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Abstract In this paper, a fast blind deconvolution approach is proposed for image deblurring
by modifying a recent well-known natural image model, i.e., the total generalized variation
(TGV). As a generalization of total variation, TGV aims at reconstructing a higher-quality
image with high-order smoothness as well as sharp edge structures. However, when it turns to
the blind issue, as demonstrated either empirically or theoretically by several previous blind
deblurring works, natural image models including TGV actually prefer the blurred images
rather than their counterpart sharp ones. Inspired by the discovery, a simple, yet effective
modification strategy is applied to the second-order TGV, resulting in a novel L0–L1-norm-
based image regularization adaptable to the blind deblurring problem. Then, a fast numerical
scheme is deduced with O(N logN) complexity for alternatingly estimating the intermediate
sharp images and blur kernels via coupling operator splitting, augmented Lagrangian and also
fast Fourier transform. Experiment results on a benchmark dataset and real-world blurred
images demonstrate the superiority or comparable performance of the proposed approach to
state-of-the-art ones, in terms of both deblurring quality and speed. Another contribution in
this paper is the application of the newly proposed image prior to single image nonparametric
blind super-resolution, which is a fairly more challenging inverse imaging task than blind
deblurring. In spite of that, we have shown that both blind deblurring and blind super-
resolution (SR) can be formulated into a common regularization framework. Experimental
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results demonstrate well the feasibility and effectiveness of the proposed blind SR approach,
and also its advantage over the recent method by Michaeli and Irani in terms of estimation
accuracy.

Keywords Blind deblurring · Total generalized variation · Camera shake removal · Blind
super-resolution · L0-norm minimization

1 Introduction

Image deblurring, as a fundamental problem in image and vision computing, has attracted
large interest in the past decades (Wang and Tao 2014; Lai et al. 2016). Due to its ill-posed
nature, one of the crucial techniques is to develop top-performing natural image models, e.g.,
fields of experts (FoE) (Roth and Black 2009), block matching and 3D filtering (BM3D)
(Dabov et al. 2007), sparse representation (Aharon et al. 2006; Rubinstein et al. 2013), and
weighted nuclear norm minimization (Gu et al. 2014). However, as it turns to the blind issue
where the blur kernels are unknown, ‘What is a good image prior for reliable blur kernel
estimation’ is still an ongoing open problem. Recently, a few blind deblurring works (Beni-
choux et al. 2013; Fergus et al. 2006; Levin et al. 2011b;Wipf and Zhang 2013) have actually
demonstrated that natural image models prefer the blurred images rather than their counter-
part sharp ones in the maximum a posterior (MAP) framework. In other words, natural image
priors, e.g., Roth and Black (2009), Dabov et al. (2007), Aharon et al. (2006), Rubinstein
et al. (2013) and Gu et al. (2014), are no longer applicable to theMAP-based blind deblurring
formulation. Naturally, a question arises that if there exists a possible bridge between blind
deblurring and its non-blind scenario, inspired bywhich, a new simple, yet effectivemodifica-
tion strategy is applied to Bredies et al.’s recent natural imagemodel (Bredies et al. 2010), i.e.,
the total generalized variation (TGV), leading to a new L0–L1-norm-based image regulariza-
tion specifically adaptable to blind deblurring. To the best of our knowledge, ours is the first
paper touching the blind image deblurring task by use of TGV in a critical perspective. With
the new regularization, a numerical algorithm with computational complexity O(N logN) is
deduced for estimating alternatingly the intermediate sharp images and blur kernels by seam-
lessly coupling operator splitting, augmented Lagrangian and fast Fourier transform (FFT).
Experiment results on both Levin et al.’s benchmark dataset (Bredies et al. 2010; Levin et al.
2011a) and real-world blurred images demonstrate the superiority or comparable perfor-
mance of the present approach to state-of-the-art ones, in terms of both restoration quality
and running speed. As a by-product, another contribution is made on nonparametric blind
super-resolution via naive application of the newly proposed image regularization, which is
a much more challenging computational imaging task than blind deblurring. For readers’
clarity, a detailed review on blind deblurring is provided in Sect. 1.1. We will observe that,
just the same as in the present paper, unnatural image priors are advocated in the recent blind
algorithms so as to pursue more accurate salient edges as core clues to blur kernel estimation.

1.1 State-of-the-art blind image deblurring

In general, blind image deblurring can be formulated using two inference criteria, namely
maximum a posterior and variational Bayes. Due to ease of intuitive understanding, math-
ematical formulation, and also numerical derivation, the maximum a posterior criterion has
attracted fairly more attentions than variational Bayes in the existing literature. A detailed
review on variational Bayes-based blind deblurring can be referred to Ruiz et al. (2015). It
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is noted that most of variational Bayes-based methods, e.g., Fergus et al. (2006), Levin et al.
(2011a, b) andAmizic et al. (2012), exploit natural imagemodels for posteriormean estimates
of intermediate sharp images served alternatingly as clues to kernel estimation. Interestingly,
more recent variational Bayes studies (Babacan et al. 2012;Wipf and Zhang 2014; Shao et al.
2016) find that unnatural image models may lead to better blind deblurring performance. For
example, Babacan et al. (2012) empirically validate that the non-informative Jeffreys prior
achieves more accurate kernel estimation than several other natural options. Furthermore,
the theoretical analysis in Wipf and Zhang (2014) introduces several rigorous criteria to the
choice of optimal image priors. Interestingly, the Jeffreys model has been proved to be opti-
mal to a certain degree in terms of the deblurring quality. This theoretical result is somewhat
consistent to the empirical finding in Babacan et al. (2012). It is worth noting that one of
the authors in the present paper treats the choice of image priors for blind deblurring as a
self-learning problem (Shao et al. 2016) wherein the clear image is sparsely modeled in a
three-layer hierarchical Bayesian form. The experimental results demonstrate that the self-
learned image model resembles somewhat the non-informative Jeffreys prior and as a matter
of fact its negative-logarithm is relatively more nonconvex indicating that the self-learned
image prior is also unnatural.

As being mentioned above, the maximum a posterior principle is exploited more com-
monly in practice (Cho and Lee 2017), and all the high-performing maximum a posterior
approaches, e.g., Almeida and Almeida (2010), Krishnan et al. (2011), Xu et al. (2013), Pan
and Su (2013), Shearer et al. (2013) and Shao et al. (2015), advocate non-convex unnatural
image models for blind image deblurring. For example, Kotera et al. (2013) formulate blind
deblurring utilizing the L0.3-norm-based image prior; while, anLp-norm-based prior has been
harnessed in Almeida and Almeida (2010), where p jumps down from 0.8 until 0.4; a new
regularization image prior based on the normalized sparsity measure is described in Krish-
nan et al. (2011); afterwards, three L0-norm-based image priors (Xu et al. 2013; Pan and Su
2013; Shearer et al. 2013) are proposed in the same year for blind deblurring; furthermore,
Shao et al. (2015) point out that naive use of L0-norm to model images does not necessarily
lead to top blind deblurring performance, and propose a bi-L0–L2-norm-based regularization
imposed on both the sharp image and blur kernel; in order to process blurred text images,
Pan et al. (2014) propose to use the L0-norm of both image gradients and intensities as regu-
larization; more recently, Pan et al. (2016) combine the L0-norm of image gradients and the
dark channel prior (He et al. 2011), achieving state-of-the-art blind deblurring performance
on several types of blurred images. Besides, another technical branch based on shock filters
(Osher andRudin 1990) is also very popular in the blind deblurring literature, whose core idea
is to estimate blur kernels from a few predicted step-like salient edges in the original image
(Cho and Lee 2009; Xu and Jia 2010). Actually, this idea had previously been exploited
in Money and Kang (2008) and afterwards in Ohkoshi et al. (2014) which combines the
total variation prior (He et al. 2014; Yan and Lu 2015; Rudin et al. 1992; Chan and Wong
1998) and edge shock filtering for blind image deblurring. Note that since Chan and Wong
(1998) proposed in 1998 the total variation blind deconvolution, the work by Money and
Kang (2008) was the first influential improvement towards Chan and Wong (1998), imply-
ing that harnessing only the total variation is not enough in the blind deblurring problem.
Recently, Perrone and Favaro (2016a) further make a daring contribution on the theoretical
analysis of Chan and Wong (1998), pointing out that the real success of total variation blind
deconvolution actually relies heavily on the details and tricks among algorithmic implemen-
tation. With the discovery, more recently they propose a logarithmic total variation-based
blind image deblurring approach using a delayed kernel normalization scheme (Perrone and
Favaro 2016b). Naturally, direct deployment of the natural image model TGV (Bredies et al.
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2010), as an advanced generalization of total variation (He et al. 2014; Yan and Lu 2015;
Rudin et al. 1992; Chan andWong 1998), may offer a great possibility in the blind deblurring
performance via harnessing the similar tricks to those in Perrone and Favaro (2016a). In
spite of that, we are inspired by Xu et al. (2013), Pan and Su (2013), Shearer et al. (2013),
Shao et al. (2015) and Pan et al. (2014, 2016) and propose adapting the TGV for enhanced
capability of pursuing higher-quality intermediate images with high-order smoothness and
sharp edge structures, which naturally leads to more accurate blur kernel estimation.

2 Motivation and formulation

Prior to formulating the proposed approach, a spatially-invariant convolution model is
assumed for the observation process

g � h ∗ u + z (1)

where g is the blurred image, u is the original clear image, h is a blur kernel, ∗ denotes a
periodic convolution operator, and z is supposed to be an additive white Gaussian noise. The
core task of blind deblurring is to estimate the blur kernel h, where one of the key techniques
is an appropriate model on the unknown image u. For the convenience of presentation, the
observation model (1) in a full-matrix form is reformulated into a matrix–vector version

g � Hu + z (2)

where g, u, z are the vectorized versions of g, u, z, and H is the convolutional matrix
corresponding to h.

Since Bredies et al.’s proposal of TGV, a great many applications have benefited from the
model such as denoising, super-resolution, non-blind deblurring, diffusion tensor imaging,
etc. However, the blind deblurring problem is of another attribute; it is easy to prove just
in a similar manner to Benichoux et al. (2013) that the L1-norm-based TGV is apt to result
in trivial solutions, e.g., a pair of delta kernel and blurry image. Motivated by the recent
L0-norm-based methods (Xu et al. 2013; Pan and Su 2013; Shearer et al. 2013; Shao et al.
2015; Pan et al. 2014, 2016) which actually originate from total variation blind deconvolution
(Money and Kang 2008; Chan andWong 1998) and also the normalized sparsity-based blind
deblurring approach (Krishnan et al. 2011), this paper makes a natural modification towards
the second-order TGV, though simple, yet fairly effective for ensuring successful estimation.
Specifically, our advocated image prior for blind deblurring is given as

R(u) � min
v

{
�(u, v) + α1

α0
�(v)

}
, (3)

where α0, α1 are positive tuning parameters, v � (vx ; vy) is a cascade of two vectors vx and
vy in column, and �(u, v) is defined as

�(u, v) � ‖∇u − v‖0 , (4)

where ∇u � (∇xu;∇yu), ∇x ,∇y represent the first-order difference operators in the hori-
zontal and vertical directions, respectively, and �(v) is defined as

�(v) � ∥∥(∇xvx ; ∇yvy ; ∇xvy + ∇yvx )
∥∥
1 . (5)

Apparently, as the L0-norm operator in�(u, v) is replaced by the L1-norm, the above L0–L1-
norm-based image prior (3) becomes the original second-order TGV for denoising in Bredies
et al. (2010) and for non-blind deconvolution and super-resolution in Zhang et al. (2017)
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and Laghrib et al. (2017). According to the analysis made on the original TGV in Bredies
et al. (2010), TGV will locally reduce to the total variation (TV) model, i.e., TGV(u) ≈
||∇u||1, in regions of strong edge, while to the Hessian-norm-based regularization (HNR),
i.e., TGV(u) ≈ ||(∇xxu;∇yyu; ∇xyu + ∇yxu)||1, in regions of smooth surface and faint
texture. Hence, TGV has achieved a decently adaptive combination of TV and HNRwhich is
fairly different from previous approaches, and v behaves, to a certain degree, as an indicator
of the region nature. Returning to the modified TGV in this paper, it is not hard to deduce
that R(u) is expected to behave approximately as the recently advocated blind deblurring
component ||∇u||0 (Xu et al. 2013; Pan and Su 2013; Shearer et al. 2013; Shao et al. 2015;
Pan et al. 2014, 2016) in regionswith salient edges, while as ||(∇xxu;∇yyu; ∇xyu+∇yxu)||1
in regions of flat surface and faint texture, so as to overcome the negative effects of solely
utilizing ||∇u||0, especially the staircase artifacts which are to serverely reduce the kernel
estimation precision. Hence, harnessing (3) a higher-quality intermediate sharp image with
high-order smoothness and sharp edge structureswill be produced and thusmore accurate blur
kernel estimation is to be achieved. Numerous results on Levin et al.’s benchmark dataset
and real-world blurred images are to validate the effectiveness of (3). To the best of our
knowledge, (3) is the first approach of employing TGV for blind deblurring in the literature,
different from existing image models in either the maximum a posterior or variational Bayes
framework.

To further improve the kernel estimation accuracy, we also exploit an additional composite
prior on the blur kernels, exactly the same as the one in Shao et al. (2015). Moreover, the
continuation scheme is applied so as to alleviate the tiresome choice of appropriate tuning
parameters. Then, given current estimates of the intermediate sharp image and the blur kernel,
i.e., ui , hi ,, 0 ≤ i ≤ I − 1, the next estimates ui+1,hi+1 can be solved by minimizing the
following cost function

λ ‖g − Hu‖22 + ciuα0R(u) + cihβ0Q(h), (6)

where cu, ch are the continuation factors which are fixed as 2/3 and 4/5, respectively, for all
the experiments in this paper, and

Q(h) � ‖h‖0 + β1
β0

‖h‖22 , (7)

with β0, β1 positive tuning parameters. Notice that, the derivative version of (7) can be served
as another possibility. Besides, I is set as 10 in this paper.

3 Numerical solutions

This section turns to the numericalminimization of (6).Using the image and kernel priors, i.e.,
(3) and (7), blind deblurring can be then addressed into the following alternatingminimization
problems

ui+1, vi+1 � argmin
u,v

λ ‖Hiu − g‖22 + ciuα0(�(u, v) + α1
α0

�(v)), (8)

and

hi+1 � argmin
h

λ
∑
d∈�

‖(Ui+1)dh − gd‖22 + cihβ0Q(h), (9)

where d ∈ � � {x, y}, gd � ∇dg, (ui+1)d � ∇dui+1, and (Ui+1)d represents the
convolutional matrix corresponding to the image gradient (ui+1)d . Note that estimating the
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kernel hi+1 in the image derivative domain is purely an empirical attempt. In the following,
both (8) and (9) are to be solved via coupling operator splitting, augmented Lagrangian as
well as FFT, finally leading to a numerical schemewith O(N logN) complexity. Another point
to be noted is that the blur kernel should be non-negative and normalized, i.e., the estimated
kernel should be projected onto a constraint set � � {h ≥ 0, ||h||1� 1}.
3.1 Updating the intermediate sharp image

First of all, apply the operator splitting scheme to (8), obtaining an equivalent minimization
problem as follows

ui+1, vi+1,Ai+1,Bi+1,Ci+1,Di+1,Ei+1

� arg min
u,v,A,B,C,D,E

λ

ciu
‖Hiu − g‖22 + α0 (‖A‖0 + ‖B‖0)

+ α1 (‖C‖1 + ‖D‖1 + ‖E‖1) ,

s.t. A � ∇xu − vx ,

B � ∇yu − vy,

C � ∇xvx ,

D � ∇yvy,

E � ∇xvy + ∇yvx . (10)

Harnessing the augmented Lagrangian scheme, (10) can be solved by trans-
forming it into an unconstrained form, obtaining the iterative estimates of
ui+1, vi+1,Ai+1,Bi+1,Ci+1,Di+1,Ei+1, i.e.,

ul+1i , vl+1i ,Al+1
i ,Bl+1

i ,Cl+1
i ,Dl+1

i ,El+1
i

� arg min
u,v,A,B,C,D,E

λ

ciu
‖Hiu − g‖22 + α0 (‖A‖0 + ‖B‖0)

+ α1 (‖C‖1 + ‖D‖1 + ‖E‖1)
+ μl∗

A (∇xu − vx − A) + γA
2 ‖∇xu − vx − A‖22

+ μl∗
B (∇yu − vy − B) + γB

2

∥∥∇yu − vy − B
∥∥2
2

+ μl∗
C (∇xvx − C) + γC

2 ‖∇xvx − C‖22
+ μl∗

D (∇yvy − D) + γD
2

∥∥∇yvy − D
∥∥2
2

+ μl∗
E (∇xvy + ∇yvx − E) + γE

2

∥∥∥∇xvy + ∇yvx − E
∥∥∥
2

2
, (11)

where 0 ≤ l ≤ L − 1, and γA, γB, γC, γD, γE are the augmented Lagrangian penalty
parameters. In this paper, these parameters are fixed as the same value, i.e., γ � 100, for all
the experiments. As for the Lagrange multipliers, they are updated via the rules

μl+1
A � μl

A + γ (∇xul+1i − (vx )l+1i − Al+1
i ),

μl+1
B � μl

B + γ (∇yul+1i − (vy)l+1i − Bl+1
i ),

μl+1
C � μl

C + γ (∇x (vx )l+1i − Cl+1
i ),

μl+1
D � μl

D + γ (∇y(vy)l+1i − Dl+1
i ),

μl+1
E � μl

E + γ (∇x (vy)l+1i + ∇y(vx )l+1i − El+1
i ). (12)
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After a series of analytical calculations towards (11), the solutions to
ul + 1
i , vl + 1

i ,Al + 1
i ,Bl + 1

i ,Cl + 1
i ,Dl + 1

i ,El + 1
i can be derived as follows

ul + 1
i �F−1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
F

(
λ

ciu
H∗

i Hi + γ∇*
x∇x + γ∇*

y∇y

))−1

·F
⎛
⎝

λ

ciu
H∗

i g + γ∇*
x ((vx )

l
i + A − 1

γ
μl
A)

+γ∇*
y((vy)

l
i + B − 1

γ
μl
B)

⎞
⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

(vx )l+1i �F−1

{ (F(�)· ∗ F(�) − F(	∗)· ∗ F(	)
)−1

· (F(�)· ∗ F(
1) − F(	)· ∗ F(
2))

}
,

(vy)l+1i �F−1

{ (F(�)· ∗ F(�) − F(	∗)· ∗ F(	)
)−1

· (F(�)· ∗ F(
2) − F(	∗)· ∗ F(
1)
)
}

,

Al + 1
i � �HARD

(
∇xuli +

1
γ
μl
A − (vx )li ,

(
2α0
γ

)0.5)
,

Bl + 1
i � �HARD

(
∇yuli +

1
γ
μl
B − (vy)li ,

(
2α0
γ

)0.5)
,

Cl + 1
i � �SOFT

(
∇x (vx )li +

1
γ
μl
C, α1

γ

)
,

Dl + 1
i � �SOFT

(
∇y(vy)li +

1
γ
μl
D, α1

γ

)
,

El + 1
i � �SOFT

(
∇x (vy)li + ∇y(vx )li +

1
γ
μl
E, α1

γ

)
, (13)

where F and F−1 represent the operations of 2D FFT and its inverse version, 	 � ∇*
y∇x ,

and � � I + ∇*
x∇x + ∇*

y∇y, and as for 
1 and 
2, they are calculated according to


1 � ∇*
x

(
Cl
i − 1

γ
μl
C

)
+ ∇*

y

(
El
i − 1

γ
μl
E

)
+

(
∇xuli − Al

i +
1
γ
μl
A

)
,


2 � ∇*
y

(
Dl
i − 1

γ
μl
D

)
+ ∇*

x

(
El
i − 1

γ
μl
E

)
+

(
∇yuli − Bl

i +
1
γ
μl
B

)
. (14)

Furthermore, �HARD and �SOFT represent the hard- and soft-thresholding operators,
respectively. With above iterative estimates, ui+1 can be finally obtained as ui+1 � uL

i .

3.2 Updating the blur kernel

Given the updated sharp image ui+1, a similar numerical scheme can be derived for updating
the blur kernelhi+1. Firstly, apply operator splitting to (9) and obtain an equivalent constrained
L0–L2-minimization problem

(wi+1,hi+1) � argmin
w,h

G(w,h,ui+1) s.t . w � h, (15)

where G(w,h,ui+1) is defined as
G(w,h,ui+1) � λ

∑
d∈�

||(Ui+1)dh − gd ||22 + β0(||w||0+β1
β0

||h||22). (16)

Secondly, based on the augmented Lagrangian scheme,wi+1 and hi+1 can be alternatingly
estimated by minimization the following unconstrained problem

(w j+1
i ,h j+1

i ) � argmin
w,h

Ḡ j (w,h,ui+1), (17)
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where 0 ≤ j ≤ J − 1 and Ḡ j (w,h,ui+1) is defined as

Ḡ j (w,h,ui+1) � G(w,h,ui+1) + μ
j*
h (h − w) + χ

2 ||h − w||22. (18)

In (18), χ is the augmented Lagrangian penalty parameter, μ j
h is the Lagrange multiplier

of the constraint w � h and updated according to the rule

μ
j+1
h � μ

j
h + χ

(
h j+1
i − w j+1

i

)
. (19)

Similar to Sect. 3.1, a fixed, large χ equal to 1×106 is selected across all the experiments
and found work well. After some straightforward manipulations, w j+1

i ,h j+1
i can be easily

computed from (18) and given as

w j+1
i � argmin

w
Ḡ j (w,h,ui+1) � �HARD

(
h j
i +

1
χ
μ

j
h,

(
2β0
χ

)0.5)
, (20)

h j+1
i � argmin

h
Ḡ j (w,h,ui+1)

�
(

λ
∑
d∈�

(Ui+1)
∗
d (Ui+1)d + (β1 +

χ
2 )I

)−1 (
λ

∑
d∈�

(Ui+1)
∗
dgd +

χ
2

(
w j
i − 1

χ
μ

j
h

))
, (21)

wherew0
0,h

0
0,μ

0
h are the provided initializations. Now, the minimizers of (15) can be obtained

as wi+1 � wJ
i , hi+1 � hJ

i . Similar to Al+1
i ,Bl+1

i ,Cl+1
i ,Dl+1

i ,El+1
i in (13), it is very simple

to compute w j+1
i because of its pixel-by-pixel processing nature. Besides, the assumption

of circular convolution makes it very efficient to compute h j+1
i using FFT, just similar to

the update of ul+1i in (13). The pseudo code of updating the blur kernel is provided here

for brevity. With the iterative estimates {h j+1
i }, hi+1 can be finally obtained as hi+1 � hJ

i ,

followed with projection onto the constraint set � � { h ≥ 0, ||h||1� 1} .

Pseudo code of updating the blur kernel:

11 :  sharp image ,  Lagrangian penalty parameter . i χ+Input : u

2 :  <  doj JWhile

( )0
HARD

11 21 0.5 Update by computing ,  ( ) .j j j j
iii

β
χχ

++− = Θ + hw  w h μ

1 Update based on 2D FFT by computingj
i

+− h  

( )( ) ( ){ }1 1**
1 1 1 1 22

1
1 ( ) ( ) ( ) ( ) ( ) .ii

j j j
d i d i d d i d d ii cc

χχ λλ
χβ+

∈ + + ∈ +

−
−= ∑ + + ⋅ ∑ + −

hh
h            h U U I U g wΛ Λ μ

1 1 1 1Update by computing  ( ).j j j j j
i iχ+ + + +− = +h h h whμ μ μ −

3 : End

From above it is easily seen that the calculations for updating the blur kernel and also the
image are either pixel-by-pixel operations or 2D FFTs, and therefore the overall complexity
of the proposed method is O(N logN). In addition, both L and J are set as 10 in this paper.
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Upon obtaining the estimated blur kernel hI−1, we exploit the hyper-Laplacian prior-based
non-blind deconvolution method (Krishnan and Fergus 2009) for the final image restoration.

3.3 Multi-scale implementation

In a similar spirit to many previous blind deblurring methods (Bredies et al. 2010; Levin
et al. 2011a; Wang and Tao 2014; Almeida and Almeida 2010; Krishnan et al. 2011; Xu et al.
2013; Pan and Su 2013; Shearer et al. 2013; Shao et al. 2015; Babacan et al. 2012; Wipf and
Zhang 2014), a multi-scale version of the proposed approach is implemented so as to take
into account of large-scale blur kernel estimation. Specifically, we consider 4 scales in total.
In each scale s, the blurred image is set as the 2 times down-sampled version of the original
blurred image g; and during iterative estimation, u00 is set as a zero image, while h00 is set as
a normalized, up-sampled kernel estimated from the coarser level (and in the coarsest scale
h00 is set as a Dirac pulse); and v
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simply set as zeros.

4 Blind deblurring results

Wefirst test the proposedmethod alongwith comparisons against several previous algorithms
using Levin et al.’s benchmark dataset (Levin et al. 2011a), consisting of 32 motion blurred
images generated from 4 natural images (Image01~ Image04) and 8 different motion blur
kernels (Kernel01~Kernel08). To be noted that, the tuning parameters are fixed for the 32
blurred images, including λ � 0.01, α0 � 0.25, α1 � 5, β0 � 0.25, β1 � 5, γ �
100, χ � 1e6, I � J � M � 10. The SSD (sum of squared difference) ratio between
images non-blindly restored using the estimated blur kernel and the ground truth blur kernel
is selected as the final evaluatation measure, so as to take into account the fact that harder
blur kernels lead to larger deblurring errors even if the true kernels are known, since the
corresponding non-blind deconvolution problem is also harder. When the SSD ratio is below
3, the blind deblurring is considered to be successful (Levin et al. 2011a;Wang and Tao 2014;
Almeida and Almeida 2010; Krishnan et al. 2011; Xu et al. 2013; Pan and Su 2013; Shearer
et al. 2013; Shao et al. 2015; Babacan et al. 2012; Wipf and Zhang 2014).

Table 1 lists the SSD ratios of the proposed approach corresponding to the 32 blurred
images. It is seen that our approach fails only as restoring Image04-Kernel06 with SSD ratio
3.45, and therefore the successful percentage of our method is 97%. We also compute its
average SSD ratio for comparison later on, i.e., 1.48.

A few recent methods are also tested on the benchmark, including four approaches of VB
type, i.e., Fergus et al. (2006), Levin et al. (2011a), Babacan et al. (2012), and Shao et al.
(2016), as well as sevenmethods ofMAP type includingXu et al. (2013), Dong et al. (2014),1

Pan and Su (2013), Shearer et al. (2013), Shao et al. (2015), Kim et al. (2015), Kotera et al.
(2013), and Perrone and Favaro (2016a). Except Pan and Su (2013) and (Perrone and Favaro
2016a), all the other methods also use (Krishnan and Fergus 2009) for non-blind deblurring.
In spite of that, the non-blind method in Pan and Su (2013) and Perrone and Favaro (2016a)

1 Since 20 March, 2013, the authors of (Xu et al. 2013) have successively released two executable software
(implemented in C++) for blind motion deblurring, i.e., Robust Motion Deblurring System. The first version
is v3.0.1 which implements the algorithm as detailed in Xu et al. (2013), and the second version is v3.1 which
incorporates the algorithms in both Xu et al. (2013) and Dong et al. (2014), i.e. Xu et al. (2013), Dong et al.
(2014), for more accurate blur-kernel estimation.
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Table 1 SSD ratios of the proposed approach on the benchmark dataset (Levin et al. 2011a)

Image no. Image01 Image02 Image03 Image04

Kernel01 1.20 1.59 1.17 2.00

Kernel02 0.96 1.42 1.01 1.65

Kernel03 1.35 1.71 1.18 2.39

Kernel04 1.19 1.29 1.42 1.37

Kernel05 1.05 1.58 1.12 2.47

Kernel06 1.48 1.81 1.79 3.45

Kernel07 1.07 1.68 1.15 1.92

Kernel08 0.63 1.45 0.84 0.83

Bold value indicates that the proposed method fails to restore the blurred image Image04-Kernel06 in terms
of the SSD ratio 3.45
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Fig. 1 Cumulative histograms of SSD ratios corresponding to different blind deblurring methods

exploits the same prior as in Krishnan and Fergus (2009), i.e., the anisotropic discrete total
variation. And hence, the overall comparison is convincing.

Figure 1 plots the cumulative histogram of SSD ratios according to each method. The r’th
bin in the figure counts the percentage of blurred images in the dataset achieving error ratio
below r (Levin et al. 2011b). For each bin, the higher the bar the better the blind deblurring
quality. The success percentage, i.e., SSD ratio below 3, of each approach is: 69% (Fergus
et al. 2006), 84% (Levin et al. 2011a), 63% (Babacan et al. 2012), 97% (Shao et al. 2016),
81% (Xu et al. 2013; Dong et al. 2014), 78% (Pan and Su 2013), 75% (Shearer et al. 2013),
(Shao et al. 2015) 97%, 75% (Kim et al. 2015), 69% (Kotera et al. 2013), 88% (Perrone and
Favaro 2016a), 97% (Ours). Apparently, our method achieves the same highest percentage
of success with Shao et al. (2015, 2016). Not only that, our method in fact achieves overall
better performance. On one hand, compared against (Shao et al. 2015) and (2016), more
deblurred images with smaller SSD ratios, e.g., 2, are produced by our method; on the other
hand, our approach enjoys smaller average SSD ratio than (Shao et al. 2015) (1.56), and
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Fig. 2 Objective function curves of 10 outer iterations for each scale of the proposed approach as for Image04-
kernel06. Top row: functional (8) for estimating u and v; Bottom row: functional (9) for estimating h

although (Shao et al. 2016) (1.44) enjoys a slightly smaller average ratio, it is fairly more
time-consuming compared to our approach. Using the same lap-top computer configuration
(Intel i7-4600 M CPU (2.90 GHz) and 8 GB memory, running Windows 7), our kernel
estimation algorithm costs about 14 s for each blurred image, while (Shao et al. 2016) costs
about 363 s. Therefore, we conclude that the proposed method achieves a good compromise
between deblurring quality and speed.

Figure 2 presents plots of the functionals (8) for updating the variables u and v and (9) for
updating the blur-kernel h, so as to demonstrate the convergence tendency of the proposed
approach. We take Image04-Kernel06 as an example. The graphs provide the objective func-
tion curves of 10 outer iterations for each scale of the running algorithm. From these curves
we see that the proposed alternating minimization algorithm is quite effective in pursuing the
(possibly local) minimizers of the functionals (8) and (9). Moreover, as suggested by one of
the reviewers, we also compare Kotera et al. (2013) with the proposed method due to their
similar alternatingly iterative computing structures, in terms of peak signal-to noise ratio
(PSNR), structural similarity image metric (SSIM) (Wang et al. 2004; Sampat et al. 2009),
as well as the running time. Table 2 provides comparative results on the eight blurred images
corresponding to Image04 in the benchmark dataset (Levin et al. 2011a). It is observed that
our proposed method not only achieves higher PSNR or SSIM on most of the eight images,
but is also more computationally efficient than Kotera et al. (2013). As kindly suggested
by another reviewer, the eight blur kernels estimated by the proposed method are also com-
pared with those by Kotera et al. (2013) in a quantitative way. Specifically, the estimated
blur kernels are provided in Fig. 3 accompanied with their errors measured by the sum of
squared difference (SSD). According to the calculated figures and estimated tragectories,
it is seen that the proposed method achieves more stable performance on average. But we
should claim that quality of the final deblurred images tells the real truth about performance
of different methods when they exploit the same non-blind deblurring scheme. With this
view, the proposed method is proved better than Kotera et al. (2013) according to the PSNR
and SSIM values in Table 2. In Fig. 4, we take Image04-Kernel08 for example, presenting
the estimated kernels by the two algorithms as well as their corresponding final deblurred
images. Apparently, (Kotera et al. 2013) has failed to produce a reasonable blur kernel in
this example while ours has generated a final deblurred image (28.17 dB) even comparable
to the non-blind version (27.36 dB).
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Table 2 Comparisons on PSNR, SSIM, and running time between the proposed method and Kotera et al.
(2013) on the eight blurred images corresponding to Image04 in the benchmark dataset (Levin et al. 2011a)

Image no. PSNR (dB) SSIM Time (s)

Kotera et al.
(2013)

Ours Kotera et al.
(2013)

Ours Kotera et al.
(2013)

Ours

Image04-Kernel01 29.78 32.31 0.8822 0.9133 29 14

Image04-Kernel02 26.55 29.83 0.7847 0.8831 30 14

Image04-Kernel03 32.80 32.52 0.9313 0.9265 29 14

Image04-Kernel04 22.04 26.47 0.6746 0.7837 29 14

Image04-Kernel05 32.30 32.97 0.9308 0.9350 34 14

Image04-Kernel06 30.85 32.21 0.9095 0.9131 31 15

Image04-Kernel07 22.56 29.49 0.6827 0.8909 31 15

Image04-Kernel08 22.43 28.17 0.6859 0.8331 30 14

Bold values indicate that the deblurring performance of the proposed method is better than Kotera et al. (2013)
in terms of PSNR, SSIM, or running time

Fig. 3 The estimated blur kernels by the proposed method and Kotera et al. (2013) for Image04. The figure
embedded into each blur kernel is the error measured by the sum of squared difference (SSD). Top: ground
truth; middle: ours; bottom: Kotera et al. (2013)

However, it should be noted that the selected parameters in the abovemay not be applicable
to all types of images. For example, Fig. 5 presents a text image example revealing the failure
of the proposed approach. According to several recent works about text image blind deblur-
ring, e.g., Pan et al. (2014), blind deblurring approaches for natural images are generally not
applicable to the text images. As a matter of fact, Pan et al. (2014) have designed an L0-norm-
based image prior in both gradient and intensity domains for removing kinds of motion blur
in text images, which is quite different from the modeling principle of existing natual image
blind deblurring approaches. Hence, the proposed method fails in Fig. 5 majorly because
of the inherent problem in our modified total generalized varation, thus tuning parameters
would not work in this case. In spite of that, it is really the case that there are probably not
universal parameters for all the naural images. It is much interesting that Zhu and Milanfar
(2010) have made a daring try very recently, proposing an automatic parameter selection
scheme for image denoising algorithms. They experiment on two denoising methods includ-
ing the steering kernel regression (SKR) (Takeda et al. 2007) and the block-matching and
3D filtering (BM3D) (Dabov et al. 2007). It is noticed that in either Takeda et al. (2007) or
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28.17 dB

27.36 dB

Non-blindImage04-Kernel08

Ours

22.43 dB

[52] (Kotera et al.)

Fig. 4 The estimated blur kernels by Kotera et al. (2013) and the proposed method for Image04-Kernel08 and
their corresponding final deblurred images

Fig. 5 One failure case of the proposed approach on the text image

Dabov et al. (2007), there are only one parameter to be automatically estimated along with
the iteration process. One of the reviewers kindly suggests that the proposed blind deblurring
algorithm should benefit from the excellent ideas in Zhu and Milanfar (2010). Though this
is really a well-deserving studied topic, we currently do not have clear thoughts on this due
to the involved too many parameters in the proposed method which is in fact a disadvan-
tage of this paper. Furthermore, we show in Fig. 6 that the proposed approach may achieve
better blind deblurring visual quality if the two parameters α0, β1 are adjusted respectively
to α0 � 0.15, β1 � 0.5. As a matter of fact, it is empirically found that one or two of
the involved parameters need tuning as the fixed set of parameter values does not produce
acceptable deblurring performance.
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Ours

Fixed parameters

Ours

Tuned parameters

Fig. 6 The proposed approach may achieve better visual quality as using tuned parameters for many natural
images. Left: blurred image; middle: blind deblurred results with the fixed parameters specified for Levin
et al.’s benchmark dataset (Wipf and Zhang 2014); right: blind deblurred results as α0 is changed as 0.15, and
β1 is changed as 0.5. In both cases, the blur kernel size is set as 71×71

Roma

[17] (Shao et al.)

[10] (Levin et al.)

[14+22] (Xu et al.)

[21] (Shao et al.) Ours

Fig. 7 Blind deblurring results with the real-world blurred image Roma, and all the methods assume the kernel
size 51×51. Note that in our method, α0 is set as 0.15
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Blurred image 

[14]+[22] (Xu et al.)[14]+[22] (Xu et al.)

OursOurs

31×31

31×31

51×51

51×51

Fig. 8 Blind deblurring results by our method and (Xu et al. 2013; Dong et al. 2014) assuming two kernel
sizes. Note that in our method, α0 is set as 0.15

In the following, we test the proposed method using real-world blurry color images while
just tuning the parameter α0 which is set universally as 0.15. The first group of experiments
compares the proposed method to Levin et al. (2011a), Shao et al. (2016), Xu et al. (2013),
2014) and Shao et al. (2015). The deblurred images and the estimated kernels are shown in
Fig. 7. We see that all the methods are capable of removing the large motion blur in Roma to
a large degree, and the estimated blur kernels are of similar trajectories, demonstrating the
practicality of the proposed approach to real-world blind deblurring problems. It is observed
that Xu et al. (2013) and Dong et al. (2014) achieves the best compromise between the
deblurring quality and speed in this example. However, Fig. 8 shows that the proposed
approach is more robust than Xu et al. (2013) and Dong et al. (2014) in terms of the blur
kernel size. That is, the deblurred images by our method are of similar visual perception with
the two kernel sizes, but it is not the case for Xu et al. (2013 and Dong et al. (2014). To show
the acceptable performance achieved by the proposed approach more convincingly, several
more real-world blind deblurring experiments are conducted with the estimated images and
blur kernels provided in Fig. 9. Note that in all the experiments above we just change α0 from
0.25 to 0.15, and hence it is very possible that the proposed approach may achieve better
results as jointly tuning other parameters as well. It is believed, however, that the automatic
estimation of those parameter values is a more exciting and meaningful topic to be studied
in the future.

5 Applications to single image nonparametric blind super-resolution

Single image super-resolution (SISR), aiming to generate a high-resolution (HR) image from
a blurred and low-resolution (LR) one, has undergone a rapid development particularly in
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Fig. 9 Left: blurry image; right: finally estimated image and kernel of the proposed approach with α0 set as
0.15
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the recent decade. However, a non-ignorable problem inherently in SISR is that most state-
of-the-art methods (Dong et al. 2014; Kim et al. 2015; Yang et al. 2010, 2012, 2013, 2014;
Glasner et al. 2009; Zeyde et al. 2012; Timofte et al. 2013; Peleg and Elad 2014; Timofte et al.
2014; Chang et al. 2004; Fattal 2007) including the latest deep learning-based approaches
(Dong et al. 2014; Kim et al. 2015; Yang et al. 2010) suppose a known blur kernel in certain
parametric forms. Actually, the influence of an accurate blur kernel, concluded by a recent
analysis (Efrat et al. 2013) in both practical and theoretical aspects, is significantly larger
than that of an advanced image prior. Therefore, blind SISR is more critical compared against
existing non-blind ones.While there are a few parametric methods addressing the blind SISR
(Begin and Ferrie 2007;Wang et al. 2005; He et al. 2009), they are based on aGaussian kernel
assumption. The low-quality SR results are naturally obtained as actual blur models are far
away from the Gaussian hypothesis; one common instance is the combination of out-of-focus
and camera shake blur.

In this section, nonparametric blind SISR is of our particular interest, and current litera-
ture seldom touches on this topic. In the past 15 years, Michaeli and Irani’s recent approach
(Michaeli and Irani 2013) has been the most representative one. An inherent recurrence prop-
erty of small image patches across distinct scales is explored and a MAPh-based estimation
scheme (Levin et al. 2011b) finally produces the blur kernel. While Joshi et al. (2008) aims to
present a nonparametric kernel estimation method for both blind SISR and blind deblurring
in a unified fashion, it merely restricts its treatment to single-mode blur kernels (Michaeli
and Irani 2013; Marquina and Osher 2008), and heuristically builds on the detection and
prediction of step edges as core clues to kernel estimation, i.e., unlike Michaeli and Irani
(2013), not originating from a strict optimization principle.

In distinction to the nonparametric blind SISR methods above, our proposed method is
also inspired byBredies et al.’s TGVmodel (Bredies et al. 2010) andmotivated by an idea that
a successful blind SISR method builds heavily on jagging artifact-free salient edges as well
as staircase artifact-free flat regions pursued from the LR image. Specifically, our proposed
approach is formulated by embedding a so-called convolutional consistency constraint and
imposing the modified L0–L1-norm-based second-order TGV model (3), with the objective
of getting more accurate estimation of the blur kernel from the single LR image.

Before formulating the proposed method, we first of all set up the blind SISR task. Let
o be the LR image of size N1 ×N2, and u be the corresponding HR image of size rN1

× rN2, with r>1 an up-sampling factor. The relation between o and u can be expressed in
the following way:

o � SHu + n or o � SUh + n (22)

where U and H are the BCCB (block-circulant with circulant blocks) convolution matrices
corresponding to the vectorized representations of the HR image u and the blur kernel h, and
S denotes the down-sampling matrix. In implementation, image boundaries are smoothed in
order to prevent border artifacts. The task turns to estimate u and h given only the LR image
g and the up-sampling factor r.

According to our experience in blind deblurring, a successful blind SISR method dwells
heavily on the jagging artifact-free salient edges as well as staircase artifact-free smooth areas
pursued from the LR image. To achieve this goal, we introduce a new blind SISR formulation
inspired by the modified TGV model described above, given as

min
u,h

λ ‖SHu − o‖22 + ciuα0R(u) + cihβ0Q(h) + η ‖Hu − ū|‖22 , (23)
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where η is also a positive tuning parameter. The same as in blind deblurring, R(u), Q(h)
are chosen as (3) and (7), respectively. The first term in (23) models the image fidelity,
formulated based on the assumption that n in (22) is a white Gaussian noise, and the last
term is the convolutional consistency constraint, playing a similar role as the first term, whose
rationale is when a bicubic low-pass filter kernel is assumed for advanced non-blind SISR
methods, the super-resolved image ū is actually a blurred version of the true solution u and
we approximately get the relationship Hu ≈ ū. In this paper, the learning-based non-blind
SISR method (Peleg and Elad 2014), i.e., Anchored Neighborhood Regression (ANR), is
selected for blur-kernel estimation in all the blind SISR experiments. In fact, deep learning-
based methods (Dong et al. 2014; Kim et al. 2015; Yang et al. 2010) may serve as better
candidates, but this is not the emphasis in this paper.

With R(u) in (3), it is expected to serve approximately as an L0-norm-based Potts image
model in the edge region,while as a higher-order total variation (TV), i.e., HNR, in the smooth
area. And hence, by adapting the TGV as above aswell as using the convolutional consistency
constraint, we are allowed to get a more accurate salient edge image not suffering from the
staircase artifacts in flat regions, which can be used as a more reliable clue to nonparametric
blind SISR. Now, as provided the blur kernel hi , the super-resolved sharp image ui+1 can be
then estimated via

ui+1, vi+1 � argmin
u,v

ciuα0�(u, v) + ciuα1�(v) + λ||SHiu − g||22+η||Hiu − ū||22. (24)

When it turns to estimating the blur kernel, we follow the same empirical choice as Sect.
3.2, i.e., the blur kernel hi+1 is estimated in the image derivative domain just due to the
achieved better performance. Thus, hi+1 is estimated via

hi+1 � argmin
h

cihβ0||h||0 + cihβ1||h||22+
∑

d∈{x,y}
{
λ||S(Ui+1)dh − od ||22 + η||(Ui+1)dh − ūd ||22

}
,

(25)

subject to the constraint set � � { h ≥ 0, ||h||1� 1} . In (25), (Ui+1)d denotes the convolu-
tional matrix corresponding to the image gradient (ui+1)d � ∇dui+1, and gd � ∇dg, ūd �
∇d ū. Obviously, both (24) and (25) can be solved in a similar spirit to the counterpart blind
deblurring problem. But due to the sampling operator S, ui+1,hi+1 cannot be calculated via
the FFT, and the conjugate gradient (CG) method is utilized instead which naturally makes
our blind SISR algorithm computationally expensive. Besides, to take into account large-
scale kernel estimation, the proposed approach is implemented in a multi-scale fashion, too.
With the final output blur kernel, the super-resolvedHR image can be generated by the simple
non-blind TV-based SR approach (Marquina and Osher 2008). This is because Efrat et al.
(Begin and Ferrie 2007) has concluded that an accurate reconstruction constraint (i.e., with
a precise kernel) combined with a simple gradient regularization achieves SR results almost
as good as those of state-of-the-art algorithms with sophisticated image priors.

We conduct a group of synthetic experiments using ten test images from the Berkeley
Segmentation Dataset, as shown in Fig. 10. Each image is blurred by a 19×19 Gaussian
kernel with standard deviation 2.5, 3 times down-sampled, and degraded by a white Gaussian
noise with noise level equal to 1. Wemake comparisons between our approach and the recent
method by Michaeli and Irani (2013). For fair comparison, the same non-blind SR method
(Marquina and Osher 2008) is utilized to produce the final super-resolved image for the two
comparedmethods. In the meanwhile, as estimating blur kernels the same kernel size 19×19
is set for the two methods. It should be also acknowledged that the authors of Michaeli and
Irani (2013) have kindly prepared all the estimated kernels for us and therefore the comparison
fairness can be guaranteed.
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Fig. 10 Test images from the Berkeley Segmentation Dataset for quantitative evaluation of nonparametric
blind SISR methods

Table 3 Image PSNR, SSIM, and kernel SSD corresponding to Michaeli and Irani (Michaeli and Irani 2013)
and the proposed approach

Image No. Image PSNR (dB) Image SSIM Kernel SSD

Michaeli and Irani
(2013)

Ours Michaeli and Irani
(2013)

Ours Michaeli and
Irani (2013)

Ours

(a) 22.7 25.3 0.54 0.63 0.0022 0.0007

(b) 30.4 31.8 0.81 0.82 0.0015 0.0009

(c) 23.5 24.4 0.65 0.68 0.0038 0.0009

(d) 25.5 31.8 0.77 0.88 0.0026 0.0002

(e) 21.7 24.5 0.64 0.72 0.0063 0.0002

(f) 26.3 28.0 0.72 0.76 0.0030 0.0006

(g) 22.1 24.0 0.57 0.66 0.0083 0.0002

(h) 24.4 25.6 0.61 0.66 0.0035 0.0002

(i) 24.0 26.4 0.61 0.69 0.0055 0.0002

(j) 30.4 30.8 0.74 0.75 0.0009 0.0004

The PSNR (peak signal to noise ratio) metric is used for quantitative comparison. Table 3
provides the PSNR of super-resolved images by different approaches. Observed from the
experimental results, it is clear that our method performs much better thanMichaeli and Irani
(2013) in all the ten images, showing the advantage and robustness of the newly advocated
image prior for blind SISR. Moreover, we include the image SSIM and kernel SSD corre-
sponding to the two methods in Table 3. Obviously, the proposed approach is demonstrated
outperform Michaeli and Irani (2013), too, in terms of both image SSIM and kernel SSD.
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Fig. 11 Three times super-resolved images for Fig. 6b, g, i. Left to right: non-blind ANR (Levin et al. 2011b)
with the low-res images, Michaeli and Irani (2013), and our proposed method

Note that the involved parameters are also fixed across all the experiments. Since the two
blind restoration problems in this paper are formulated and calculated very similarly, we may
also provide the parameter values for blind SISR without much confusion. Specifically, they
are set as η � 100, λ � 0.01, α0 � 0.25, α1 � 15, β0 � 0.25, β1 � 1.5, γ � 100, χ �
1e6, I � J � M � 10, cu � 2/3, ch � 4/5. Besides, in CG the error tolerance and the
maximum number of iterations are set respectively as 1e−5 and 15 for calculation of both
image and kernel. For visual comparison of Michaeli and Irani (2013) and the proposed
method, we take the images Fig. 10b, g, i for example and show the super-resolved images
in Fig. 11 accompanied by the blur kernels estimated by the two methods.

In Fig. 12, we conduct another synthetic blind SISR experiment in the scenario of motion
blur. The original high-resolution image and the ground truth blur kernel are downloaded from
the link: http://cg.postech.ac.kr/research/fast_motion_deblurring. Then, a low-resolution
image is generated by applying the motion blur kernel and two-times down-sampling. It
is clearly observed that (Michaeli and Irani 2013) fails to a great degree in this example,
i.e., the super-resolved image is too blurry to be visually acceptable. Comparatively, the pro-
posed approach performs well in recovering the ground truth kernel, which naturally leads
to a super-resolved image of higher quality.
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Fig. 12 Super-resolution with a synthetic LR image (Hollywood, the up-sampling factor is 2). Left to right,
top to bottom: HR image (ground truth blur kernel), non-blind ANR (Levin et al. 2011b), Michaeli and Irani
(2013), and our method

Moreover, we present three real-world nonparametric blind SISR experimental results in
Figs. 13, 14 and 15, where the LR images are downloaded from the Internet. The images in
Figs. 13 and 14 are ofmixture ofmotion andGaussian blur. It is seen that both ourmethod and
(Michaeli and Irani 2013) produce visually reasonable SR results in the two examples. While
as for Fig. 15, our method produces a visually more pleasant SR image because one may
obviously observe the ringing artifacts along the salient edges in the SR image corresponding
to Michaeli and Irani (2013).

6 Conclusions

This paper concentrates on the topic of single image blind restoration including both the
intensively stuided blind deconvolution and the largely ignored blind super-resolution. It
is empirically demonstrated that the two imaging tasks can be formulated in a common
regularization perspective while differing in how we could deal well with the problem of jag-
ging artifacts along the salient edges, about which our introduced convolutional consistency
constraint is proved a preliminary candidate. With this finding, single image blind restora-
tion amounts to a proper image prior for pursuing the salient edges as core clues to kernel
estimation. Inspired by the recent several efforts on unnatural image modeling for blind
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Fig. 13 Super-resolution with a realistic LR image (Crowd, the up-sampling factor is 2). Left to right, top to
bottom: LR image, non-blind ANR (Levin et al. 2011b), Michaeli and Irani (2013), and our method

Fig. 14 Super-resolution with a realistic LR image (Flower, the up-sampling factor is 3). Left to right: LR
image, non-blind ANR (Levin et al. 2011b), Michaeli and Irani (2013), and our proposed method

image deblurring, this paper proposes a simple, yet effective modification strategy to Bredies
et al.’s total generalized variation model (Bredies et al. 2010), which has been successfully
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Fig. 15 Super-resolution with a realistic LR image (Soldier, the up-sampling factor is 2). Left to right: LR
image, non-blind ANR (Levin et al. 2011b), Michaeli and Irani (2013), and our proposed method

harnessed for denoising and non-blind deconvolution and super-resolution. Specifically, a
new L0–L1-norm-based image regularization is introduced as an unnatural prior for blur ker-
nel estimation. To the best of our knowledge, ours has been the first paper touching the blind
deblurring task by use of total generalized variation in a critical perspective. With the new
image model, a maximum a posterior formulation is established for blind deconvolution as
well as blind super-resolution. The estimated kernels and final images in both tasks demon-
strate well the feasibility and effectiveness of our proposed approach, and also its advantage
over state-of-the-art methods in terms of estimation accuracy. Lastly, motivated by this paper,
we wish to establish a better bridge between blind deblurring and blind super-resolution in
the near future.
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