
Multidim Syst Sign Process (2019) 30:543–560
https://doi.org/10.1007/s11045-018-0569-1

Asynchronous filtering for 2-D switched systems with
missing measurements

Shuang Shi1 · Yujunrong Ma1 · Shunqing Ren2

Received: 22 August 2017 / Revised: 21 March 2018 / Accepted: 26 March 2018 /
Published online: 29 March 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract This work is concerned with H∞ filter design with missing measurements for
a class of two-dimensional (2-D) switched systems represented by Fornasini–Marchesini
local state-space model. The switching signal of the switched filters involve time delays,
which result in the asynchronism between the filter and the system switching. The issues
of asymptotic mean-square stability and �2-gain analysis for the 2-D switched systems are
addressed firstly, based on which mode-dependent filters are designed with mode-dependent
average dwell time scheme. Finally, two examples are given to demonstrate the validity of
the proposed technique.

Keywords Asynchronous filtering · H∞ filtering · Mode-dependent average dwell time ·
Missing measurements · 2-D switched system

1 Introduction

In the past decade, two-dimensional (2-D) systems have received considerable attention due
to both their theoretical significance and wide applications (Ahn and Kar 2015; Kaczorek
1985; Shyu et al. 2014; Xu et al. 2010). In general, 2-D systems can be modeled by the
Rosser model, Fornasini–Marchesini (FM) model, and Attasi model (Fornasini and March-
esini 2017; Roesser 2012). Especially, the Fornasini–Marchesini local state-space (FMLSS)
model includes the Roesser model and the Attasi model as a special case (Kaczorek 1985;
Li et al. 2012).

Meanwhile, quantities of practical systems are subject to abrupt changes, and the switched
systems provide a unified framework for characterizing these changes (Fei et al. 2017;
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Gao et al. 2011; Li et al. 2016; Zhao et al. 2012). The switching features may also
include in 2-D systems. For example, a 2-D switched representation is needed when
modeling the thermal processes in chemical reactors, heat exchangers, and pipe furnaces
with multiple modes (Lo et al. 2008; Wu et al. 2015). In general, 2-D switched systems
can also be formulated by Roesser model and FM model (Duan and Xiang 2013; Guan
et al. 2017). So far, a number of meaningful results for 2-D switched systems have been
reported in the literature (Benzaouia et al. 2011; Duan and Xiang 2013; Ghous et al.
2015; Shi et al. 2018; Wu et al. 2015; Xiang and Huang 2013). To mention a few, sta-
bility analysis and stabilization problems are discussed on 2-D discrete switched systems
represented by FMLSS model in Fei et al. (2017). The stabilization problem formulated
by Roesser type is investigated in Xiang and Huang (2013). In Shi et al. (2018), by
designing a set of switching signals, 2-D switched systems are stabilized without any con-
troller.

It is well known that filtering problems play significant roles in signal processing. Filter-
ing for 2-D systems have been widely reported (Ahn 2014; Ahn et al. 2017, 2015; Boukili
et al. 2016; Du et al. 2000). In Boukili et al. (2016), Du et al. (2000), H∞ filter design is
addressed for 2-D systems represented by Roesser and FM types, respectively. However,
there are few results reported about filtering for 2-D switched systems. When consider-
ing filtering problems, one popular assumption is that the measurement always contain
consecutive usable signals (Chen et al. 2015; Guan et al. 2016). However, the signals are
vulnerable to be corrupted by the noise in practical applications, which results in the incon-
secutive observations, namely, the system may have missing measurements (Yang et al.
2014; Zhang et al. 2009). Various factors may lead to inconsecutive measurements such
as the high maneuverability of tracked target, intermittent sensor failures, accidental loss
of some collected data and so on Sinopoli et al. (2004). One of the common approach to
describe the missing measurement phenomenon is using the binary switching sequence.
This sequence is specified by a conditional probability distribution which can be described
by a Bernoulli distributed white sequence taking on values of 0 and 1. In Zhang et al.
(2009), such a model is applied to design robust H∞ filters for stochastic time-delay sys-
tems.

On the other hand, it takes time to identify the current mode of the system and apply
the matched filter for switched systems, which will result in the asynchronous phenomenon
between the system mode and the filter (Lian et al. 2013; Mahmoud and Shi 2012; Wang
et al. 2013). In Zhang et al. (2011), asynchronous filtering for discrete-time switched sys-
tems is investigated under average dwell time (ADT) scheme. However, to the best of
the authors’ knowledge, the asynchronous filtering is still unsolved for 2-D switched sys-
tems.

In this paper, we concentrate on the asynchronous H∞ filtering with missing measure-
ments for 2-D switched systems represented by FMLSS model. Mode-dependent average
dwell time (MDADT) switching is adopted, which is more general compared with dwell
time (DT) and ADT switching (Zhao et al. 2012). The remainder of this paper is organized as
follows. In Sect. 2, the model of 2-D switched systems and missing measurements is estab-
lished, and some definitions are provided. In Sect. 3, sufficient conditions to guarantee the
stability and �2-gain analysis are derived for 2-D switched systems. Then, the filter design is
discussed in Sect. 4. In Sect. 5, two examples are presented to illustrate the effectiveness of
the developed method. Finally, we conclude the paper in Sect. 6.

Notation The notations used in this paper are fairly standard. The superscript “T ” stands
for matrix transposition. Rn denotes the n-dimensional Euclidean space, and Z

+ represents
the set of nonnegative integers. Prob{·} indicates the occurrence probability of the event “·”.
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E{x} stands for the expectation of x . In addition, in symmetric block matrices or long matrix
expressions, we use a “∗” as an ellipsis for the terms that are introduced by symmetry and
diag{· · · } stands for a block-diagonal matrix. ‖·‖ refers to the Euclidean vector norm. I and
0 represent identify matrix and zero matrix with appropriate dimensions, respectively. The
notation P > 0 means that P is real symmetric and positive definite. λmin{P} and λmax{P}
denote the minimum and maximum eigenvalues of matrix P , respectively. The �2 norm of a

2-D signal ω(i, j) is defined by ‖ω(·, ·)‖2 =
√∑∞

i=0
∑∞

j=0 ωT (i, j)ω(i, j). The set of all

vector functions such that ‖ω(·, ·)‖22 < ∞ is denoted by �2{[0,∞), [0,∞)}.

2 Problem formulation and preliminaries

Consider a class of 2-D switched discrete-time systems given by

x(i + 1, j + 1) = A1σ(i, j+1)x(i, j + 1) + A2σ(i+1, j)x(i + 1, j)

+ B1σ(i, j+1)ω(i, j + 1) + B2σ(i+1, j)ω(i + 1, j), (1)

z(i, j) = Cσ(i, j)x(i, j) + Dσ(i, j)ω(i, j), (2)

where (i, j) ∈ Z
+ × Z

+, x(i, j) ∈ R
n is the state vector of the system, z(i, j) ∈ R

p is
the objective signal to be estimated, and ω(i, j) ∈ R

r is the exogenous disturbance input
which belongs to �2{[0,∞), [0,∞)}. σ(i, j) : (Z+,Z+) → M is a switching signal, which
takes its values in the finite setM � {1, 2, . . . , M}with M being the number of subsystems.
A1p , A2p , B1p , B2p , C p and Dp are constant real matrices with appropriate dimensions for
σ(i, j) = p ∈ M .

The measurements, which may contain missing data, can be described by

y(i, j) = ρ(i, j)Cyσ(i, j)x(i, j) + Dyσ(i, j)ω(i, j), (3)

where y(i, j) ∈ R
q is the measured output vector, Cyp and Dyp are constant real matrices

with appropriate dimensions for p ∈ M , the stochastic variable ρ(i, j) ∈ R is a Bernoulli
distributed white sequence taking the value 0 and 1 with

Prob {ρ(i, j) = 1} = E {ρ(i, j)} := η,

Prob {ρ(i, j) = 0} = 1 − E {ρ(i, j)} := 1 − η,

and 0 < η < 1 is a known scalar.

Assumption 1 For the system (1), the initial condition is satisfied

x(0, j) = v j , ∀0 ≤ j ≤ z2,

x(i, 0) = wi , ∀0 ≤ i ≤ z1,

v0 = w0, i = j = 0,

x(0, j) = 0, ∀ j > z2,

x(i, 0) = 0, ∀i > z1,

where z1 and z2 are positive integers, v j and wi are given vectors.

Assumption 2 The switching signal is assumed to be only dependent upon i + j (Duan and
Xiang 2014; Wu et al. 2015).
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According to Assumption 2, the switching signal can be rewritten as σ(κ) : Z+ → M .
The switching sequence can be described as (κ0, κ1, . . . , κl , κl+1, . . .) with l = 0, 1, 2, . . .,
κl denotes the l-th switching instant. Meanwhile, when σ(κl) = p ∈ M , the p-th subsystem
is active during [κl , κl+1).

We are interested in designing a set of filter for the 2-D switched system (1)–(2) described
by

x̂(i + 1, j + 1) = G1σ(κ+1−τ(κ+1)) x̂(i, j + 1) + G2σ(κ+1−τ(κ+1)) x̂(i + 1, j)

+ K1σ(κ+1−τ(κ+1))[y(i, j + 1) − ηCyσ(κ+1−τ(κ+1)) x̂(i, j + 1)]
+ K2σ(κ+1−τ(κ+1))[y(i + 1, j) − ηCyσ(κ+1−τ(κ+1)) x̂(i + 1, j)], (4)

ẑ(i, j) = Lσ(κ−τ(κ)) x̂(i, j), (5)

where x̂(i, j) and ẑ(i, j) are the estimate for x(i, j) and z(i, j), respectively, for σ(κ −
τ(κ)) = p ∈ M , G1p , G2p , K1p , K2p and L p are filter parameters to be determined. τ(κ)

is the uncertain switching delay satisfying 0 < τ(κ) ≤ τmax. Without loss of generality, we
assume that the maximum switching delay τmax is a known priori, and τmax < κl+1 − κl ,
l = 1, 2, . . ..

Assumption 3 Consider the switching occurs at κl , l = 1, 2, . . .. Since the delay considered
in this paper is only related to the switching, we can assume that τ(κ) = τ(κl) for ∀κ ∈
[κl , κl+1).

Here, we consider σ(κl) = p, σ(κl − 1) = q , (p, q) ∈ M × M , p 	= q . When
κ ∈ [κl , κl + τ(κl)), the q-th subsystem has switched to the p-th subsystem, but the q-th
filter is still active because it takes time to identify the system modes and apply the matched
filter.

Combing (1)–(3) and (4)–(5), ∀(p, q) ∈ M × M , p 	= q , we obtain the augmented
filtering error system

ξ(i + 1, j + 1) = A1pξ(i, j + 1) + A2pξ(i + 1, j)

+ (ρ(i, j + 1) − η)Aη1pξ(i, j + 1) + (ρ(i + 1, j) − η)Aη2pξ(i + 1, j)

+ B1pω(i, j + 1) + B2pω(i + 1, j), (6)

e(i, j) = Cpξ(i, j) + Dpω(i, j), (7)

where ξ(i, j) = [
xT (i, j) x̂ T (i, j)

]T
, e(i, j) = z(i, j) − ẑ(i, j), and when κ ∈

[κl , κl + τ(κl)),

A1p = Ã1p =
[

A1p 0
ηK1qCyp G1q − ηK1qCyp

]
,Aη1p = Ãη1p =

[
0 0

K1qCyp 0

]
,

A2p = Ã2p =
[

A2p 0
ηK2qCyp G2q − ηK2qCyp

]
,Aη2p = Ãη2p =

[
0 0

K2qCyp 0

]
,

B1p = B̃1p =
[

B1p

K1q Dyp

]
,B2p = B̃2p =

[
B2p

K2q Dyp

]
,

Cp = C̃ p = [
C p −Lq

]
,Dp = D̃p = Dp,
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when κ ∈ [
κl + τ(κl), κl+1),

A1p = Ā1p =
[

A1p 0
ηK1pCyp G1p − ηK1pCyp

]
,Aη1p = Āη1p =

[
0 0

K1pCyp 0

]
,

A2p = Ā2p =
[

A2p 0
ηK2pCyp G2p − ηK2pCyp

]
,Aη2p = Āη2p =

[
0 0

K2pCyp 0

]
,

B1p = B̄1p =
[

B1p

K1p Dyp

]
,B2p = B̄2p =

[
B2p

K2p Dyp

]
,

Cp = C̄ p = [
C p −L p

]
,Dp = D̄p = Dp.

Here, we present the following definitions for further development.

Definition 1 Fei et al. (2017) For any D ≥ r and switching signal σ , let Nσ p(r, D) denote the
switching numbers of the p-th subsystem activated during the interval [r, D] and Hp(r, D)

denote the total running time of the p-th subsystem in [r, D], p ∈ M . We say that σ has a
mode-dependent average dwell time τap if there exist positive numbers N0p (we call N0p the
mode-dependent chatter bounds here) and τap such that

Nσ p(r, D) ≤ N0p + Hp(r, D)

τap
.

Definition 2 Duan and Xiang (2014) The 2-D switched system (1) with ω(i, j) ≡ 0 is said
to be asymptotically mean-square stable under the switching signal σ(i, j), if for a given
r ≥ 0, there exist ς > 0 and 0 < ε < 1, such that the solution x(i, j) satisfies

E

⎧
⎨
⎩

∑
i+ j=D

‖x(i, j)‖2
⎫
⎬
⎭ ≤ ςεD−r

E

⎧
⎨
⎩

∑
i+ j=r

‖x(i, j)‖2r

⎫
⎬
⎭ ,

for all D ≥ r , where ‖x(i, j)‖r = sup {‖x(i, j)‖ : i + j = r, i ≤ z1, j ≤ z2}.
Assumption 4 The 2-D switched system (1) is asymptotically mean-square stable.

Remark 1 To guarantee the asymptotic mean-square stability for the filtering error system
(6)–(7), the prerequisite is that the original system (1) to be estimated, which exists no control,
has to satisfy Assumption 4.

Definition 3 Duan et al. (2013) For a given scalar 0 < α < 1, the 2-D switched system
(1)–(2) is said to be with a weighted H∞ disturbance attenuation γ under switching signal
σ if it satisfies the following conditions:

1. System (1) with ω(i, j) ≡ 0 is asymptotically mean-square stable;
2. Under zero boundary condition, it holds that

E

⎧
⎨
⎩

∞∑
i=0

∞∑
j=0

(αi+ j ‖z̄‖22)
⎫
⎬
⎭ < γ 2

E

⎧
⎨
⎩

∞∑
i=0

∞∑
j=0

‖ω̄‖22

⎫
⎬
⎭ ,

for all 0 	= ω ∈ �2 {[0,∞), [0,∞)} , where the �2-norm of 2-D discrete signal z(i, j)
and ω(i, j) are defined as

‖z̄‖22 =‖z(i + 1, j)‖22 + ‖z(i, j + 1)‖22 ,

‖ω̄‖22 =‖ω(i + 1, j)‖22 + ‖ω(i, j + 1)‖22 .
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3 Stability and �2-gain analysis

In this section, an improved approach will be developed to solve the stability and �2-gain
analysis for (6)–(7). The switching signal is with the form of MDADT, and the asynchronous
switching is taken into consideration.

Lemma 1 Consider the 2-D switched system (6)–(7). For any (p, q) ∈ M ×M , p 	= q, let
0 < αp < 1, βp > 0 and μp > 1 be given constants, if there exist matrices Pp > 0, Pq > 0,
Q p > 0, Qq > 0, and a scalar γ > 0, such that

Φ̄ =

⎡
⎢⎢⎣

Φ̄11 Φ̄12 Φ̄13 Φ̄14

∗ Φ̄22 Φ̄23 Φ̄24

∗ ∗ Φ̄33 Φ̄34

∗ ∗ ∗ Φ̄44

⎤
⎥⎥⎦ < 0, (8)

Φ̃ =

⎡
⎢⎢⎣

Φ̃11 Φ̃12 Φ̃13 Φ̃14

∗ Φ̃22 Φ̃23 Φ̃24

∗ ∗ Φ̃33 Φ̃34

∗ ∗ ∗ Φ̃44

⎤
⎥⎥⎦ < 0, (9)

Pq ≤ μp Pp, (10)

Qq ≤ μp Q p, (11)

where ᾱp = 1 − αp, β̄p = 1 + βp, θp = β̄p/ᾱp, and

Φ̄11 = ĀT
1p(Pp + Q p) Ā1p + η(1 − η) ĀT

η1p(Pp + Q p) Āη1p − ᾱp Pp + C̄T
p C̄ p,

Φ̄12 = ĀT
1p(Pp + Q p) Ā2p, Φ̄13 = ĀT

1p(Pp + Q p)B̄1p + C̄T
p D̄p, Φ̄14 = ĀT

1p(Pp + Q p)B̄2p,

Φ̄22 = ĀT
2p(Pp + Q p) Ā2p + η(1 − η) ĀT

η2p(Pp + Q p) Āη2p − ᾱp Q p + C̄T
p C̄ p,

Φ̄23 = ĀT
2p(Pp + Q p)B̄1p, Φ̄24 = ĀT

2p(Pp + Q p)B̄2p + C̄T
p D̄p,

Φ̄33 = B̄T
1p(Pp + Q p)B̄1p + D̄T

p D̄p − γ 2 I, Φ̄34 = B̄T
1p(Pp + Q p)B̄2p,

Φ̄44 = B̄T
2p(Pp + Q p)B̄2p + D̄T

p D̄p − γ 2 I,

Φ̃11 = ÃT
1p(Pp + Q p) Ã1p + η(1 − η) ÃT

η1p(Pp + Q p) Ãη1p − β̄p Pp + C̃T
p C̃ p,

Φ̃12 = ÃT
1p(Pp + Q p) Ã2p, Φ̃13 = ÃT

1p(Pp + Q p)B̃1p + C̃T
p D̃p, Φ̃14 = ÃT

1p(Pp + Q p)B̃2p,

Φ̃22 = ÃT
2p(Pp + Q p) Ã2p + η(1 − η) ÃT

η2p(Pp + Q p) Ãη2p − β̄p Q p + C̃T
p C̃ p,

Φ̃23 = ÃT
2p(Pp + Q p)B̃1p, Φ̃24 = ÃT

2p(Pp + Q p)B̃2p + C̃T
p D̃p,

Φ̃33 = B̃T
1p(Pp + Q p)B̃1p + D̃T

p D̃p − γ 2 I, Φ̃34 = B̃T
1p(Pp + Q p)B̃2p,

Φ̃44 = B̃T
2p(Pp + Q p)B̃2p + D̃T

p D̃p − γ 2 I.

Then, for any switching signal with MDADT satisfying

τap > τ ∗
ap = − lnμp + τmax ln θp

ln ᾱp
, (12)

the 2-D switched system (6)–(7) is asymptotically mean-square stable with a prescribed

weighted H∞ disturbance attenuation level γs =
√∏M

p=1(θ
τp
p μp)

N0p (αmax/αmin)θ
τmax−1
max γ

and αmax = maxp∈M {αp}, αmin = minp∈M {αp}, θmax = maxp∈M {θp}.
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Proof To establish the stability and H∞ performance of the 2-D switched system (6)–(7),
we construct the following Lyapunov function:

Vσ(κ)(x(i, j)) = V 1
σ(κ)(x(i, j)) + V 2

σ(κ)(x(i, j)),

V 1
σ(κ)(x(i, j)) = xT (i, j)Pσ(κ)x(i, j),

V 2
σ(κ)(x(i, j)) = xT (i, j)Qσ(κ)x(i, j), (13)

where Pσ(κ) and Qσ(κ) are positive definite matrices for ∀σ(κ) ∈ M .
Here, we define

ΔVσ(κ)(x(i, j)) =Vσ(κ)(x(i + 1, j + 1)) − V 1
σ(κ)(x(i, j + 1)) − V 2

σ(κ)(x(i + 1, j)).

(14)

Noting that E
{
[ρ(i, j) − η]2

} = (1 − η)η. When κ ∈ [
κl + τ(κl), κl+1), the filter is

matched with the mode. From (8), we obtain that

E{ΔVσ(κ)(x(i, j)) + ασ(κ)

[
V 1

σ(κ)(x(i, j + 1)) + V 2
σ(κ)(x(i + 1, j))

]
+ Γ (i, j)}

= E

{
ζ T (i, j)Φ̄ζ(i, j)

}
< 0,

where ζ(i, j) = [
ξ(i, j + 1) ξ(i + 1, j) ωT (i, j + 1) ωT (i, j + 1)

]T
, Γ (i, j) = ēT ē −

γ 2ω̄T ω̄ with ē = [
eT (i, j + 1) eT (i + 1, j)

]T
, ω̄ = [

ωT (i, j + 1) ωT (i + 1, j)
]T

.
Thus, we can get

E{Vσ(κ)(x(i + 1, j + 1))}
< E{ᾱσ (κ)[V 1

σ(κ)(x(i, j + 1)) + V 2
σ(κ)(x(i + 1, j))] − Γ (i, j)}, (15)

Consider κl + τ(κl) < D < κl+1. From (15), we obtain for κ ∈ [κl + τ(κl), D),
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E{Vσ(κ)(x(1, D − 1))} < E{ᾱσ (κ)[V 1
σ(κ)(x(0, D − 1)) + V 2

σ(κ)(x(1, D − 2))]
−Γ (0, D − 2)},

E{Vσ(κ)(x(2, D − 2))} < E{ᾱσ (κ)[V 1
σ(κ)(x(1, D − 2)) + V 2

σ(κ)(x(2, D − 3))]
−Γ (1, D − 3)},
...

E{Vσ(κ)(x(D − 1, 1))} < E{ᾱσ (κ)[V 1
σ(κ)(x(D − 2, 1)) + V 2

σ(κ)(x(D − 1, 0))]
−Γ (D − 2, 0)}.

According to Assumption 1, we can get for κ ∈ [κl + τ(κl), D),

E

⎧
⎨
⎩

∑
i+ j=D

Vσ(κ)(x(i, j))

⎫
⎬
⎭

< E

⎧
⎨
⎩ᾱσ (κ)

∑
i+ j=D−1

Vσ(κ)(x(i, j)) −
∑

i+ j=D−2

Γ (i, j)

⎫
⎬
⎭

< ...

< E

⎧
⎨
⎩ᾱ

D−(κl+τ(κl ))
σ (κl )

∑
i+ j=κl+τ(κl )

Vσ(κl )(x(i, j)) −
D−2∑

s=κl+τ(κl )−1

∑
i+ j=s

ᾱD−2−s
σ(κl )

Γ (i, j)

⎫
⎬
⎭ .

(16)
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Similarly, consider κ ∈ [κl , κl + τ(κl)), in this situation the filter is mismatched with the
subsystem. From (9), it holds that

E

⎧
⎨
⎩

∑
i+ j=κl+τ(κl )

Vσ(κ)(x(i, j))

⎫
⎬
⎭

< E

⎧
⎨
⎩β̄

τ (κl )
σ (κl )

∑
i+ j=κl

Vσ(κl )(x(i, j)) −
κl+τ(κl )−2∑

s=κl−1

∑
i+ j=s

β̄
κl+τ(κl )−2−s
σ(κl )

Γ (i, j)

⎫
⎬
⎭ . (17)

Combining (16) with (17), we obtain that for κ ∈ [
κl , κl+1),

E

⎧
⎨
⎩

∑
i+ j=D

Vσ(κ)(x(i, j))

⎫
⎬
⎭

≤ E

⎧
⎨
⎩ᾱ

D−κl
σ(κl )

θ
τ(κl )
σ (κl )

∑
i+ j=κl

Vσ(κl )(x(i, j)) −
D−2∑

s=κl+τ(κl )−1

∑
i+ j=s

ᾱD−2−s
σ(κl )

Γ (i, j)

−
κl+τ(κl )−2∑

s=κl−1

∑
i+ j=s

ᾱD−2−s
σ(κl )

θ
κl+τ(κl )−2−s
σ(κl )

Γ (i, j)

⎫
⎬
⎭ . (18)

On the other hand, according to (10)–(11), we conclude for all (σ (κl) = p, σ (kl−1) =
q) ∈ M × M , p 	= q ,

E

⎧
⎨
⎩

∑
i+ j=κl

Vσ(κl )(x(i, j))

⎫
⎬
⎭ ≤ E

⎧
⎨
⎩μσ(κl )

∑
i+ j=κl

Vσ(κl−1)(x(i, j))

⎫
⎬
⎭ . (19)

We prove the stability firstly. Consider ω(i, j) ≡ 0, from (18), we have,

E

⎧
⎨
⎩

∑
i+ j=D

Vσ(κ)(x(i, j))

⎫
⎬
⎭ ≤ E

⎧
⎨
⎩ᾱ

D−κl
σ(κ1)

θ
τ(κl )
σ (κl )

∑
i+ j=κl

Vσ(κl )(x(i, j))

⎫
⎬
⎭ . (20)

Denote τ(κl) as τl , and τmax = maxp∈M {τp}. From (19)–(20), we obtain

E

⎧
⎨
⎩

∑
i+ j=D

Vσ(κ)(x(i, j))

⎫
⎬
⎭

< E

⎧
⎨
⎩μσ(κl )ᾱ

D−κl
σ(κl )

θ
τ(κl )
σ (κl )

∑
i+ j=κl

Vσ(κl−1)(x(i, j))

⎫
⎬
⎭

< ...

≤ E

⎧
⎨
⎩

M∏
p=1

(μpθ
τp
p )N0p+Hp(r,D)/τap

M∏
p=1

ᾱ
Hp(r,D)
p

∑
i+ j=r

Vσ(r)(x(i, j))

⎫
⎬
⎭

≤ E

⎧
⎨
⎩

M∏
p=1

(μpθ
τp
p )N0p

{
max
p∈M

[
(μpθ

τmax
p )1/τap ᾱp

]}D−r ∑
i+ j=r

Vσ(r)(x(i, j))

⎫
⎬
⎭ .
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From (13), we know that there exist two positive scalars λ1 and λ2 such that ∀σ(κ) =
p ∈ M ,

λ1E
{‖x(i, j)‖2} ≤ E

{
Vp(x(i, j))

} ≤ λ2E
{‖x(i, j)‖2} ,

where

λ1 = min
{
λmin(Pp) + λmin(Q p)

}
,

λ2 = max
{
λmax(Pp) + λmax(Q p)

}
.

Thus, we have

E

⎧
⎨
⎩

∑
i+ j=D

‖x(i, j)‖2
⎫
⎬
⎭ ≤ ςεD−r

E

⎧
⎨
⎩

∑
i+ j=r

‖x(i, j)‖2r

⎫
⎬
⎭ ,

where

ς = λ2

λ1

M∏
p=1

(μpθ
τp
p )N0p > 0, ε = max

p∈M

[
(μpθ

τp
p )1/τap ᾱp

]
,

then if there exist constants τap, p ∈ M satisfying (12), we can get 0 < ε < 1. From Defini-
tion 2, it can be concluded that the system (6) under asynchronous switching is asymptotically
mean-square stable.

Then, we address the �2-gain analysis. From (18)–(19), we obtain

E

⎧
⎨
⎩

∑
i+ j=D

Vσ(κl )(x(i, j))

⎫
⎬
⎭

< E

⎧
⎨
⎩ᾱ

D−κl
σ(κl )

θ
τ(κl )
σ (κl )

μσ(κl )

∑
i+ j=κl

Vσ(κl−1)(x(i, j)) −
D−2∑

s=κl+τ(κl )−1

∑
i+ j=s

ᾱD−2−s
σ(κl )

Γ (i, j)

−
κl+τ(κl )−2∑

s=κl−1

∑
i+ j=s

ᾱD−2−s
σ(κl )

θ
κl+τ(κl )−2−s
σ(κl )

Γ (i, j)

⎫
⎬
⎭

< ...

< E

⎧
⎨
⎩ᾱ

D−κl
σ(κl )

ᾱ
κl−κl−1
σ(κl−1)

· · · ᾱκ1−r
σ(r) θ

τ(κl )
σ (κl )

. . . θ
τ(r)
σ (r)μσ(κl ) . . . μσ(r)

∑
i+ j=r

Vσ(r)(x(i, j))

− ᾱ
D−κl
σ(κl )

. . . ᾱ
κ1−r
σ(r) θ

τ(κl )
σ (κl )

. . . θ
τ(r)
σ (r)μσ(κl ) . . . μσ(r)

κ1−2∑
s=r+τ(r)−1

∑
i+ j=s

ᾱ
κ1−2−s
σ(r) Γ (i, j)

− ᾱ
D−κl
σ(κl )

. . . ᾱ
κ1−r
σ(r) θ

τ(κl )
σ (κl )

. . . θ
τ(r)
σ (r)μσ(κl ) . . . μσ(r)

×
r+τ(r)−2∑

s=r−1

∑
i+ j=s

ᾱ
κ1−2−s
σ(r) θ

r+τ(r)−2−s
σ(r) Γ (i, j) − . . .

−
D−2∑

s=κl+τ(κl )−1

∑
i+ j=s

ᾱD−2−s
σ(κl )

Γ (i, j) −
κl+τ(κl )−2∑

s=κl−1

∑
i+ j=s

ᾱD−2−s
σ(κl )

θ
κl+τ(κl )−2−s
σ(κl )

Γ (i, j)

⎫
⎬
⎭ .

(21)
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Denote αmax = max{αp}, αmin = min{αp} and ᾱmax = 1− αmax, ᾱmin = 1− αmin. Con-
sider zero initial condition, i.e.,

∑
i+ j=r Vσ(r)(x(i, j))= 0, and

∑
i+ j=κl

Vσ(κl )(x(i, j)) ≥ 0.

Owing to 1 < θ
κp+τp−2−s
p < θ

τp−1
p , s ∈ [κp − 1, κp + τp − 2), then we have

E

⎧
⎨
⎩

D−2∑
s=r−1

∑
i+ j=s

⎡
⎣ᾱD−2−s

max

M∏
p=1

(θ
τp
p μp)

Nσ p(s,D)ēT ē

⎤
⎦
⎫
⎬
⎭

≤ E

⎧
⎨
⎩

D−2∑
s=r−1

∑
i+ j=s

⎡
⎣ᾱD−2−s

min

M∏
p=1

(θ
τp
p μp)

Nσ p(s,D)θ
τσ(s)−1
σ(s) γ 2ω̄T ω̄

⎤
⎦
⎫
⎬
⎭ .

Multiplying both sides of the above inequality by (θ
τp
p μp)

−Nσ p(r,D), it follows that

E

⎧
⎨
⎩

D−2∑
s=r−1

∑
i+ j=s

⎡
⎣ᾱD−2−s

max

M∏
p=1

(θ
τp
p μp)

−Nσ p(r,s)ēT ē

⎤
⎦
⎫
⎬
⎭

≤ E

⎧
⎨
⎩

D−2∑
s=r−1

∑
i+ j=s

⎡
⎣ᾱD−2−s

min

M∏
p=1

(θ
τp
p μp)

−Nσ p(r,s)θ
τσ(s)−1
σ(s) γ 2ω̄T ω̄

⎤
⎦
⎫
⎬
⎭ .

From Definition 1, we know −N0p − Hp(r, s)/τap ≤ −Nσ p(r, s) ≤ 0. Meanwhile, by
noticing (12) we have

E

⎧
⎨
⎩

D−2∑
s=r−1

∑
i+ j=s

[
ᾱD−2−s
max

M∏
p=1

(θ
τp
p μp)

−N0p+Hp(r,s) ln ᾱp/ ln(θ
τp
p μp)ēT ē

⎤
⎦
⎫
⎬
⎭

≤ E

⎧
⎨
⎩

D−2∑
s=r−1

∑
i+ j=s

(
ᾱD−2−s
min θτmax−1

max γ 2ω̄T ω̄
)
⎫
⎬
⎭ .

Furthermore,

E

⎧
⎨
⎩

∞∑
D=2

D−2∑
s=r−1

∑
i+ j=s

⎡
⎣ᾱD−2−s

max

M∏
p=1

ᾱ
Hp(r,s)
p ēT ē

⎤
⎦
⎫
⎬
⎭

≤ Θpγ
2
E

⎧
⎨
⎩

∞∑
D=2

D−2∑
s=r−1

∑
i+ j=s

ᾱD−2−s
min θτmax−2

max γ 2ω̄T ω̄

⎫
⎬
⎭ ,

and

E

⎧
⎨
⎩

∞∑
s=r−1

∞∑
D=s+2

∑
i+ j=s

ᾱD−2−s
max ᾱs

maxēT ē

⎫
⎬
⎭

≤ Θpγ
2
E

⎧
⎨
⎩

∞∑
s=r−1

∞∑
D=s+2

∑
i+ j=s

ᾱD−2−s
min θτmax−2

max γ 2ω̄T ω̄

⎫
⎬
⎭ ,
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where Θp = ∏M
p=1(θ

τp
p μp)

N0p . Since

∞∑
D=s+2

∑
i+ j=s

ᾱD−2−s
max =

∑
i+ j=s

1/αmax,

∞∑
D=s+2

∑
i+ j=s

ᾱD−2−s
min =

∑
i+ j=s

1/αmin,

thus, we conclude

E

⎧
⎨
⎩

∞∑
s=r−1

∑
i+ j=s

αs ēT ē

⎫
⎬
⎭ ≤

M∏
p=1

(θ
τp
p μp)

N0p
αmax

αmin
θτmax−1
max γ 2

E

⎧
⎨
⎩

∞∑
s=r−1

∑
i+ j=s

ω̄T ω̄

⎫
⎬
⎭ ,

E

⎧
⎨
⎩

∞∑
i=0

∞∑
j=0

αi+ j ‖ē‖22

⎫
⎬
⎭ ≤ γ 2

s E

⎧
⎨
⎩

∞∑
i=0

∞∑
j=0

‖ω̄‖22

⎫
⎬
⎭ ,

where α = 1 − αmax and γs =
√∏M

p=1(θ
τp
p μp)

N0p (αmax/αmin)θ
τmax−1
max γ .

According to Definition 3, we conclude that the 2-D switched system (6)–(7) is asymp-
totically stable with a prescribed weightedH∞ disturbance attenuation level γs , which ends
the proof. �

4 H∞ Filter Design

According to �2-gain analysis in the preceding section, we address asynchronous H∞ filter
design with missing measurements for 2-D switched systems.

Theorem 1 Consider the 2-D switched system (1)–(3). For any (p, q) ∈ M × M , p 	= q,
let 0 < αp < 1, βp > 0 and μp > 1 be given constants, if there exist matrices Pp > 0,
Q p > 0, X p, Yp, Z p, G F1p, G F2p, K F1p, K F2p, L Fp, p ∈ M , and a scalar γ > 0, such
that (10)–(11) hold, and

⎡
⎢⎢⎢⎢⎣

Ξ̄11 0 Ξ̄13 Ξ̄14 Ξ̄15

∗ −γ 2 I Ξ̄23 0 Ξ̄25

∗ ∗ Ξ̄33 0 0
∗ ∗ ∗ Ξ̄44 0
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎦

< 0, (22)

⎡
⎢⎢⎢⎢⎣

Ξ̃11 0 Ξ̃13 Ξ̃14 Ξ̃15

∗ −γ 2 I Ξ̃23 0 Ξ̃25

∗ ∗ Ξ̃33 0 0
∗ ∗ ∗ Ξ̃44 0
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎦

< 0, (23)

where

Ξ̄11 = diag{−ᾱp Pp,−ᾱp Q p}, Ξ̄33 = diag{Pp − Rp − RT
p , Q p − Rp − RT

p },
Ξ̄44 = η̄diag{Ξ̄33, Ξ̄33}, Ξ̄14 = diag{Ξ̄1

14, Ξ̄
2
14},

Ξ̄13 =
[

Ξ̄1
13 Ξ̄1

13
Ξ̄2

13 Ξ̄2
13

]
, Ξ̄23 =

[
Ξ̄1

23 Ξ̄1
23

Ξ̄2
23 Ξ̄2

23

]
, Ξ̄15 =

[
CT

p 0
−LT

Fp 0

]
, Ξ̄25 =

[
0 CT

p
0 −LT

Fp

]
,

Ξ̃11 = diag{−β̄p Pp,−β̄p Q p}, Ξ̃33 = diag{Pp − Rq − RT
q , Q p − Rq − RT

q },
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Ξ̃44 = η̄diag{Ξ̃33, Ξ̃33}, Ξ̃14 = diag{Ξ̃1
14, Ξ̃

2
14},

Ξ̃13 =
[

Ξ̃1
13 Ξ̃1

13
Ξ̃2

13 Ξ̃2
13

]
, Ξ̃23 =

[
Ξ̃1

23 Ξ̃1
23

Ξ̃2
23 Ξ̃2

23

]
, Ξ̃15 =

[
CT

p 0
−LT

Fq 0

]
, Ξ̃25 =

[
0 CT

p
0 −LT

Fq

]
,

with ᾱp = 1 − αp, β̄p = 1 + βp, θp = β̄p/ᾱp, η̄ = (1 − η)η, and for r = 1, 2,

Rp =
[

X p Yp

Z p Yp

]
,

Ξ̄ r
13 =

[
AT

r p X T
p + ηCT

yp K Fr p AT
r p Z T

p + ηCT
yp K Fr p

GT
Fr p − ηCT

yp K Fr p GT
Fr p − ηCT

yp K Fr p

]
,

Ξ̄ r
14 =

[
CT

yp K Fr p CT
yp K Fr p CT

yp K Fr p CT
yp K Fr p

0 0 0 0

]
,

Ξ̄ r
23 = [

BT
r p X T

p + DT
yp K Fr p BT

r p Z T
p + DT

yp K Fr p
]
,

Ξ̃ r
13 =

[
AT

r p X T
q + ηCT

yp K Frq AT
r p Z T

q + ηCT
yp K Frq

GT
Frq − ηCT

yp K Frq GT
Frq − ηCT

yp K Frq

]
,

Ξ̃ r
14 =

[
CT

yp K Frq CT
yp K Frq CT

yp K Frq CT
yp K Frq

0 0 0 0

]
,

Ξ̃ r
23 = [

BT
r p X T

q + DT
yp K Frq BT

r p Z T
q + DT

yp K Frq
]
,

Then, for any switching signal with MDADT satisfying (12), the 2-D switched system
(6)–(7) is asymptotically mean-square stable with a prescribed weighted H∞ disturbance

attenuation level γs =
√∏M

p=1(θ
τp
p μp)

N0p (αmax/αmin)θ
τmax−1
max γ and θmax = maxp∈M {θp}.

Moreover, the filter parameters are given by G1p = Y −1
p G F1p, G2p = Y −1

p G F2p, K1p =
Y −1

p K F1p, K2p = Y −1
p K F2p, and L p = L Fp.

Proof Choose (13) as the Lyapunov function.
Noticing that−Rp P−1

p RT
p < Pp − Rp − RT

p and−R−1
p Q p RT

p < Q p − Rp − RT
p , denote

G F1p = YpG1p , G F2p = YpG2p, K F1p = Yp K1p , K F2p = Yp K2p , and L Fp = L p . Then
taking congruent transformation and using Schur complement, we know that (22) ensures
(8). By a similar procedure, we find that (9) can be guaranteed by (23). According to Lemma
1, we conclude that system (6)–(7) is asymptotically mean-square stable with a prescribed
weighted H∞ disturbance attenuation level γs , which ends the proof. �

When taking no account of the asynchronous switching, i.e., τ(κl) = 0, we have the
following corollary.

Corollary 1 Consider the 2-D switched system (1)–(3). For any (p, q) ∈ M × M , p 	= q,
let 0 < αp < 1 and μp > 1 be given constants, if there exist a set of matrices Pp > 0,
Q p > 0, X p, Yp, Z p, G F1p, G F2p, K F1p, K F2p, L Fp, and a scalar γ > 0, such that
(10)–(11) and (22) hold, Then, for any switching signal with MDADT satisfying

τap > τ ∗
ap = − lnμp

ln ᾱp
,

where ᾱp = 1 − αp, the 2-D switched system (6)–(7) is asymptotically mean-square
stable with a prescribed weighted H∞ disturbance attenuation level γs
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=
√∏M

p=1 μ
N0p
p (αmax/αmin)γ , αmax = maxp∈M {αp}, αmin = minp∈M {αp}. Moreover,

the filter parameters are given by G1p = Y −1
p G F1p, G2p = Y −1

p G F2p, K1p = Y −1
p K F1p,

K2p = Y −1
p K F2p, and L p = L Fp.

Remark 2 Only switching delay is considered in this paper. As a matter of fact, state delay
may also be involved in practical systems. There exist some results for 2-D switched delay
systems (Duan et al. 2013; Ghous et al. 2015), one can develop the filter design for 2-D
switched delay systems by using the similar methods.

Remark 3 All above results are based on MDADT switching, which is more general than
ADT switching (Fei et al. 2017). Recently, a more flexible switching logic, persistent dwell
time (PDT) switching is applied in 1-D switching systems (Zhang et al. 2015). In future
works, it is meaningful to extended PDT switching to 2-D switched systems.

5 Illustrative examples

In this section, we use two examples to illustrate the effectiveness of the results developed
in the above section.

Example 1 Consider the 2-D switched systems (1)–(3) consisting of two subsystems as
follow:
Subsystem 1:

A11 =
[

0.2352 0.0019
−0.9648 0.2019

]
, B11 =

[
0.1
0.1

]
, A21 =

[−0.0965 0.1002
−0.0965 0.0002

]
, B21 =

[
0.01
0.01

]
,

C1 = [
0.2 0.2

]
, D1 = −0.1, Cy1 = [

0.1 0.2
]
, Dy1 = 0.1;

Subsystem 2:

A12 =
[

0.0313 0.1757
−0.5773 0.0515

]
, B12 =

[
0.05
0.1

]
, A22 =

[
0 0

0.1254 −0.0970

]
, B22 =

[
0
0.2

]
,

C2 = [
0.2 0.2

]
, D2 = −0.1, Cy2 = [

0.1 0.2
]
, Dy2 = 0.1.

Our purpose here is to design a set of mode-dependent filters with missing measurements
such that the filtering error system is asymptoticallymean-square stable and has an prescribed
H∞ performance.

Set μ1 = μ2 = 1.1 and α1 = 0.4, α2 = 0.3, β1 = 1.2, β2 = 1.1, and assume τmax = 2,
η = 0.9, γ = 1.2247. Then we find an admissible solution by using standard softwares. The
corresponding τ ∗

a1 = 5.2736, τ ∗
a2 = 6.4275, and a set of filters are designed:

G11 =
[

0.0379 −0.0593
−0.1537 0.2619

]
, G21 =

[−0.0140 0.0373
0.0256 −0.0586

]
,

K11 =
[

0.0005
−0.0411

]
, K21 =

[−0.0388
0.1252

]
, L1 = [

0.0050 −0.0986
]
,

G12 =
[−0.0068 0.0447

−0.0078 0.0018

]
, G22 =

[−0.0030 0.0103
0.0156 −0.0542

]
,

K12 =
[−0.0139

−0.0035

]
, K22 =

[−0.0007
0.0014

]
, L2 = [

0.0160 −0.1535
]
.
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Here, we choose the switching signal as Fig. 1. The missing measurements satisfying
η = 0.9 is shown in Fig. 2. Under the zero initial condition, the disturbance input is assumed
to be ω(i, j) = sin(0.1π(i + j))e−0.2(i+ j). Using the filters obtained by Theorem 1, we can
get the filter state responses shown in Figs. 3, 4, and filter error responses shown in Fig. 5. It
can be observed the augmented system is asymptotically stable.

Example 2 Consider the thermal processes in heat exchangers, which can be described by a
partial differential equation (Ghous et al. 2015):

∂T (x, t)

∂x
= −∂T (x, t)

∂t
− aσ(x,t)T (x, t) + bσ(x,t) f (x, t), (24)

0 5 10 15 20 25 30 35 40

1

2

κ

Switching signal for subsystem σ(κ)
Switching signal for filters

Fig. 1 The switching signal σ(κ)
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Fig. 2 The missing measurement distribution ρ(i, j)
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Fig. 3 The filter state response x̂1(i, j)
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Fig. 4 The filter state response x̂2(i, j)
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Fig. 5 The filter error response e(i, j)
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0 5 10 15 20 25 30 35 40

1

2

κ

Switching signal for subsystem σ(κ)
Switching signal for filters

Fig. 6 The switching signal σ(κ)

where T (x, t) is the temperature at x(space) ∈ [0, x f ] and t (time) ∈ [0,∞), f (x, t) is
the input function, and aσ(x,t), bσ(x,t) are real coefficients, which are functions of σ(x, t).
Similar to the technique used in Kaczorek (1985), here, define

∂T (x, t)

∂t
≈ T (i, j + 1) − T (i, j)

Δt
,

∂T (x, t)

∂x
≈ T (i, j) − T (i − 1, j)

Δx
,

u(x, t) ≈u(i, j),

where T (i, j) = T (iΔx, jΔt), u(i, j) = u(iΔx, jΔt), Δx and Δt are space and time
discretization periods, respectively. Then, when viewing the disturbance input as the input
function, we obtain that (24) can be rewritten in the form of (1) with

A1σ(i, j) =
[
0 1
0 0

]
, B1σ(i, j) =

[
0
0

]
,

A2σ(i, j) =
[

0 0
Δt
Δx 1 − Δt

Δx − aσ(i, j)Δt

]
, B2σ(i, j) =

[
0

bσ(i, j)Δt

]
.

Consider this 2-D switched system with two modes and Δt = 0.2, Δx = 0.5, a1 = 2,
a2 = 2.5, b1 = 0.25, b2 = 0.5. Here, assume that

C1 = C2 = Cy1 = Cy2 = [
0.1 0.1

]
, D1 = D2 = −0.1, Dy1 = Dy2 = 0.1.

Set μ1 = μ2 = 1.1, α1 = α2 = 0.35, β1 = 1.2, β2 = 1.1, and τmax = 1, η = 0.9,
γ = 3.1623. According to Theorem 1, we have τ ∗

a1 = 2.9435, τ ∗
a2 = 3.0515. Choose the

switching signal as Fig. 6. Under the zero initial condition, the disturbance input is assumed
to be ω(i, j) = sin(0.1π(i+ j))

0.1(i+ j)2
. Using the filters obtained by Theorem 1, we can get the filter

error responses as shown in Fig. 7, which satisfies above constraints. This illustrate the
effectiveness of the proposed method.
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Fig. 7 The filter error response e(i, j)

6 Conclusions

In this paper, the problem of asynchronous H∞ filtering has been solved for 2-D switched
systems with missing measurements. By constructing a class of mode-dependent Lyapunov
function, sufficient conditions are proposed to guarantee the asymptoticmean-square stability
and �2-gain of the 2-D switched systems. Based on the results, a set of filters are designed. For
future study, since the state delay is prevalent in practical systems, it would be interesting to
extend the above results to 2-D switched delay systems. Meanwhile, more general switching
logics could be applied to study 2-D switched delay systems.
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