, LM<x1,x2
(g) = xm

i

}
,

where L M< denotes the leading monomial of a polynomial for an admissible monomial
ordering < (see Cox et al. 2007). Then, we have:

– I i∞ ⊂ K[u] is a Gröbner basis for <u .
– O∞ = V (I 1∞)

⋃
V (I 2∞) = V (I 1∞

⋂
I 2∞).

4.3 Discussing the number of real solutions

Once a discriminant variety VD of S = V (〈R, I〉), represented by a set of polynomi-
als {h1, . . . , hs}, is computed, we can compute a CAD adapted to these polynomials (see
Sect. 2.1) in order to obtain a partition of the parameter space R

m defined by the discrim-
inant variety VD and the connected components of its complementary R

m\VD (which has
the property that over any cell U that does not meet WD , Π−1

u (U) is an analytic covering of
U). In particular, the number of zeros of S is constant over any connected set that does not
intersect the discriminant variety.

Also, for computing the constant number of solutions over a connected component that
does not meet the discriminant variety, it suffices to take a particular value of parameter
values μ in this component and then solve the corresponding zero-dimensional polynomial
system Su=μ.

Remark 9 Note that the structure of the solutions is not known above the discriminant variety
itself. Since the discriminant variety is a set of null measure, it is useless here to study what
is going on for such parameter values. However, the discriminant variety is defined by a
polynomial system which can be added to the original system in order to follow the study
recursively.

The discriminant variety is defined for the complex solutions of (17). For real solutions,
only two cases may occur:

1. Πu(S ∩ R
m+2) ⊂ VD . We then need to study S ∩ Π−1

u (VD) instead of S.
2. Πu(S ∩ R

m+2)�VD . Then, we have VD ∩ R
m is a discriminant variety for S ∩ R

m+2,
which is the usual situation.

In the second case, note that if VD is minimal for S, then VD ∩ R
m is not necessarily

minimal for S ∩ R
m+2.
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4.4 Computing stability regions

Let us now come back to the original problem, namely the computation of the regions of the
parameter space such that (16) are satisfied, and thus define stable systems. As mentioned at
the beginning of Sect. 4, we can compute a set of polynomials {pi (u)}i=1,...,t such that the
first two conditions of (16) are satisfied if and only if pi (u) > 0 for i = 1, . . . , t . We can also
compute a set of polynomials {q j (u)} j=1,...,s that defines a partition of the parameter space
in which the number of real solutions of (17) is constant. Now, considering the global set of
polynomials F := {p1(u), . . . , pt (u), q1(u), . . . , qs(u)}, we can compute a CAD adapted
to F (see Sect. 2.1). This yields a disjoint union of cells in R

m in which the signs of all the
polynomials of F (both pi ’s and qi ’s) are constant. In particular, inside each of these cells,
both the sign of the polynomials pi ’s and the number of real solutions of (17) are constant.
This implies that the system is either stable or unstable. To determine the cells for which the
system is stable, it suffices to select a simple point u = μ in each cell and to test (16) after
the evaluation of the parameters.

Finally, in practice, to reduce the running time computation, we only compute the cells
that have maximal dimension during the CAD.

Remark 10 In this section, the parameters were assumed to be real. The main reason is
that the coefficients of a transfer function is usually assumed to be real in control theory.
Moreover, the univariate stability test we use holds only for real coefficients and the Maple
implementation of the CAD provides a partition of the space R

m . But our method can be
extended to the case of complex parameters: we can first use a univariate stability test that
handles complex coefficients (see, e.g., Bistritz 1986) and then carry out a complex variant
of the CAD, that is a partition of the space C

m . For the latter, it is sufficient to consider the
discriminant variety as an algebraic variety over the space R

2m (considering the real and
imaginary parts of each parameter) and to perform the CAD associated to this variety. Of
course, doubling the number of variables substantially increases the running time of this step.

Remark 11 Another interesting problem related to the stability of parameter-depending sys-
tems concerns the robustness analysis. One typical question is the following: given a nominal
value of the parameters that ensures the stability, how to compute the minimal distance from
this nominal value that can be tolerated while preserving stability. This is the subject of an
ongoing work by the authors where the use of critical methods is investigated in order to
compute this minimal distance as a critical value of a distance function restricted to some
semi-algebraic set.

4.5 An illustrating example

We consider a 2D system defined by a transfer function G [see (1)] depending on the param-
eters u = {u1, u2} and whose denominator D is defined by:

D(z1, z2) = (4 u1 + 2 u2 + 3) z1 + (−2 u1 + 1) z2 + 2 (2 u1 − u2 − 1) z1 z2

+ (2 u1 − 2 u2 + 4) z21 z2 + (−u1 − u2 + 1) z1 z22.

Applying the algebraic transformation defined in Sect. 2.2 to D, the bivariate polynomial
system (17) is defined by:

R(x, y) = 7 u1 x2 y2 − 3 u2 x2 y2 + 7 x2 y2 + u1 x2 + 7 u1 y2 − 5 u2 x2 + u2 y2

−x2 − 3 y2 + u1 − u2 − 11,
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Fig. 4 Global view—parameter space decomposition

I(x, y) = 10 u1 x2 y − 8 u1 x y2 + 6 u2 x2 y + 4 u2 x y2 + 4 x2 y − 6 x y2

−8 u1 x + 10 u1 y + 4 u2 x + 6 u2 y − 6 x + 4 y.

The minimal discriminant variety of this bivariate system with respect to the projec-
tion onto (u1, u2) can be obtained by means of the Maple function RootFinding
[Parametric][Discriminant Variety]. The discriminant variety is the union
of 8 lines, 2 quadrics and 1 curve of degree 6 defined by:

– [u1], [u2], [4 u1 − 2 u2 + 3], [u1 − u2 − 11], [u1 − 5 u2 − 1], [5 u1 + 3 u2 + 2],
[7 u1 − 3 u2 + 7], [7 u1 + u2 − 3].

– [6 u2
1 + 4 u1 u2 + 2 u2

2 − 8 u2 + 1], [6 u2
1 − 6 u1 u2 − 4 u2

2 + 25 u1 + 3 u2 + 11].
– [1276 u6

1 − 2828 u5
1 u2 − 168 u4

1 u2
2 + 2896 u3

1 u3
2 + 1544 u2

1 u4
2 + 340 u1 u5

2+76 u6
2 + 874 u5

1 − 10474 u4
1 u2 − 4984 u3

1 u2
2 − 4300 u2

1 u3
2 − 1866 u1 u4

2 + 14 u5
2−72 u4

1 − 6542 u3
1 u2 + 6663 u2

1 u2
2 − 1396 u1 u3

2 − 1053 u4
2 − 239 u3

1 − 2461 u2
1 u2

+8675 u1 u2
2 + 665 u3

2 + 170 u2
1 − 1834 u1 u2 + 2064 u2

2 + 301 u1 − 557 u2 + 91].
Now, computing the conditions on the parameters u that discriminate the situations where

D(z1, 1) (resp., D(1, z2)) has (or not) roots in the complex unit disc lead to following 5 lines

[4 u1 + 2 u2 + 3], [7 u1 − 3 u2 + 7], [4 u1 + 3], [−2 u1 + 1], [3 u1 − u2 + 4],
where [7 u1 − 3 u2 + 7] is already in the discriminant variety.

Decomposing the parameter space cylindrically with respect to these 14 curves gives 1161
cells shown in Fig. 4. A zoom on this decomposition is also shown in Fig. 5.

For parameters which belong to these cells, the system is either stable or unstable. To test
the stability of the corresponding system, it is sufficient to test the stability of the system
obtained by evaluating the parameters u to a numerical value μ in this cell and to count the
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Fig. 5 Zoom u1 = −4 . . . 2, u2 = −7 . . . 7—parameter space decomposition

Fig. 6 Zoom around an unstable region: u1 = −0.4 . . . − 0.6, u2 = −0.4 . . . − 0.6—parameter space
decomposition
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number of real solutions of the (non parametric) zero-dimensional polynomial system (17)
defined with u = μ, and to perform the stability test of D(z1, 1) and D(1, z2).

It should be noticed that in some regions of the parameter space, some cells are very small.
Finally, it turns out that 118 of these regions correspond to unstable systems. For instance,

the cell containing the pair (u1 = −.4717912847, u2 = −.5389591122) defines unstable
systems while the cell containing the pair (u1 = −.6152602220, u2 = −.5389591122)
as well as the cell containing the pair (u1 = −.3942379536, u2 = −.5389591122) define
stable systems (see Fig. 6).

5 Conclusion

The main goal of this paper was to point out some advantages of using classical techniques
from the computer algebra community in the context of the stability analysis of multidi-
mensional systems. Indeed, using state-of-the-art algorithms for solving algebraic systems
of equations, several methods for the study of structural stability of these systems have been
developed. The novelty of these methods compared to the existing ones is that they are both
non-conservative and show promising results in practice especially for 2D and 3D systems.
Moreover, despite of their own interests for testing the stability, the obtained algorithms can
also be used for solving similar problems such as the computation of stabilizing feedback
control for 1D linear systems or for the stabilization of n-D systems. From the computational
point of view, we would try to improve the practical behavior of these methods in the case
of n-D systems (n > 3) by investigating the use of numerical routines while keeping the
exactness aspect of the approach since it is critical in our problems. This investigation will be
the subject of further works. In addition, other classes of linear systems such as time-delay
systems share the same type of representation, and can thus be addressed using the same
computer algebra techniques.
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