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Abstract For segmentingmedical imageswith abundant noise, blurry boundaries, and inten-
sity heterogeneities effectively, a hybrid active contour model that synthesizes the global
information and the local information is proposed. A novel global energy functional is con-
structed, together with an adaptive weight by the statistical information of image pixels on
the clustering idea. Minimizing this global energy functional in a variational level set formu-
lation will drive the curve to desirable boundaries. The local energy functional contains the
local threshold, which is used to correct the deviation of the level set function. Experiments
demonstrate that the proposed method can segment synthetic and medical images effectively,
and have a relatively higher performance compared to other representative methods.

Keywords Medical image segmentation · Active contour · Level set function · Global
information · Local information

1 Introduction

Intensity heterogeneities, noise, and weak boundaries often occur in medical images due to
various factors, such as imperfections of imaging devices and spatial variations in illumina-
tion, which brings a considerable challenge in image segmentation. In recent years, active
contour models have become very popular for image segmentation purpose (Wang et al.
2017; Ali et al. 2016; Zhang et al. 2016). The region-based active contour models (Chan and
Vese 2001; Lankton and Tannenbaum 2008; Li et al. 2008; Zhang and Zhang 2016; Liu et al.
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2015) combining the level set functions are, in general, less sensitive to the initial contour
curve placement and more robust to complex medical images. The basic idea is to minimize
a given energy functional by using the level set method (Li et al. 2013) in order to drive the
motion of evolving curves towards the boundaries of target objects.

Of the known region-based active contour models, the Chan-Vese (CV) model (Chan and
Vese 2001) has achieved good performance for many image segmentation tasks. However,
this model may fail to segment medical images with intensity heterogeneities due to the
mere use of global intensity averages. Zhang and Zhou (2008) propose an improved ordinary
differential equation (ODE) model based on the global fitting term of the CV model. The
model retains the advantages of the CV model. Taking into account the characteristics of the
ODE, both the computational complexity and the iteration time are reduced. Just like the CV
model, the model in Zhang and Zhou (2008) is unable to deal with intensity heterogeneities.

To overcome the above problems, the local region-based active contour models are pro-
posed. These models use the local information as constraints, which enable them to segment
medical images with intensity heterogeneities. Lankton and Tannenbaum (2008) and Li et al.
(2008) propose the classical local region-based active contour models by using local region-
based (LRB) fitting energy and the local binary fitting (LBF) energy, respectively. The LRB
model defines a local region, which results in a significant improvement in terms of accu-
racy for segmenting heterogeneous images. Because the local region is defined by the user,
the LRB model is highly susceptible of the local location compared to global methods. The
LBF model introduces a local binary fitting energy with a kernel function, which can seg-
ment images with heterogeneities well. But the convolution operations in the LBFmodel can
increase the computational complexity. The local active contour models are very sensitive to
image noise and weak boundaries, which is not suitable for medical images.

To combine the advantages of both global and local models while overcoming their short-
comings, Ali et al. (2016) propose a hybrid active contour model based on the multiplicative
and difference images. However, it is very important that the appropriate method to process
the segmented images is used before carrying out image segmentation. Mabood et al. (2015)
add an absolute median deviation to the segmentation model, which is more accurate and
efficient compared to the single model, but typically needs complicated estimation strategies.
Wang et al. (2017) propose a hybrid segmentation method by integrating two local active
contourmodels. The integratedmodel can be capable of segmenting synthetic and real images
effectively. However, due to the lack of the global information, some important image infor-
mation may be lost. In addition to all of the above, there exist more hybrid methods (Wang
et al. 2014; Wang and Liu 2013) by defining the energy functional with other information,
such as geometry information (Mylona et al. 2014), prior shape information (Gloger et al.
2017; Yang et al. 2014) and local patch (Wang et al. 2014). These methods can effectively
extract the desirable objects, especially for medical images (Jayadevappa et al. 2011; Li et al.
2013). Because of the additional information, the computational complexity of the methods
is increased.

In this study, a hybrid energy functional is constructed for medical image segmentation
by leveraging the strength of both the global and local models. First, based on the statistical
information of image pixels, we derive a clustering property in a neighborhood of each image
pixel adaptively (Patel et al. 2017), and define a global fitting energy functional. The local
energy functional is then integrated with respect to the neighborhood center to give a global
criterion of image segmentation. This criterion defines the local energy functional in terms
of the level set functions that correct the deviation of the actual boundaries and the evolving
curve. The method in this paper is validated using a number of synthetic and medical images.
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2 Background

2.1 Global active contour model

The CV model is a global segmentation method based on the assumption of image homo-
geneity. The input image I (x, y) is partitioned into two disjoint sub-regions (i.e. Cin and
Cout ) with an initial contour curve C . The energy functional is described as follows:

ECV � λ1

∫
Cin

∣∣I (x, y) − c+
∣∣2dxdy + λ2

∫
Cout

∣∣I (x, y) − c−∣∣2dxdy + μlength (C) (1)

where λ1, λ2 and μ are the weighting parameters for the first two intensity fitting terms and
the length penalty term length (C), respectively; c+ and c− are constants used to approximate
the average intensities for the regions Cin and Cout . By minimizing this energy functional
with respect to the level set function φ, the CV model is given as follows:

∂φ

∂t

CV

� δ(φ)

[
−λ1(I (x, y) − c+)2 + λ2(I (x, y) − c−)2 + μdiv

( ∇φ

|∇φ|
)]

(2)

Here, the evolution of the curve is given by the zero-level curve at time t ; c+ and c− are
computed using the formulations below:

⎧⎪⎨
⎪⎩

c+ �
∫

I (x,y)H(φ(x,y))dxdy∫
H(φ(x,y))dxdy

c− �
∫

I (x,y)(1−H(φ(x,y)))dxdy∫
(1−H(φ(x,y)))dxdy

(3)

where H (φ) � 1
2

[
1 + 2

π
arctan

(
φ
ε

)]
is the regularized Heaviside function with a small

positive constant ε [in this paper, we set ε � 1 as proposed in Chan and Vese (2001)], and its
derivative is the Dirac function δ(φ) � H ′(φ) � 1

π
ε

ε2+φ2 . div (·) and ∇ are the divergence
and gradient operator, respectively.

According to the difference of two squares, Eq. (2) can then be expressed as (let λ1 �
λ2 � 1):

∂φ

∂t

CV

� δ (φ)

[
2
(
c+ − c−) (I − c+ + c−

2

)
+ μdiv

( ∇φ

|∇φ|
)]

(4)

In the process of evolution, the threshold c++c−
2 determines the change of the level set

function φ at each pixel point. Like the k-Means procedure for two clusters, c+ and c−
are two centers of mass, which are used to fit the image intensities in the regions Cin and
Cout , respectively. Such global fitting can drive the contour curve to the desired boundaries
when image intensities in either Cin or Cout are homogeneous, as shown in the first row of
Fig. 1; on the contrary, c+ may be approximately equal to c− when image intensities are
heterogeneous as shown in the second row of Fig. 1, thus the global CV model may get
inadequate segmentation.
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Fig. 1 Synthetic images with noise, blurry boundaries (the first row) and heterogeneous intensity (the second
row). a Initial contours. bGlobal region-based segmentation results. c Local region-based segmentation results

2.2 Local active contour model

To overcome the drawbacks of the global active contour models, the LRB model is pro-

posed by introducing a local region �: � (x, y) �
{
1, ‖x − y‖ < r
0, otherwise

, where r is a radius

parameter. The energy functional of the LRB model is expressed as:

(5)

E L RB � λ1

∫
Cin

� (x, y)
∣∣I (x, y) − m+

∣∣2 dxdy

+ λ2

∫
Cout

� (x, y)
∣∣I (x, y) − m−∣∣2 dxdy + μlength (C)

where m+ and m− are two smooth functions that approximate the local image intensities
inside and outside the contour, respectively:⎧⎪⎨

⎪⎩
m+ � �∗[H(φ(x,y))I (x,y)]

�∗H(φ(x,y))

m− � �∗[(1−H(φ(x,y)))I (x,y)]
�∗(1−H(φ(x,y)))

(6)

The other symbols are the same as those used in the CV model. Similarly, the LBF model
introduces a binary fitting energy in a local region specified by a Gaussian kernel K and the
smooth functions are defined as⎧⎪⎨

⎪⎩
m+

L B F � K∗[H (φ(x,y))I (x,y)]
K∗H (φ(x,y))

m−
L B F � K∗[(1−H (φ(x,y)))I (x,y)]

K∗(1−H (φ(x,y)))

(7)
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Similar to the CV model (let λ1 � λ2 � 1), the evolution equation of the local active
contour model can be obtained:

∂φ

∂t

Local

� δ(φ)

[
2(m+ − m−)

(
I − m+ + m−

2

)
+ μdiv

( ∇φ

|∇φ|
)]

(8)

Here, m+ and m− are two local mass centers. m++m−
2 is the local threshold. The local

region model can segment images with the heterogeneous regions effectively by introducing
local information. When images contain blurry boundaries or noise, the local model can
easily fall into local minima and get inaccurate results, as shown in the first row of Fig. 1.

2.3 Other hybrid active contour models

To accurately segment medical images, Wang et al. (2017) construct a novel local hybrid
image fitting (LHIF) energy by combining the LBF model and the local image fitting (LIF)
model, which is defined as follows:

∂φ

∂t

G&L

� δ (φ) (e1 + e2) (9)

where

⎧⎨
⎩

e1 � (
m+

L B F − m−
L B F

) ( I (x,y)

I L F I (x,y)
− 1 − log I L F I (x,y)

I (x,y)

)

e2 �
((

m+
L B F

)2 − (
m−

L B F

)2) (
I 2(x,y)

I SF I (x,y)
− 1 − log I SF I (x,y)

I 2(x,y)

) (10)

and

{
I L F I (x, y) � m+

L B F ∗ H (φ(x, y)) + m−
L B F ∗ H (φ(x, y))

I SF I (x, y) � (
m+

L B F

)2 ∗ H (φ(x, y)) +
(
m−

L B F

)2 ∗ H (φ(x, y))
. (11)

Themethod inWang et al. (2017) takes advantage of two local fitted images I L F I and I SF I

quantified the image differences between the original image I (x, y) and its two approximated
smooth functions, i.e., I L F I and I SF I in terms of Kullback–Leibler divergence. The idea
is similar to the measure of K-means classification, which can enhance the accuracy of
segmentation. Besides, in order to make full use of the characteristics of medical images,
Zhao et al. (2015) use a scalable local regional information (SLRI) m+ and m− for medical
images segmentation. The method in Zhao et al. (2015) can avoid being confined locally in
a homogeneous region by adopting the scalable window.

3 Proposed model

3.1 Introduction of the proposed model

To obtain reasonable segmentation results for heterogeneous medical images, a hybrid active
contour model based on global and local information is proposed. According to Eqs. (4) and
(7) introduced in Section II, the form of the two energy functional is approximate, which
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Fig. 2 The weighted Gaussian distribution of the distance between pixels and the evolving curve

means that the two models can be combined together. In order to make full use of image
information, the combined energy functional is expressed as:

∂φ

∂t
� δ (φ)

⎡
⎢⎢⎢⎣2

(
ω+c+ − ω−c−)
︸ ︷︷ ︸

E1

(
I − m+ + m−

2

)
︸ ︷︷ ︸

E2

+μdiv

( ∇φ

|∇φ|
)
⎤
⎥⎥⎥⎦ (12)

(1) The global term E1 is proposed by combining the global information c � {
c+, c−}with

the weight ω � {
ω+, ω−}. ω is constructed as follows:

The traditional energy functional equates the importance of the pixels around the evolving
curve and other location. In view of the statistical property of each pixel in the segmented
images, we assume that the pixels on two sides of the evolving curve are the most important
and have the highest weight. The weights decrease gradually with the increase of the distance
from the evolving curve, which meets the characteristics of Gaussian distribution (as shown
in the blue curve of Fig. 2). Therefore, we use the discrete Gauss function to represent
the weights of image pixels. Considering that the area distribution is 0.99 in the range of
[−2.58,+2.58] under the standard normal distribution (Hald 2015), the weights from near
to distant are represented as follows:

ω =
{
ω + ;ω−} �

⎧⎨
⎩

�
(

n × 2.58
n

)
,�

(
(n − 1) × 2.58

n

)
, . . . , �

(
2.58

n

)
;

�
(
2.58

n

)
,�

(
2 × 2.58

n

)
, . . . , �

(
n × 2.58

n

)
⎫⎬
⎭ (13)

where Θ (x) � 1√
2π

exp
(−x2

2

)
, x and n represent a vector multiplication and the position

of each pixel, respectively.
The global term E1 based on the weight ω can represent more information of the pixels

in the segmented image adaptively, which can deal with the heterogeneous regions more
effectively. Besides, it gives weights to two clustering centers c � {

ci
}

(i ∈ {±}). So the
evolving curve at different regions can have different evolving velocities.

(2) The local term E2 contains the local threshold m++m−
2 , which is used to correct the

deviation of evolution (the level set function). The term E2 can differentiate between
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Fig. 3 The evolving curve φ in different cases

Table 1 The corresponding
energy functional in Fig. 3

Major role No.

a b c d e f g

E1
√ √ √ √ √ √ √

E2

Shrinking
force

–
√

– –
√

– –

Expanding
force

– –
√

– – – –

E1 and E2 –
√ √

–
√

– –

the original image I and its approximated local threshold, which has the advantages of
the ODE. Besides, there is no need to satisfy a specific difference rule, and the balance
parameters between the global and local terms need not be adjusted.

According to the evolution law of the level set function, the curve evolves along the normal
when the local term E2 ≤ 0; Conversely, it evolves along the inverse normal. So we can get
the conclusion that the evolving curve is the shrinking force and the expanding one when
the evolving curve is outside and inside the target, respectively. The evolution curves are
represented at all possible positions in Fig. 3, where the big and small circles represent the
scalable global and local curves, respectively. The major role of the corresponding energy
functional {E1, E2} is described in Table 1. Here, ‘

√
’ and ‘–’ represent equation hold or

not.
For instance, if the global and local curves are both outside the object (case ‘a’ in Fig. 3),

then c+ �� c−, m+ ≈ m− and E1 plays a major role. If the curves are neither inside nor out
(case ‘e’ in Fig. 3), then c+ �� c−, m+ �� m− and {E1, E2} both play roles. Other cases can
also be analyzed similarly. The energy functional E1 or E2 can play a greater role when the
differences between the average intensities c+

(
m+

)
and c− (

m−) are larger. As long as the
adaptive global energy functional E1 provides consistent information with the local energy
functional E2, the level set function φ will change with the evolution of the Eq. (12).
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3.2 Feasibility analysis of the proposed model

Theorem 1 The proposed combined energy functional (11) is uniformly bounded in the
Sobolev space (Nezza et al. 2011) W lp (Ω) (Sobolev space is a vector space of functions
equipped with a norm that is a combination of l p-norms of the function itself and its deriva-
tives up to a given order).

LetΩ denote a bounded open subset in space Rn , and℘ be the locally integrable function

in Sobolev space W lp (Ω). Theoretically,Ψ � div
( ∇φ

|∇φ|
)
is uniformly bounded in the space

W lp (Ω). We set the model (11) as:

℘ � sup

{∫
Ω

(E1 (φ) E2 (φ) + Ψ ) · ∇φdx |φ � (φ1, φ2, . . . , φN ) ∈ W 01 (φ)N , |φ|W∞(Ω)< 1

}

(14)

where dx is the Lebesgue measure x � sup{x1, x2}, ∇φ �
N∑

i�1

∂φi
∂xi

.

Let ζ�E1E2 ∈ W (Ω),∇ζ ∈ W 1 (Ω), then∫
Ω

(ζ+Ψ )∇φdx �
∫

Ω

(∇ (ζ+Ψ ))φdx, (15)

and the bounded variation space BV (Ω) is defined as:

BV (Ω)� {
φ| φ ∈ W 1 (Ω) or ℘ (E1E2 + Ψ ) < ∞}

. (16)

From the characteristics of the space BV, we can get that if φ ∈ BV (Ω), then
℘ (E1E2 + Ψ ) � ∫ +∞

−∞ W 1 (∂Ωσ )dσ , where ∂Ωσ denotes the boundary of the level set
function φ, and W 1 (∂Ωσ ) is the length of ∂Ωσ .

Therefore, we get that the proposed model (12) is uniformly bounded. �

Theorem 2 The convergence value of the proposed combined energy functional (12) is the
minimum.

Proof Let image region Ω be in the Sobolev space W lp (Ω). From Theorem 1, we can get
that there exists a minimal sequence {In} ∈ W lp (Ω) , n ∈ Z .

By the properties of the Sobolev space, e.g., the uniform boundedness and the lower
semicontinuous of the norm,we can obtain lim

n→∞ ℘(In) � inf
I→W 2(Ω)

℘(I ), and E2 is uniformly

bounded in the BV space: E2 �
(

In − m++m−
2

)
≤ M1. Consider that the weight ω ∈ [0, 1]

and the average intensities c � {
ci
}

(i ∈ {±}) approximate to two constants, we get that

E1 � ω+c+ − ω−c− ≤ M2 must be bounded. In addition, |∇ϕ| ∈
[
0, 255

√
2
]
and μ ∈

[−1, 1], so we can obtain Ψ < M3, where Mi , i � 1, . . . , 3 are constants. In addition, BV
space is compact, so ∇φn is convergent to ∇φ.

By Fatou’s lemma (Feinberg et al. 2014), we can get: ℘(I ) ≤ lim
n→∞ inf ℘(In), and the

proposed model (12) convergences and there exists a minimum. �

3.3 Implementation of the proposed model

The implementation of the proposed method is as follows:

Step 1 Initialize the level set function φ(x, y) � 0, and the input image I ;
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Step 2 Calculate the weight information ω � {
ω+, ω−} using Eq. (13);

Step 3 Calculate the global information c � {
c+, c−} and the local information m �{

m+, m−} using Eqs. (3) and (6);
Step 4 Calculate the global term E1 and the local term E2 using Eq. (12);
Step 5 Use the finite difference method to update the level set function ϕ: φt+1 �

φt + τ
(
δ(φ)

[
2E1E2 + μdiv

( ∇φ
|∇φ|

)])
. This linear system is solved by an iterative

method, where τ is iteration step (we set τ � 0.1 in this paper).
Step 6 Check if the energy values during the evolution process remain basically the same

or in a smaller range. If yes, stop the iteration; otherwise, return to Step 2.

4 Experiments

To verify the performance of the proposed model, we apply it to segment both synthetic and
medical images. The tests are conducted in MATLAB R2016b programming environment
on a PC with 3.50 GHz Intel (R) Core (TM) system and 12.0 GB RAM.

4.1 Segmentation of synthetic and medical images

Figure 4 shows segmentation results of our method for both synthetic and medical images
with heterogeneous intensity and complex background. The curve evolutions are depicted
by showing the initial contours (in the left column, which is achieved with a single closed
rectangle by hand), the intermediate contours (in the middle two columns) and the final
contours (in the right column).

It can be seen that the proposed method is capable of effectively segmenting images from
different initial curves. The first integral term E1 tends to segment the objects with different
image characteristics including noise, weak boundaries, and intensity homogeneity; while
the second term E2 highlights to some extent the differences of the evolving curve in local
regions, consequentlymaking it easy to extract the desired regions. Due to the existence of the
adaptive global information, our method can effectively emphasize the intensity differences
between foreground and background. Further, the constrained local information can correct
the deviation of the process of evolution.

4.2 Parameters analysis and sensitivity to initialization

In the experimental process, we note that it is difficult to achieve an optimal local region
scale �. A larger or a smaller radius will result in incorrect results. The initializations are
described in white solid line in the first column of Fig. 5. A more global final solution can
be gotten with a larger radius (� � 70) in the second column of Fig. 5. Similarly, very small
objects are captured with a small localization radius (� � 30) as shown in the third column
of Fig. 5. In addition, energy statistics using different local radii is shown in the last column
of Fig. 5. It is advisable that the segmentation results are accurate when the local region scale
� is set about 1

10 of the average image length, as shown the fourth column of Fig. 5.
In essence, if the radius� grows larger, our method utilizes mainly the global statistics. In

this case, the accurate performance of the model becomes weaker. On the other hand, if the
proposed energy is evaluated with a very small radius, the statistics of the pixels are adjacent
to a smaller local region, and the local performance loses some significance.
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Initialization iterations: 200 
time: 6.587324s

iterations: 400 
time: 10.726166s

iterations: 600 
time: 15.167282s

Ground Truth

Initialization iteration: 100
time: 5.004418s

iteration: 200
time: 7.998299s

iteration: 250
time: 10.299015s

Ground Truth

Initialization iteration: 500 
time: 9.198621s

iteration: 1000 
time: 17.201586s

iteration: 1500 
time: 27.787456s

Ground Truth

Initialization iteration:200 
time: 11.265025s

iteration:400
time: 19.235033s

iteration:500
time: 35.153561s

Ground Truth

Initialization iteration:50 
time: 3.855193s

iteration:100 
time: 6.821561s

iteration:200 
time: 19.857284s

Ground Truth

Initialization iteration:10 
time: 2.453871 s

iteration:30 
time: 3.195417 s

iteration:60 
time: 4.376243 s

Ground Truth

Fig. 4 The segmentation results of the proposed model for both synthetic and medical images. Row 1 and row
2: synthetic images. Row 3–6: medical images
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Fig. 5 The segmentation results by different local region scales �. Column 1: initializations; columns 2–4:
segmentation results based on large, medium and small local radii, respectively. Column 5: energy statistics
using different local radii
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Fig. 6 The segmentation results based on different initial contour curves. Column 1 and 2: different initial
rectangle contours; column 3: the final results. Column 4: the estimated level set functions

Further, to test the proposed method in terms of sensitivity to initial curve placements, we
keep all the parameters same in Fig. 6 with different initial curves. The results demonstrate
that the proposed method has nearly the same results for different initial curves, which means
that our method is insensitive to initial curve placements.

4.3 Comparative results

To show the performance of the proposed method and the improvements over the original
global and local models, we compare the proposed method with the global CV model, the
local LRBmodel, and the hybrid fitting LHIF (Wang et al. 2017) and SLRI (Zhao et al. 2015)
models. Segmentation results are presented for different types of images in Fig. 7 (the same
initial evolving curve and parameters are used in different methods). The second row shows
that segmentation results for the global CV model cannot completely segment images with
weak boundaries. The LRB model in the third row has an adequate power of segmenting the
desirable objects but cannot extract target with noise and weak boundaries. In addition, the
LRB model is more sensitive to initial contour throughout the experiment, and the contour
can easily fall into the local minimum. The fourth and fifth rows show that the adaptive
fitting LHIF and SLRI models are not a satisfactory segmentation model for images in some
cases. Compared with the LHIF and SLRI models, our method can achieve satisfactory
segmentation results at a faster speed. This is due to that our method introduces both the
adaptive global term and local correction term. The results demonstrate the performance of
our method in handling noise, weak boundaries, and intensity heterogeneities under complex
image background.
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Fig. 7 Comparisons of the segmentation results on six images in different columns. Row 1: initialization;
rows 2–6: results of the CV, the LRB, the LHIF, the SLRI model and the proposed model, respectively; row
7: ground truths

In addition, the performance of these models are quantitatively assessed by the Error
Ratio (ER) (Fang et al. 2017) defined as: E R � (F P + F N )/N × 100%, where FP and
FN are the number of pixels incorrectly determined and missed out, respectively. N is the
total number of the pixels counted in the ground truths. Note that the ground truths of the
synthetic andmedical images aremanually created and constructed by the expert fromDalian
Medical University, respectively. The lower of ER value is, the more accurate results are. The
quantitative assessments as shown in Fig. 8 demonstrate that our model has the lowest values
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Fig. 8 ER values of different methods in Fig. 7

of ER, the CV model and the LRB model have the largest values due to the absence of local
and global information, respectively. As for the LHIF and SLRI models, they are based on
the global and local model, but the importance of each pixel is same. The lowest values of ER
obtained by the proposed method demonstrate that the segmentation performance is better
than other methods.

The computational cost of the images in Fig. 7 is analyzed in Table 2. Due to the existence
of the local information, our method needs more segmentation time than the global CV
model. Compared with other methods, the proposed model need relatively less time to drive
the contours to desirable boundaries.

5 Conclusions

Medical images may suffer from limited segmentation performances due to the complex
background such as intensity heterogeneities, noise, and weak boundaries. To solve these
problems, a hybrid image segmentation model is proposed in this paper. The proposed model
combines the adaptive global energy and the corrected local energy, which uses the level
set function to guide the evolving curve towards the desired boundaries. The global term
can be used for segmenting complex images; while the local one is capable of correcting
the deviation of the level set function. Comparisons with several representative methods on
synthetic and medical images demonstrate the effectiveness of the proposed method. Our
method also enhances the contour’s convergence speed and reduces the computation time.
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Table 2 Iterations (Iter.) and CPU time (in s) of the images in Fig. 7

Methods a b c d e f
79*75 128*128 103*131 226*204 251*205 275*208
Iter.
Time

Iter.
Time

Iter.
Time

Iter.
Time

Iter.
Time

Iter.
Time

CV 80
0.752163

200
1.21069

300
3.06922

500
5.54376

600
6.79362

400
3.96481

LRB 200
35.7956

500
107.3694

500
103.6981

800
124.6823

1000
186.3642

700
96.0653

LHIF 500
30.5946

800
43.0964

600
36.5129

1000
50.2753

1000
65.3630

800
36.0687

SLRI 400
38.0721

800
52.6327

800
61.3891

800
103.6591

1000
97.5962

700
82.5697

This paper 200
22.9624

300
30.6548

500
63.1287

500
86.3492

700
103.6552

600
93.6489
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