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Abstract In radar detection, weak targets’ range migration often happens during long time
integration. To detect weak targets effectively, an improved axis rotationmoving target detec-
tion (IAR-MTD) is introduced and analysed in detail. IAR-MTD can detect weak targets by
compensating the linear part of range migration via the axis rotation and coherently inte-
grating the echoes via moving target detection (MTD). Then the realization of IAR-MTD is
derived. Furthermore, the coherent integration gain of IAR-MTD is analysed, which is bet-
ter than that of traditional MTD, Radon–Fourier transform (RFT) and Keystone transform
(KT). Subsequently, to decrease the computational complexity of IAR-MTD, some sugges-
tions are given. Besides, unambiguous Doppler estimation, the tolerance of acceleration, and
the multi-target detection of IAR-MTD are analysed respectively. Finally, some numerical
experiments are provided to show the performance of IAR-MTD in different conditions and
testify the advantages of IAR-MTD over MTD, RFT and KT. The result indicates that IAR-
MTD may effectively detect the weak moving targets with constant radial velocity and it is
compatible with MTD radar system.

Keywords IAR-MTD · Linear range migration · Long time coherent integration · Weak
target radar detection

1 Introduction

Moving target detection (MTD) (Skolnik 2002; Barton 2004; Richards 2005; Mahafza 2003)
can detect moving targets without prior knowledge, e.g. targets’ motion speed, range, etc.
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At present, many low signal-to-noise ratio (SNR) moving targets appear (Bao 1999; Skolnik
et al. 2001). These targets, which are difficult to be detected via traditional methods for
range migration, are called weak targets throughout this paper. For high speed weak targets,
range migration is inevitable for their high speed motion. For low speed weak targets, range
migration also happens with integration time increasing or range resolution improving which
brought by the transmitted signal’s bandwidth increasing. So MTD, which is confined by the
target’s resident time in a single range cell, may be ineffective in weak target detection.

To improve the detection performance of weak targets, an available way is increasing
integration time. There are two kinds of integration methods, i.e., incoherent integration and
coherent integration. Some typical incoherent integration methods are adopted, e.g. Hough
transform (HT) (Carlson et al. 1994a, b, c), Radon transform (RT) (Carretero-Moya et al.
2009), Dynamic programming (DP) (Qiang et al. 2002; Deng et al. 2011; Grossi et al.
2001), Particle filter (PF) (Boers and Driessen 2001, 2003, 2004) and so on. But, incoherent
integration has a low integration gain for targets’ phase fluctuation not being compensated.
So when the echo’s SNR is extremely low, these incoherent integration methods are invalid.

To detect weak targets, some coherent integration methods have been proposed (Wang
and Liu 2010; Wang and Zhang 2000; Qi et al. 2003; Tao et al. 2010; Perry et al. 2007,
1999; Zhang and Zeng 2005; Zeng 2005; Xu et al. 2011a, b; Yu et al. 2012; Xu et al. 2015;
Carretero-Moya et al. 2009). Wang and Liu (2010) have proposed an automatic range migra-
tion correction method based on the similarity of Doppler slices’ envelope. However, this
method may not be used in low SNR case. Wang and Zhang (2000) have introduced a range
and Doppler migration compensation method based on range stretching and joint time fre-
quency processing. But this method has a high computational complexity. Qi et al. (2003) and
Tao et al. (2010) have proposed a signal detection and parameter estimation method based
on Fractional Fourier transform (FRFT). However, FRFT is also complicated and confined
by target’s resident time in a range cell. Perry et al. (1999, 2007) have introduced Keystone
transform (KT) for synthetic aperture radar ground moving targets imaging. Zhang and Zeng
(2005a, b) have firstly introduced KT, which can compensate the echo envelopes’ linear
range migration, for weak target detection. After KT, the echoes have been concentrated in
a same range cell, which can be coherently integrated by MTD. KT is a useful method for
eliminating linear range migration, but this method requires the repeated colossal amount
interpolation operations. Xu et al. (2011a, b) and Yu et al. (2012) have proposed Radon—
Fourier transform (RFT), which combines RT and Fourier transform (FT), for target detection
via long time coherent integration. RFT may compensate the echoes’ envelope and phase
shifting, and realize coherent integration by searching targets’ speed. However, the compu-
tational complexity of RFT is high. Xu et al. (2015) have proposed a new detector to detect
range spread maneuvering target embedded in compound-Gaussian clutter, which combine
the short-time coherent integration and long time similarity integration. For range spread
maneuvering target, the performance of the new detector, which is better than the existing
detectors, is testified by experimental results.

For the chirp pulse radar system, based on a constant radial velocity motion mode, an
improved axis rotation MTD (IAR-MTD) algorithm is introduced briefly in Rao et al. (2015)
and is analysed detailedly in this paper. Compared with MTD, IAR-MTD can coherently
integrate the echoes of the weak target with linear range migration. Different fromRFT, IAR-
MTD can compensate linear range migration with low computational complexity. Compared
with axis rotation MTD (AR-MTD) (Rao et al. 2014), IAR-MTD can alleviate the loss of
coherent integration gain resulted from axis rotation transform error and can avoid Doppler
frequency andDoppler frequency resolution varyingwith axis rotational angle. Subsequently,
the realization of IAR-MTD is derived. Furthermore, the performance of IAR-MTD is anal-
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ysed on five aspects, i.e., coherent integration gain, computational complexity, unambiguous
Doppler estimation, tolerance of acceleration and multi-target detection. It is shown that
IAR-MTD has a better coherent integration gain than that of MTD, RFT and KT. In compar-
ison with RFT which need fast implementations, IAR-MTD itself is a fast implementation
based on fast FT (FFT). Besides, the searching operation of RFT is a two-dimensional joint
searching combined range dimension with velocity dimension, while the searching operation
of IAR-MTD is two one-dimensional searching along the range dimension and the velocity
dimension respectively. Therefore, the computational complexity of IAR-MTD is lower than
that of RFT. Subsequently, the unambiguous Doppler estimation of IAR-MTD is introduced,
which is similar to that of RFT. Moreover, the tolerance of acceleration and the multi-target
detection are discussed. Finally, some numerical experiments show the performance of IAR-
MTD in different backgrounds.

The remainder of this paper is organized as follows. In Sect. 2, the signal model is estab-
lished. IAR-MTD is introduced in detail in Sect. 3. Performance analysis of IAR-MTD
follows in Sect. 4. In Sect. 5, some numerical experiments are provided. Conclusions are
given in Sect. 6.

2 Signal model

Assume that a linear frequency modulated (LFM) pulse signal sT (t), which transmitted by
a pulse Doppler (PD) radar, may be given as

sT (t) � p (t) exp ( j2π fct) (1)

where p (t) � rect
(

t
Tp

)
exp

(
jπKr t2

)
, t indicates the time,Tp represents the pulse duration,

Kr � B/Tp is the frequency rate of LFM signal, B is the transmitted signal bandwidth and
fc is the carrier frequency.
Let t � t̂ + tm � t̂ + mT , where t̂ is the fast time which indicates the propagation time

of electromagnetic wave, tm � mT is the slow time which indicates the transmitted time of
radar pulse signal. m is the number of pulses, T is the pulse repetition interval, and the pulse
repetition frequency (PRF) equals 1/T .

Suppose that an air moving target with a constant radial velocity v appears on initial range
R0 at tm � 0. Then the target’s linear range migration may be written as

R (tm) � R0 + vtm (2)

After the coherent demodulation, the two-dimensional echoes may be given as

s
(
t̂, tm

) � p

(
t̂ − 2R (tm)

c

)
exp

(
− j

4π fc
c

R (tm)

)
� p

(
t̂ − 2R (tm)

c

)
exp

(
− j

4π

λ
R (tm)

)
(3)

where c is the speed of light and λ is the wavelength. After pulse compression, the echoes
may be represented as

s
(
t̂, tm

) � A sin c

(
B

(
t̂ − 2R (tm)

c

))
exp

(
− j

4π

λ
R (tm)

)
(4)

where sinc (·) is the sinc function, A is the complex amplitude of the echoes after pulse
compression. Here, A is assumed to be a constant. Substituting (2) into (4), then

s
(
t̂, tm

) � A sin c

(
B

(
t̂ − 2

c
(R0 + vtm)

))
exp

(
− j

4π

λ
(R0 + vtm)

)
(5)
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Fig. 1 Linear range migration in
coordinate system (nr − m)
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Let t̂ � 2r
c , where r is the rfange. Then (5) is rewritten as

s (r, tm) � A sin c

(
2B

c
(r − (R0 + vtm))

)
exp

(
− j

4π

λ
(R0 + vtm)

)
(6)

The target’s Doppler frequency is defined as

fd � −2v/λ (7)

For a PD radar, the radar receiver will sample the target’s echoes with sampling frequency
fs . So the target’s range can be described as a range cell number. Assume that fs equals B,
then nr � 2B

c r , nR0 � 2B
c R0, where nr is the range cell number of r , nR0 is the range cell

number of R0. Then (6) is written as

s (nr ,m) � A sin c

(
nr − nR0 − 2B

c
vmT

)
exp

(
− j

4π

λ

( c

2B
nR0 + vmT

))
(8)

According to the signal model, the moving target echoes are distributed along a straight
line in the coordinate system (nr − m). Figure 1 shows the variation of a target’s range with
slow time when the target moves away from the radar with a positive radial velocity v. It is
clear that linear range migration happens along the slow time dimension.

3 IAR-MTD algorithm and realization

3.1 Improved axis rotation transform

AR-MTD is proposed in Rao et al. (2014). The axis rotational relationship is given as
{
m′′ � round (m cosα + nr sin α)

n
′′
r � round (−m sin α + nr cosα)

α ∈
(
−π

2
,
π

2

)
(9)

where the operator round (·) represents that rounds the value to the nearest integer, α is the
axis rotational angle, andv � c

2B×T tan α. Theold coordinate system (nr − m) is transformed

into a new coordinate system
(
n

′′
r − m′′

)
via the axis rotation in Fig. 2.

However, there are some drawbacks in AR-MTD. Firstly, the axis rotational relationship
will bring transform error. Notably, the operator round (·) in (9) is only for simplicity. How-
ever, the transform error will be introduced by round (·). The error in n′′

r may be acceptable
because n

′′
r relates to the target’s position. But, the error in m

′′ could not be ignored because
it relates to the phase of the target’s echoes. The phases of echoes, − j 4π

λ
vm′′T cosα, are

sensitive to the transform error which will result in a great loss of coherent integration gain.
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Fig. 2 Axis rotation in AR-MTD
algorithm
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Fig. 3 Echoes are concentrated in
a range cell via the improved axis
rotation, where α is the rotational
angle
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Secondly, in some higher accuracy applications, the newDoppler frequency f
′
d � fd cosα

(i.e., the Doppler frequency after the axis rotation transform) may appear in a wrong Doppler
channel for the transform error brought by round (·) when f

′
d is transformed back into the

original Doppler frequency fd .
Finally, the frequency resolution of Doppler filter may vary with the axis rotational angle

α. The relationship is given as

ρ
′
d � ρd cosα (10)

where ρd is the original Doppler frequency resolution, ρ
′
d is the new Doppler frequency

resolution. The variation of the Doppler frequency resolution will result in some difficulties
in signal processing.

To circumvent these drawbacks, an improved algorithm for AR-MTD is introduced and
analysed in this paper. Figure 3 shows the transform of coordinate systems. The modified
axis rotational relationship is given as

{
m′ � m
n

′
r � round (−m sin α + nr cosα)

α ∈
(
−π

2
,
π

2

)
(11)

where α is the axis rotational angle, and v � c
2B×T tan α. That is{

m � m′

nr � round
(
m′ tan α + n

′
r

1
cosα

)
α ∈

(
−π

2
,
π

2

)
. (12)

Substituting (12) into (8), then

s
(
n

′
r ,m

′) � A sin c

(
1

cosα

(
n

′
r − nR0 cosα

))
exp

(
− j

4π

λ
· c

2B
nR0

)
exp

(
j2π fdm

′T
)

(13)
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It is shown from (13) that all echoes have been concentrated in the range cell n
′
R0 �

nR0 cosα. The first exponential term is the initial phase of echoes in this range cell. The
second exponential term is the value of carrier phase caused by Doppler effect. It should be
noticed that the Doppler frequency in (13) is fd not f

′
d . Accordingly, the Doppler frequency

resolution is ρd not ρ
′
d . In a word, the drawbacks mentioned above are rectified or alleviated.

Additionally, it should be noticed that the improved axis rotation transform is a special case
of the axis rotation transform which is proposed in Rao et al. (2014). Actually, the Cartesian
coordinate axis is transformed into a skew/slanting coordinate axis via the improved axis
rotation transform, i.e., Eq. (12) or (13).

3.2 Analysis of discrete echoes

Although the echoes, which are transformed via the improved axis rotation, can be coherently
integrated by Doppler filter bank, e.g. MTD, there are some differences between IAR-MTD
and MTD in integration process.

Theoretically, the signal’s complex amplitude equals A when n
′
r � nR0 cosα. In fact, it

is smaller than A because of the target’s linear range migration. The discussion is given as
follow.

For convenience, we rewrite (8) here:

s (nr ,m) � A sin c

(
nr − nR0 − 2B

c
vmT

)
exp

(
− j

4π

λ

( c

2B
nR0 + vmT

))
. (14)

Let � fd � − Bλ
c fd , where � fd is defined as Doppler frequency offset. Then (14) may be

given as

s (nr ,m) � A sin c ((nr − nR0) + � fdmT ) exp

(
− j

4π

λ

( c

2B
nR0 + vmT

))
. (15)

Let nr � nR0, the echoes in the range cell nR0 may be written as

s (nR0,m) � A sin c (� fdmT ) exp

(
− j

4π

λ

( c

2B
nR0 + vmT

))
. (16)

Let nr � nR0 + 1, the echoes may be given as

s (nR0 + 1,m) � A sin c (1 + � fdmT ) exp

(
− j

4π

λ

( c

2B
nR0 + vmT

))
. (17)

It is interesting that the target’s echoes envelope in a range cell is the function sin c (·)
along the slow time dimension. And the function sin c (·)will shift with the variation of range
cell. For convenience, s (nR0,m) is represented as s (m)

s (m) � Ã sin c (� fdmT ) exp ( j2π fdmT ) , (18)

where Ã � A exp
(− j 4π

λ

( c
2B nR0

))
.

The analysis of echoes is given in Fig. 4. Figure 4a shows the amplitude losses of the
echoes in a single range cell for linear range migration. Figure 4b shows that the echoes are
concentrated in a range cell after the improved axis rotation transform.

In Fig. 4a, the slanting dashed line represents the continuous echoes s (r, tm), and the
horizontal separating solid lines are the discrete echoes s (nr ,m). In a single range cell, the
slanting dashed line is replaced by a horizontal solid line. Therefore, there are some losses
in amplitude. For example, point A1 is the continuous echo and the amplitude is Ã, which
is replaced by point A2 with amplitude being Ã sin c (� fdmT ) in that range cell. In Fig. 4b,
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Fig. 4 Analysis of echoes. a Amplitude losses of the echoes in a range cell will happen for linear range
migration. b Echoes are concentrated in a range cell after the improved axis rotation transform

several horizontal separating lines in different range cells are transformed into a horizontal

line in the single range cell n
′
R0 � nR0 cosα, and the echoes in range cell n

′
R0 are s

(
n

′
R0,m

′
)
.

Let K � ceil
(

v×CP I
ρr

)
,M � round

( PRF×CP I
K

)
, whereCP I is the coherent processing

interval, which equals coherent integration time in this paper. ρr is the range resolution which
equals c/2B, K is the range cell number of target’s linear range migration during CP I and
K ≥ 2 for linear rangemigration, the operator ceil (·) represents that rounds the value toward
positive infinity, M is the number of transmitted pulses during the target staying in a range
cell.

Let n
′
r � nR0 cosα, then s

(
n

′
r ,m

′
)

� s
(
nR0 cosα,m′). For simplicity, s

(
nR0 cosα,m′)

is represented as s
(
m′). Figure 4b shows s

(
m′) may be represented by s (m) via time shift

and combination operation. The relationship is given as

s
(
m′) � s1

(
m′) RKM

(
m′) �

(
K∑

k�0

s2 (m − kM)

)
RKM

(
m′) , (19)

where

s1(m′) �
∑K

k�0
s2(m − kM), (20)

s2 (m) � s (m) RM

(
m +

M

2
− 1

)
, (21)

and RKM (·),RM (·) are the rectangular sequenceswhich lengths are KM andM respectively.

3.3 Realization of IAR-MTD

It is well known that MTD can realize moving target detection via Doppler filter bank. So,
the signal may be coherently integrated via MTD after the improved axis rotation transform.
However, there are some differences in performance between MTD and IAR-MTD. The
discussion is given as follow.

As we know, MTD is realized by discrete Fourier transform (DFT). While the DFT of
the echoes after the improved axis rotation transform is presented as follow. Without loss of
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generality, suppose that CP I is one second. Thus the number of transmitted pulses equals
PRF.

Let L � PRF , then the L-point DFT of s (m) is

S (l) � Ã

|� fd |
π

T
R2� fd

(
2π

� fd
(l − fd)

)
l � 0, 1, 2, . . . , L − 1 (22)

where R2� fd (·) is a rectangular sequence which length is 2� fd .The L-point DFT of
RM

(
m + M

2 − 1
)
is

EL1 (l) � exp
(
j
π

L
l
) sin π

K l

sin π
L l

l � 0, 1, 2, . . . , L − 1 (23)

where EL1 (·) is a sinc function sequence which length is L .Accordingly, the L-point DFT
of s2 (m) is

S2 (l) � S (l) ∗ EL1 (l) � Ã

|� fd |
π

T
R2� fd

(
2π

� fd
(l − fd )

)
∗ exp

(
j
π

L
l
) sin π

K l

sin π
L l

l � 0, 1, 2, . . . , L − 1

(24)

where the operator * is the convolution operation. Obviously, the amplitudes of l � fd ±� fd
are identical, but the phases are not identical. And the difference of phase, i.e. j 2π� fd

L , is
small when L is large enough.

The L-point DFT of s1
(
m′) is

S1 (l) � S2 (l) · (−1)l
sin K+1

K πl

sin 1
K πl

l � 0, 1, 2, . . . , L − 1 (25)

It should be noticed that S1 (l) equals (K + 1) S2 (l) when l is an integer multiple of K .
And S1 (l) equals S2 (l) when l is not an integer multiple of K .

When l1 � fd + � fd �
(

fc−B
fs

)
K �

(
fc
fs

− 1
)
K and l2 � fd − � fd �

(
fc+B
fs

)
K �(

fc
fs
+ 1

)
K , S1 (l) equals (K + 1) S2 (l) which is the maximum of S1 (l). Moreover, �l �

|l1 − l2| � 2K . However, S1 (l) equals S2 (l) when l � fd . It is known that the S1 (l) has
two spectral peaks at l � fd ± � fd , and there is no peak at l � fd .

When CP I � 1s, K × M � PRF � L . Thus the L-point DFT of RKM
(
m′) is

RL2 (l) � exp

(
− j

L − 1

L
πl

)
sin (πl)

sin
(

π
L l

) l � 0, 1, 2, . . . , L − 1. (26)

where RL2 (·) is a rectangular sequence which length is L .
And the L-point DFT of s

(
m′) is

S0 (l) � S1 (l) ∗ RL2 (l) � S1 (l) ∗ exp

(
− j

L − 1

L
πl

)
sin (πl)

sin
(

π
L l

) l � 0, 1, 2, . . . , L − 1

(27)

Obviously, the amplitude of S0 ( fd − � fd) equals that of S0 ( fd + � fd) and the difference
of phase is − j L−1

L 2π� fd . When L is large enough, exp
(− j L−1

L 2π� fd
)
nearly equals 1.

Based on the above discussion, the conclusion may be drawn that the spectrum S0 (l) of
s
(
m′) has two spectral peaks at l � fd ± � fd and the difference of phases between the two

spectral peaks is small. So the value of the peaks can be coherently added and the final output

of IAR-MTD is almost 2 (K + 1) Ã
|� fd |

π
T .
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4 Analysis of IAR-MTD algorithm

In Sect. 3, IAR-MTD is introduced to circumvent the drawbacks in AR-MTD and the real-
ization of the IAR-MTD is described. In this section, the performance of IAR-MTD will be
discussed on five aspects, i.e., coherent integration gain, computational complexity, unam-
biguous Doppler estimation, tolerance of acceleration and multi-target detection.

4.1 Coherent integration gain

To detect weak targets in noisy condition, the echo’s SNR should exceed some detection
threshold. So it is necessary to analyse the integration gain of IAR-MTD to ensure with how
low SNR the target can be detected.

Assume that the minimum detectable SNR is defined as SN Rmin . Then

SN Rmin � SN Rtarget,min + GPC + GI AR−MT D (dB) (28)

where SN Rtarget,min is the minimum SNR of the weak target‘s raw echoes, GPC is the gain
of pulse compression, GI AR−MT D is the gain of coherent integration via IAR-MTD. GPC

may be given as

GPC � 10 log10 D (dB) (29)

where D � B × Tp is the time bandwidth product of the transmitted pulse signal.

Because the final output of IAR-MTD is 2 (K + 1) Ã
|� fd |

π
T , GI AR−MT D can be presented

as

GI AR−MT D � 10 log10

(
2 (K + 1)

(
1

|� fd |
π

T

))
≈ 10 log10 (2π × CP I × PRF) (dB)

(30)

It should be noticed that GI AR−MT D is acquired by adding the values of the two spectral
peaks. When K � 1, (K + 1) ≈ |� fd | ×CP I . Accordingly, the approximation in Eq. (30)
is established. Moreover, when linear range migration does not happen, IAR-MTD will
degenerate into MTD and it is unnecessary to perform axis rotation operation. Accordingly,
there is only a spectral peak.

4.2 Computational complexity

To detect the weak moving target with unknown velocity, the axis rotational angle α should
be searched from −π/2 to π/2. If the angle α equals arctan

(
v×2B×T

c

)
which corresponds

to the target velocity v, S0 (l) will have two peaks at the location of l � fd ± � fd .
The searching for the angle α will increase the computational complexity. For example,

if the angle searching step �α equals arctan
( 1×2B×T

c

)
, which corresponds to the target’s

velocity searching step�v equalling 1m/s, the number of searchingmay be 1020 times when
the radial velocity of the target is nearly 3-Mach. The searching complexity is huge and it will
worsen the algorithm’s real-time performance. Fortunately, the problem may be alleviated in
real applications. Firstly, the target’s velocity (i.e., rotational angle α) is limited to some fixed
region via prior knowledge (e.g. from minimum to maximum assumed target velocity). And
we can choose an appropriate angle searching step according to Doppler resolution. With the
searching region and the number of searching reduced, the computational complexity will
decrease. Secondly, some searching strategies may be adopted, e.g. the searching procedure
could be divided into two parts (i.e., first, search the axis rotational angle region with a wider
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Table 1 Operation component of IAR-MTD

IAR-MTD

Axis rotation operation Real addition L × N

Real multiplication L × N × 2

The number of FFT operations (L point) N

The number of repetition Searching angle number

N is the number of range cells, and L is the number of pulses

searching step, and then search the exact axis rotational anglewith a narrower searching step).
Lastly, the searching for the correct axis rotational angle is a convex optimization problem,
and some optimization methods could be adopted to reduce the computational complexity,
e.g. Gradient descent method, Steepest descent method, Newton’s method and so on.

It should be noticed that the relationship between the angle searching step �α and the
velocity searching step�v is function tan (·), which is a nonlinear function. That means same
velocity searching steps will result in different angle searching steps �α with α increasing.
However, in most cases, since the angle searching region is near to zero, the relationship
between �α and �v is linear.

Table 1 gives the operation component of IAR-MTD. The main operation of IAR-MTD is
the axis rotation and FFT. Therefore, the computational complexity of IAR-MTD is decided
by the number of angle searching.

4.3 Unambiguous Doppler estimation

The ambiguous speed response is an intractable problem for the traditional Doppler filter
bank, e.g. MTD. The Doppler filter responses will periodically repeat along the searching
radial velocity with a certain cycle PRF . So for the filter bank with searching area of
[−PRF/2, PRF/2], the responses for the targets with Doppler frequency fd + p × PRF
will be identical, where p is an uncertain integer. That is, after the MTD filtering, the target’s
trueDoppler frequency fd cannot be ascertained and theDoppler frequency is still ambiguous
(Xu et al. 2011). To solve the problem, some techniques have been adopted (Zhu et al. 2011).
However, the ambiguous speed response of IAR-MTDmay be avoided well, which is similar
to that of RFT (Xu et al. 2011). It is known that different axis rotational angles correspond to
different velocities. If the current axis rotational angle mismatches the current target velocity,
in other words, when the velocity mismatch is larger than the velocity resolution, the number
of pulses that can be coherently integrated is few and the output will approach zero.

Figure 5 shows the reason that ambiguous speed response could be avoided. Assume that
the angle α corresponds to the target’s speed v and the angle β corresponds to an ambiguous
speed, the output of coherent integration is near to zero when the axis rotational angle equals
β.

4.4 Tolerance of acceleration

In Sect. 2, the signal model is built on the moving target with a constant radial velocity v.
However, the moving target usually has acceleration in real application. As we know, range
migration may be divided into two parts: the first part is the linear range migration brought
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Fig. 5 Number of pulse is few
when the rotational angle
corresponds to an ambiguous
speed

m′0

α
0Rn′

rn′

β

by target’s velocity; the second part is the nonlinear range migration brought by target’s
acceleration.

IAR-MTD could compensate linear range migration, but cannot compensate nonlinear
range migration. If there is a target with a radial acceleration or manoeuvring motion, the
coherent integration performance will decrease with integration time increasing. So it is
necessary to research the tolerance of acceleration for IAR-MTD.

The coherent integration gain is decided by the number of pulses that could be coherently
integrated. When a target has a radial acceleration or manoeuvring motion, not only the
nonlinear rangemigrationmay exceed thewidth of a range cell but also theDoppler frequency
of the target may shift. Hence, the number of pulses that can be coherently integrated may
decrease.

The coherent integration time,whichDoppler frequency is confined in aDoppler resolution
cell, is given as

|2amaxC P I/λ| < ρd � 1/CP I (31)

where amax is the maximum of target’s acceleration. Then the maximum of CP I , which is
constrained by Doppler resolution, is

CP IDoppler ≤ √
λ/ (2amax ) (32)

The coherent integration time, which the nonlinear range migration is limited in a range cell,
is given as

amaxC P I 2/2 ≤ ρr (33)

Then the maximum of CP I , which is constrained by range resolution, is

CP Icurvature ≤ √
2ρr/amax (34)

To coherently integrate effectively, CP I should be a minimum between CP IDoppler and
CP Icurvature. That is

CP I � min
(
CP IDoppler ,CP Icurvature

)
. (35)

4.5 Multi-target detection performance

Similar to MTD, IAR-MTD can realize the detection of multi-target with constant radial
velocity. For moving targets with constant radial velocity, they may be distinguished by
range or Doppler frequency. Suppose that the echoes have been processed via the improved
axis rotation transform. Then, there are three cases should be discussed. In the first case
that the targets have a same constant radial velocity but locate in different range cells, the
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Fig. 6 Integration effect of IAR-MTD. a Linear rangemigration in coordinate system (nr − m). bNormalized
output of IAR-MTD (α �0.0133 rad, v �100 m/s)

targets can be distinguished by their ranges. In the second case that the targets have different
constant radial velocities and locate in a same range cell, the targets can be distinguished
by their different Doppler frequencies. In the last case that the targets have a same constant
radial velocity and locate in a same range cell, the targets may be differentiated by raid cluster
resolution technique (Du et al. 2004) or have to be considered as a target.

In summary, the performance of multi-target detection is determined by both range resolu-
tion and Doppler resolution. Hence, with the transmitted signal bandwidth B or the coherent
integration time increasing, the multi-target detection performance will improve.

5 Numerical experiments

To verify the performance of IAR-MTD, some numerical experiments are presented in this
section. A non-fluctuating simple point target model and an additive white Gaussian noise
background are assumed. The experiment parameters are given as follows: R0 � 200 km,
v � 100 m/s, fc � 150 MHz, B � 30 MHz, Tp � 2 μs, GPC � 10 log10

(
Tp × B

) �
17.78 dB, PRF � 3000 Hz, fs � 60 MHz, CPI �1 s, false alarm probability Pf a � 10−6,
the number of Monte Carlo experiments is 108 times.

5.1 Detection performance of IAR-MTD in different SNR backgrounds

To verify the detection performance of IAR-MTD in different SNR backgrounds, two exper-
iments are presented as follows.

5.1.1 Integration effect of IAR-MTD

In this experiment, the input SNR is assumed to be -15 dB. Although the raw echoes are
submerged by noise, the echoes after pulse compression, which are shown in Fig. 6a, may be
observed forGPC equalling 17.78 dB.Obviously, a linear rangemigration happens in Fig. 6a.
Figure 6b shows the coherent integration effect of IAR-MTD when the axis rotational angle
α equals 0.0133 rad, which corresponds the radial velocity equalling 100 m/s. In Fig. 6b,
there are two peaks whichmay be identical in amplitude and phase. The reason for the double
peaks is given in Sect. 3.3.
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Fig. 7 Detection probability of IAR-MTD, MTD, RFT and KT
(
Pf a � 10−6

)

5.1.2 Detection performance of IAR-MTD

As we know, the higher the coherent integration gain, the better the detection performance.
The coherent integration gains of MTD, RFT (Xu et al. 2011) and IAR-MTD are given as

GMT D � 10 log10 (CP IMT D × PRF) (dB) , (36)

GRFT � 10 log10 (CP IRFT × PRF) (dB) (37)

and

GI AR−MT D � 10 log10 (2π × CP II AR−MT D × PRF) (dB) . (38)

As linear range migration happens, CP IMT D is the least of the three algorithms,
and GMT D is the least accordingly. CP IRFT may be equal to CP II AR−MT D , however,
GI AR−MT D may be greater than GRFT by comparing (37) with (38).

The detection performance of IAR-MTD,MTD, RFT andKT are given in this experiment.
When the input SNR varies from −55 to −15 dB, the relationship curve between detection
probability (Pd) and the input SNR is shown in Fig. 7. The theoretical values of IAR-MTD
and RFT are calculated via (28), (29), (30) and (37). The real values of IAR-MTD, MTD and
KT are the results of the experiment. It is clear that the detection performance of IAR-MTD
is the best of the four algorithms. The difference between the theoretical value and the real
value of IAR-MTD results from the losses of echoes amplitude for the linear rangemigration,
the error of the axis rotation transform, the difference of phases between the two spectral
peaks, and the approximation of GI AR−MT D .

5.2 Detection performance of IAR-MTD in different searching step backgrounds

Since MTD can be realized by FFT without any other computation, the computational com-
plexity of MTD is the lowest of the four algorithms. But, that the coherent integration time of
MTD is also the shortest limits the application of MTD. Compensating linear range migra-
tion via KT and realizing coherent integration via MTD can increase coherent integration
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time and improve coherent integration gain distinctly, but interpolation operation increases
system burden. RFT requires a two-dimensional joint searching along the range dimension
and the velocity dimension, which will increase the computational complexity. Moreover,
RFT cannot directly use the FFT-based filter bank because the input series are different for
different filters (Xu et al. 2011). So RFT need the optimality and fast implementations which
are proposed in Yu et al. (2012). Also, the computational complexity of the fast algorithms
of RFT is only infinitely close to that of the FFT-based algorithm, e.g. MTD. However,
IAR-MTD successfully decouples the two-dimensional searching into two one-dimensional
searching along the range dimension and the velocity dimension respectively. Therefore, the
computational complexity of IAR-MTD is much lower than that of RFT.

To decrease the computational complexity of searching axis rotational angle α in IAR-
MTD, some searching strategies could be adopted in real applications, e.g. adaptive searching
step or two searching steps.

To compare the effect of angle errors, two experiments are given as follows.

5.2.1 Large angle error

In this experiment, the input SNR equals −15 dB and the radial velocity of the target is
assumed to be 100 m/s. The maximal velocity error may be ± 5 m/s when the searching step
equals 10 m/s. In comparison with Figs. 6b and 8a shows that the locations of the peaks are
incorrect. Moreover, the coherent integration gain will decrease with the axis rotational angle
error increasing. The larger the error, the less the coherent integration gain. Fortunately, some
searching tactics may be adopted to decrease the error, e.g. searching with an alterable step.

5.2.2 Small angle error

Unlike the large angle error scenario, a small angle error would not generate wrong peak
locations (Fig. 8b). But the coherent integration gain will still decrease for the axis rotational
angle error. The detection performance of different small angle errors is presented in this
experiment. The input SNR varies from −50 to −30 dB. Figure 8c shows the relationship
between Pd and the input SNR. It is clear that the detection performance will decrease when
angle error increases.

5.3 Detection performance of IAR-MTD in different accelerations backgrounds

The target motion model in Sect. 2 is assumed to be a constant radial velocity motion. In
real applications, the target constant radial velocity motion may fluctuate during long time
coherent integration. In this experiment, the detection performance of different accelerations
is shown in Fig. 9. Compared with the effect of angle error which is shown in Fig. 8c, the
effect of acceleration is obvious and the detection performance will decrease greatly with
the acceleration increasing. It should be noticed that IAR-MTD is proposed to eliminate
the linear range migration. The nonlinear range migration which caused by the acceleration
could not be eliminated by IAR-MTD. So the detection performance will decrease.

5.4 Detection performance of IAR-MTD in multi-target detection background

IAR-MTD has the capability of detecting multi-target. Suppose that there are three targets
with constant radial velocity in this experiment. Target 1: v1 � 10 m/s; Target 2: v2 � 50 m/s;
Target 3: v3 � 10 m/s. The target 1 and target 2 initially locate in a same range cell. The
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Fig. 8 Comparison of different angle errors. aNormalized output of IAR-MTD (α �0.0140 rad, v �105m/s).
b Normalized output of IAR-MTD (α �0.0136 rad, v �102 m/s). c Detection probability of different small
angle errors (α �0.0131 rad, v �98 m/s; α �0.0132 rad, v �99 m/s; Pf a � 10−6)

Fig. 9 Detection probability of different accelerations
(
Pf a � 10−6

)

distance between the target 1 and target 3 is ten range cells. The input SNR is assumed to be
−15 dB and the other system parameters are identical to those in Sect. 5.1.

123



900 Multidim Syst Sign Process (2019) 30:885–902

Fig. 10 Detection performance of IAR-MTD inmulti-target detection. aLinear rangemigration ofmulti-target
echoes in coordinate system (nr − m). b Normalized output of IAR-MTD (α �0.0013 rad, v �10 m/s). c
Normalized output of IAR-MTD (α �0.0067 rad, v �50 m/s)

Figure 10a shows the echoes after pulse compression. The two parallel lines are the echoes
of target 1 and target 3, which have the same radial velocity and the different initial ranges.
The two crossed lines are the echoes of target 1 and target 2, which have the same initial
range and the different radial velocities.

Figure 10b shows two peaks which correspond to target 1 and target 3 respectively. Obvi-
ously, target 1 and target 3 can be distinguished by range. There is a small peak on the left
which represents target 2. Figure 10c shows a main peak which represents target 2. And the
small peak on the right represents target 3. The small peak of target 1 overlaps the peak of
target 2. Obviously, the targets can be distinguished by Doppler frequency.

6 Conclusions

A novel coherent integration detection algorithm IAR-MTD for detecting weak moving
targets is presented in this paper. Different from the existing algorithms, IAR-MTD could
perform the procedure of linear range migration compensation and realize target’s velocity
estimation.

Furthermore, the realization of IAR-MTD is derived and that the coherent integration
gain of IAR-MTD is better than that of MTD, RFT and KT is testified. Then some strategies
are suggested to decrease computational complexity. Subsequently, unambiguous Doppler
estimation is discussed, which is similar to that of RFT.Moreover, the analysis of the acceler-
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ation’s tolerance shows that the nonlinear rangemigration is hardly eliminated by IAR-MTD.
Subsequently, the multi-target detection ability of IAR-MTD is verified. Finally, some exper-
iments show the detection performance of IAR-MTD in different parameter backgrounds.

On the basis of the analysis in the paper, a conclusionmay be drawn that: the improved axis
rotation transform is a special case of the axis rotation transform and, in fact, the Cartesian
coordinate axis is transformed into a skew/slanting coordinate axis via the improved axis
rotation transform. Furthermore, for the weak moving targets with constant radial velocity,
IAR-MTD may increase the detecting range and the detection probability. Compared with
MTD, RFT and KT, IAR-MTD has a better coherent integration performance and a lower
computational complexity. And IAR-MTD, which is treated as an improved algorithm of
MTD, could be applied in MTD radar system.
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