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Abstract A method with double L-shaped array for direction-of-arrival (DOA) estimation
in the presence of sensor gain-phase errors is presented. The reason for choosing double L-
shaped array is that the shared elements between sub-arrays are themost and rotation invariant
property can be applied for this array. The proposed method is introduced as follows. (1) If
the number of signal is one, first the gain errors are estimated and removed with the diagonal
of the covariance matrix of the array output. Then the array is rotated by an unknown angle
and DOA can be estimated with the relationship between signal subspace and steering vector
of signal. (2) If signals are more than one, the method for eliminating gain errors is the same
with the previous case, and then the phase errors are removed by the Hadamard product of
the (cross) covariance matrix and its conjugate. After the errors are eliminated, the DOAs
can be estimated by rotation invariant property and orthogonal joint diagonalization for the
Hadamard product. This method requires neither calibrated sources nor multidimensional
parameter search, and its performance is independent of the phase errors. Simulation results
demonstrate the effectiveness of the proposed method.
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1 Introduction

As an important branch of array signal processing, direction of arrival (DOA) estimation
has attracted much attention since it is an important task that arises in many applications
including radar, sonar, wireless communications, speech processing and navigation (Krim
and Viberg 1996; Godara 1997). In the past decades, there have been many DOA estimation
methods proposed such asMUSIC (Schmidt 1986), ESPRIT (Roy andKailath 1989), Capon’s
beamformer (1969), maximum likelihood (ML) method (Stoica and Sharman 1990) and so
on. However, these methods are based on the assumption that the array steering vector is
exactly known, which means that their performance is critically dependent on the knowledge
of the array manifold. In practice, the array steering vector can not be obtained precisely
owning to the presence of some uncertainties such as the mutual coupling, gain-phase errors
and positions uncertainties (Ferréol et al. 2010). Therefore, it is necessary to calibrate array
characteristics prior to carrying out DOA estimation.

The focus of this paper is on the problem of DOA estimation with unknown gain-phase
errors. In recent years, this problem has been studied in numerous papers. Some robust
methods proposed in Blunt et al. (2011), Stoica et al. (2005) and Li et al. (2003) are based
on the knowledge of the statistics of the array model errors which is not easily available in
practice, and the estimator’s capability is affected by errors.

Other methods proposed deal with the problem of array calibration by taking errors as
array parameters. The methods in Cheng (2000) and Ng et al. (2009) exploit calibrated
signalswith knowndirections to estimate the sensor gain-phase errors, and they have excellent
performancewhen theDOAs of calibrated signals are precisely known.However, it is difficult
to implement them as the existence of the calibrated sources is rarely guaranteed in practice.
InWeiss and Friedlander (1990), and Friedlander andWeiss (1993), themethods proposed by
Weiss and Friedlander named as W–F method are based on alternative iteration algorithm,
which can simultaneously estimate the DOAs of signals and the gain-phase error of each
sensor on line. However they may suffer from suboptimal convergence because the DOAs
and gain-phase errors are not independently identifiable and they are based on the assumption
that the array perturbations are small, meaning that they may fail when the errors are large.
The instrumental sensors method (ISM) was presented in Wang et al. (2003, 2004). The
DOAs of signals and gain-phase errors can be obtained simultaneously without ambiguity
by instrumental sensors which are with no gain-phase errors. The number of instrumental
sensors, however, must be larger than that of signals, which is a great obstacle especially
when the number of signals is large. The methods proposed in Paulraj and Kailath (1985)
and Li et al. (2006) estimate the sensor gain-phase errors with the Toeplitz structure of the
covariance matrix without calibrated signals or alternative iteration process; however, their
performance is influenced by gain-phase errors. Liu et al. (2011) proposed a method based
on Eigen-decomposition of a covariance matrix which is constructed by the dot product of
the array output and its conjugate. This method has the advantage that DOA estimates are
independent of phase errors, but it has four drawbacks: (a) the need for 2-D MUSIC search;
(b) it can’t distinguish signals which are spatially close to each other; (c) too many demands
for statistical characteristics of signals and noise; (d) the sources should be more than one.

Inspired by Liu et al. (2011) and aiming at the four problemsmentioned above, we propose
this novel method. The method can be decomposed into three steps. The first is to estimate
and remove the gain errors using the diagonal of the covariance matrix of the array output.
In the second step, the process can be discussed on two cases: (a) if the number of source is
one, we rotate the array and estimate DOAwith the relationship between signal subspace and
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steering vector of signal; (b) if the sources are more than one, the phase errors are eliminated
by the Hadamard product of the (cross) covariancematrix and its conjugate whose gain errors
have been removed in step one. And in this step, each element of the new matrix subtracts
sum of squares of the power, which is estimated by the relationship between determinant and
rank of matrix, to improve estimator’s resolution especially when signals are spatially close
to each other. The last step is to estimate the DOAs with formulas from rotation invariant
property and joint diagonalization algorithm for the whole array. From the second step it is
seen that the proposed method also has the advantage that DOA estimates are independent
of phase errors. In addition, it overcomes drawbacks (a)–(d) in Liu et al. (2011). First this
method takes use of the covariance matrix and its conjugate to construct Hadamard product
matrix, which means that statistics of real and imaginary parts of the signals or noise in
Liu et al. (2011) are not required. Second, this method provides solution if the number of
signal is one, which can’t be solved with the method in Liu et al. (2011). Third, this method
exploits rotation invariant property between sub-arrays to replace 2-D MUSIC algorithm, so
the computational complexity can be reduced obviously. Last the proposed method subtracts
the 1 componentwhich leads to a ridge near the diagonal line of the two-dimensional spectrum
which makes the peaks of the spectrum deviate from their real locations or merge the peaks,
so it means that the proposed method does not require the condition of two signals spatially
far from each other and can improve estimate accuracy when the signals are close to each
other. Simulation results demonstrate the effectiveness of the proposed method.

The paper is organized as follows. Section 2 describes the formulation of the problem.
The proposed method is given in Sect. 3. In Sect. 4 some discussions are presented. Section 5
gives simulation results. Section 6 concludes this paper.

Throughout the paper, the mathematical notations are denoted as follows.

I identity matrix;
1 one matrix(vector);
0 zero matrix(vector);
◦ Hadamard product;
(·)∗ conjugation;
(·)T transpose;
(·)H Hermitian transpose;
(·)−1 inversion;
(·)+ pseudo inversion;
rank(·) rank;
� (·) the phase of complex;
det(·) determinant;
(·)(p) pth element of a vector;
(·)(p,q) element of a matrix which is at the pth row and the qth column;
(·)(:,q) qth column of a matrix;
(·)(p,:) pth row of a matrix;
[·]p×q a matrix(vector) with p × q;
E[·] mathematical expectation;
diag(u) a diagonal matrix whose diagonals are the elements of vector u;
diag(M) a vector constructed by diagonals of matrix M.
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2 Problem formulation

Before presenting the data model and the proposed method, we introduce some assumptions
about the properties of the signals and noise, and the proposed method is based on these
assumptions.

Assumption 1 The signals are zero-mean, stationary and unrelated.

Assumption 2 The signals are independent of the noise, and the noise is zero-mean, station-
ary and spatially white.

Assumption 3 All the signals come from different directions.

With these assumptions, the data model is presented as follows.
Consider K narrowband far-field signals sk(t) (k � 1, 2, . . . , K ) with wavelength λ

impinging on a double L-shaped array with 2M (M =2N−3) Omni-directional sensors,
and the array is shown as Fig. 1. The array can be divided into three sub-arrays X , Y and Z ,
and each sub-array is an L-shaped array whose elements are located along x and y axes (direc-
tion). The numbers of sensors of all sub-arrays along x and y axes (direction) are equal toN-1,
and the inter-sensor intervals of sub-array along x axis (direction) and y axis (direction) are
denoted by dx and dy respectively. For simplicity we assume that the signal sources and the
array sensors are coplanar, and the DOA of the kth signal is denoted by θk ∈ (−π

/
2,π

/
2
)
.

With the origin element as reference, the outputs of sub-array X , Y and Z can be written as

X(t) �
K∑

k�1

α(θk)sk(t) + nX (t) � A(θ)S(t) + nX (t) (1)

Y(t) �
K∑

k�1

e− j
2πdy cos θk

λ α(θk)sk(t) + nY (t)

� A(θ)�(θ)S(t) + nY (t) (2)

Z(t) �
K∑

k�1

e− j
2πdx sin θk

λ α(θk)sk(t) + nZ (t)

� A(θ)�(θ)S(t) + nZ (t) (3)

Fig. 1 Double L-shaped array
configuration
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where ni (t) (i � X, Y, Z ) denotes the vector of additive noise, and α(θk) represents the ideal
steering vector for the kth signal, described by

α(θk) �
[
e− j

2π(N−2)dx sin θk
λ , e− j

2π(N−3)dx sin θk
λ , . . . , e− j

2πdx sin θk
λ , 1,

e− j
2πdy cos θk

λ , . . . , e− j
2π(N−3)dy cos θk

λ , e− j
2π(N−2)dy cos θk

λ

]T
(4)

where A(θ) is the ideal steering matrix, constructed by α(θk) as

A(θ) � [α(θ1),α(θ2), . . . ,α(θk), . . . ,α(θK )] (5)

and the kth element of S(t) is sk(t); where �(θ) and �(θ) denote rotation invariant factors
along y and x axes respectively, which can be described as

�(θ) � diag

([
e− j

2πdy cos θ1
λ , e− j

2πdy cos θ2
λ , . . . , e− j

2πdy cos θK
λ

]T)

(6)

�(θ) � diag

([
e− j

2πdx sin θ1
λ , e− j

2πdx sin θ2
λ , . . . , e− j

2πdx sin θK
λ

]T)
(7)

Remark 1 The reasons for choosing this array configuration are: (a) the array consists of
three sub-arrays with the same configuration as the proposed method takes use of rotation
invariant method; (b) the shared elements between sub-arrays are the most, meaning that this
configuration employs the least sensors (cross array can also meet this requirement; however,
DOA should satisfy the conditions in the proposed method for cross array:

cosαi − cosαl �� cosαm − cosαn (i �� l �� m �� n)

sin αi − sin αl �� sin αm − sin αn (i �� l �� m �� n)

cosαl �� cosαn (l �� n)

which are difficult to satisfy in practice).

When dx and dy are less than half of wavelength λ, the steering vector is different from
each other due to Assumption 3. It means that type I ambiguity (Schmidt 1986) can’t occur
so long as the requirements for dx and dy are satisfied, which can be seen clearly.

Assumption 4 If each steering vector is different from others in a steering matrix, and the
rank of steering matrix is equal to the number of steering vectors under the condition that
sensors are not less than sources, this steering matrix can be defined as unambiguity steering
matrix. In this paper, A(θ) is assumed to be the unambiguity steering matrix.

Remark 2 The case that steering matrix should be an unambiguity steering matrix is nec-
essary for all the subspace-based methods. In the case of a uniform linear array, if signals
come from different directions the steering matrix must be an unambiguity steering matrix;
however in the case of an array of other shape, it is not easy to give the requirements for
DOAs to make steering matrix unambiguous (Sylvie et al. 1995). It is still an open question
which is not the focus of this paper.

The data models (1)–(3) are without gain-phase errors. Taking the gain-phase errors into
account, the models should be modified as

X(t) � GX�XA(θ)S(t) + nX (t) (8)
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Y(t) � GY�YA(θ)�(θ)S(t) + nY (t) (9)

Z(t) � GZ�ZA(θ)�(θ)S(t) + nZ (t) (10)

where diagonal matrices Gi and � i (i � X, Y, Z ) denote gain error matrix and phase error
matrix respectively, and without loss of generality we assume that the reference element is
without gain or phase errors.

Thus, the problem addressed here is to simultaneously estimate the DOA and array gain-
phase errors using the array outputsX(t), Y(t) and Z(t) . Based on the modified models, the
proposed method is introduced as follows.

3 The proposed method

3.1 Estimate and remove gain errors

In the following, for simplicity the time variable is omitted. Based on the data models and
the assumptions on the properties of the signals and noise, the covariance matrix of each
sub-array output can be written as

Ri � Gi� iA(θ)RSAH (θ)�H
i GH

i + σ 2
n I (i � X, Y, Z) (11)

where RS � E
[
SSH

] � diag
([

σ 2
1 , σ 2

2 , · · · , σ 2
K

]T )
is covariance matrix of power of the

signal, and σ 2
n denotes the power of noise.

Decompose Ri and we have

Ri �
M∑

m�1

γ
(m)
i U(:,m)

i

(
U(:,m)
i

)H
(12)

where γi for Ri represents Eigen-value vector in which Eigen-values are arranged in
descending order, and Ui denotes Eigen-matrix whose column vectors are Eigen-vectors
corresponding to the elements in γi .

With the relationship between the diagonal elements of Ri and Gi , it is easy to estimate
the gain errors as

Ĝ(m,m)
i �

√√√√ R(m,m)
i − σ̂ 2

n

R(N−1,N−1)
X − σ̂ 2

n

(13)

where σ̂ 2
n as the estimation of σ 2

n can be given by

σ̂ 2
n � 1

M − K

M∑

m�K+1

γ
(m)
i (14)

The gain error estimated by (13) is independent of phase errors and it is proved in Liu
et al. (2011).
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3.2 Estimate DOA

3.2.1 When K=1

With the estimation of gain error matrix Ĝi , the covariance matrix can be compensated as

R̄i (θ ) � Ĝ−1
i

(
Ri (θ ) − σ̂ 2

n I
) (

Ĝ−1
i

)H � σ 2� iα(θ )α
H (θ )�H

i (15)

Decomposing R̄i (θ ), we can obtain

R̄i (θ ) � γ̄i (θ )ūi (θ )ūH
i (θ ) (16)

Owning to the relationship between the signal subspace and the steering vector, it can be
seen that

ξi (θ )� iα(θ ) � ūi (θ ) (17)

where ξi (θ ) � ū(N−1)
i (θ ).

Then rotating the whole array around origin by an unknown angle �θ , we have the new
covariance matrix R̄i (θ + �θ ). Similar to (15)–(17), an expression for θ + �θ is given as

ξi (θ + �θ )� iα(θ + �θ ) � ūi (θ + �θ ) (18)

With (17) and (18), it is easy to note that

(� iα(θ )) ◦ (� iα(θ + �θ ))∗ � α(θ ) ◦ α∗(θ + �θ )

�
(
ūi (θ )
ξi (θ )

)
◦
(
ūi (θ + �θ )

ξi (θ + �θ )

)∗
(19)

Expanding (19), we have

e− j 2π(N−m−1)dx (sin θ−sin(θ+�θ ))
λ �

(
ū(m)
i (θ )

ξi (θ )

)/(
ū(m)
i (θ + �θ )

ξi (θ + �θ )

)

(20)

e− j
2πmdy (cos θ−cos(θ+�θ ))

λ �
(
ū(N+m−1)
i (θ )

ξi (θ )

)/(
ū(N+m−1)
i (θ + �θ )

ξi (θ + �θ )

)

(21)

(m � 1, 2, . . . , N − 2)

Property Define a new steering vector γ(θi , θ j ) as γ(θi , θ j ) � α(θi ) ◦ α∗(θ j ) (θi �� θ j ).
If dx and dy are less than λ/4 and λ/2 respectively, type I ambiguity can’t occur. In other
words, there exist no DOA pairs (θk, θl ) �� (θi , θ j ) (θi �� θ j , θk �� θl ) which can make
γ(θi , θ j ) � γ(θk, θl ).

The proof of property is given in “Appendix A”.
According to the property, we assume that dx is less than λ/4 and dy is less than λ/2, and

DOA can be estimated from:

sin(θ + �θ ) − sin θ �
λ · �

{(
ū(N−2)
i (θ )
ξi (θ )

)/(
ū(N−2)
i (θ+�θ )
ξi (θ+�θ )

)}

2πdx
(22)

cos(θ + �θ ) − cos θ �
λ · �

{(
ū(N )
i (θ )
ξi (θ )

)/(
ū(N )
i (θ+�θ )
ξi (θ+�θ )

)}

2πdy
(23)
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The analytical solution of θ and �θ can be obtained from the proof of property in “Ap-
pendix A”, which is omitted here.

The DOA estimation θ̂ is independent of phase errors, which is proved in “Appendix B”.

3.2.2 When K>1

In order to take advantageof rotation invariant property, the cross covariancematrices between
sub-arrays X and Y , X and Z are required and denoted by RY X and RZ X :

RY X � E
[
YXH

]
� GY�YA(θ)�(θ)RSAH (θ)�H

XG
H
X + σ 2

n � (24)

RZ X � E
[
ZXH

]
� GZ�ZA(θ)�(θ)RSAH (θ)�H

XG
H
X + σ 2

n � (25)

where

� �
[
0(N−2)×(N−2) 0(N−2)×(N−1)

0(N−1)×(N−2) J(N−1)×(N−1)

]
� �

[
L(N−1)×(N−1) 0(N−1)×(N−2)

0(N−2)×(N−1) 0(N−2)×(N−2)

]

J �

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

0 1 0 · · · 0
0 0 1

. . .
...

0 0
. . .

. . . 0
...
. . .

. . .
. . . 1

0 · · · · · · 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

L �

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

0 0 0 · · · 0
1 0 0

. . .
...

0 1
. . .

. . . 0
...
. . .

. . .
. . . 0

0 · · · · · · 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

As the gain error and noise have been estimated in step A, the cross covariance matrices
can be compensated as

R̄Y X (θ) � Ĝ−1
Y

(
RY X (θ) − σ̂ 2

n �
) (

Ĝ−1
X

)H

� �YA(θ)�(θ)RSAH (θ)�H
X (26)

R̄Z X (θ) � Ĝ−1
Z

(
RZ X (θ) − σ̂ 2

n �
) (

Ĝ−1
X

)H

� �ZA(θ)�(θ)RSAH (θ)�H
X (27)

Similarly, the covariance matrix of sub-array X with gain errors and noise eliminated can
be written as

R̄X (θ) � Ĝ−1
X

(
RX (θ) − σ̂ 2

n I
) (

Ĝ−1
X

)H � �XA(θ)RSAH (θ)�H
X (28)

As the gain errors have been removed, the following task is to eliminate the phase errors.
It is noted that the phase errors are unit complex and they exist only in the phase of R̄Y X

(R̄Z X ,R̄X ), so Hadamard product of the (cross) covariance matrix and its conjugate is con-
sidered to remove the phase errors.

Define Hadamard product matrix R̃Y X (θ) as

R̃Y X (θ) � R̄Y X (θ) ◦ R̄∗
Y X (θ) (29)
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Based on (26), we have

R̄(p,q)
Y X (θ) � �

(p,p)
Y

�
(q,q)
X

K∑

k�1

e− j
2πdy cos θk

λ α(p)(θk)
(
α(q)(θk)

)∗
σ 2
k (30)

Then the element of R̃Y X (θ) can be written as

R̃(p,q)
Y X (θ) � R̄(p,q)

Y X (θ) ·
(
R̄(p,q)
Y X (θ)

)∗

�
⎛

⎝
K∑

k�1

e− j
2πdy cos θk

λ α(p)(θk )
(
α(q)(θk )

)∗
σ 2
k

⎞

⎠

⎛

⎝
K∑

k�1

e− j
2πdy cos θk

λ α(p)(θk )
(
α(q)(θk )

)∗
σ 2
k

⎞

⎠

∗

�
K∑

k2�1

K∑

k1�1

α(p)(θk1)
(
α(p)(θk2)

)∗ (
α(q)(θk1)

(
α(q)(θk2)

)∗)∗
e− j

2πdy (cos θk1−cos θk2)
λ σ 2

k1σ
2
k2

�
K∑

k2�1

K∑

k1�1

γ(p)(θk1, θk2)
(
γ(q)(θk1, θk2)

)∗
e− j

2πdy (cos θk1−cos θk2)
λ σ 2

k1σ
2
k2 (31)

So R̃Y X (θ) can be represented as

R̃Y X (θ) �
K∑

k2�1

K∑

k1�1

γ(θk1, θk2)γ
H (θk1, θk2)e

− j
2πdy (cos θk1−cos θk2)

λ σ 2
k1σ

2
k2

�
K∑

k2�1

K∑

k1�1
k1 ��k2

γ(θk1, θk2)γ
H (θk1, θk2)e

− j
2πdy (cos θk1−cos θk2)

λ σ 2
k1σ

2
k2 +

K∑

k�1

σ 4
k 1M×11TM×1

� �′(θ)�̃(θ)R̃S�
′H (θ) (32)

where

�′(θ) � [γ(θ1, θ2), γ(θ1, θ3), . . . , γ(θk1, θk2), . . . , γ(θK , θK−1), 1M×1
]

R̃S � diag

⎛

⎝
[

σ 2
1 σ 2

2 , σ 2
1 σ 2

3 , . . . , σ 2
k1σ

2
k2, . . . , σ

2
K σ 2

K−1,

K∑

k�1

σ 4
k

]T⎞

⎠

�̃(θ) � diag

([
e− j

2πdy (cos θ1−cos θ2)
λ , . . . , e− j

2πdy (cos θk1−cos θk2)
λ , . . . , e− j

2πdy (cos θK −cos θK−1)
λ , 1

]T)

.

In the same way, Hadamard product matrix R̃X (θ) and R̃Z X (θ) can be expressed as

R̃X (θ) � R̄X (θ) ◦ R̄∗
X (θ) � �′(θ)R̃S�

′H (θ) (33)

R̃Z X (θ) � R̄Z X (θ) ◦ R̄∗
Z X (θ) � �′(θ)�̃(θ)R̃S�

′H (θ) (34)

where

�̃(θ) � diag

([
e− j

2πdx (sin θ1−sin θ2)
λ , . . . , e− j

2πdx (sin θk1−sin θk2)
λ , . . . , e− j

2πdx (sin θK −sin θK−1)
λ , 1

]T)

.
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Assumption 5 The new steering matrix �(θ) constructed by γ(θi , θ j ) is assumed to be the
unambiguity steering matrix, which should be also satisfied in Liu et al. (2011); however the
author doesn’t mention it.�′(θ) can be seen as a particular�(θ), so based on this assumption
it is also an unambiguity steering matrix.

Remark 3 The number of sensors of sub-array should be larger than K (K −1)+1 at least; in
order to estimate DOAs unambiguously, dx is less than λ/4 and dy is less than λ/2 (sufficient
conditions for estimating DOAs unambiguously), which should be noticed in this paper.

On condition that dx is less than λ/4 and dy is less than λ/2 (each steering vector is
different from others in �′(θ)), and K (K − 1) + 1 ≤ M (�′(θ) is a thin matrix), based on
Assumption 5 the rank of �′(θ) must be equal to the number of columns of �′(θ), which
indicates that subspace method can be used to estimate DOAs. Unfortunately, the vector
1M×1 may dominate in the column space of R̃Y X (θ) (R̃Z X (θ),R̃X (θ)) as its weight is much
larger than others. In other words, it can be regarded as a strong interference signal from a
common DOA. Especially when θk1 is spatially close to θk2, γ(θk1, θk2) ≈ 1 and it is difficult
to distinguish θk1 and θk2 (Liu et al. 2011). So it is necessary to eliminate the effect of 1M×1,
and then the problem can be transformed to estimate

∑K
k�1 σ 4

k .
Based on the property of �′(θ), we extract the middle K (K − 1) + 1 rows from �′(θ) to

construct the new steering matrix �̃′(θ) (it can be seen as �′(θ) with corresponding sensors
as many as sources), and it is noted that square matrix �̃′(θ) is full rank. So the rank of

corresponding Hadamard product matrix ˜̃RY X (θ) � �̃′(θ)�̃(θ)R̃S�̃
′H (θ) is full (we extract

the middle K (K −1)+1 rows and themiddle K (K −1)+1 columns from R̃Y X (θ) to construct˜̃RY X (θ)), as �̃′(θ),R̃S and �̃(θ) are all non-singular.
Now define

ˆ̃RY X (θ) � ˜̃RY X (θ) − κ1[K (K−1)+1]×11T[K (K−1)+1]×1 (35)

From (35) we note that, in general, if and only if κ �∑K
k�1 σ 4

k ,

rank
( ˆ̃RY X (θ)

)
� K (K − 1) < rank

( ˜̃RY X (θ)
)

� K (K − 1) + 1 (36)

which means that

det
( ˆ̃RY X (θ)

)
� 0 (37)

Combining (35) with (37), we have

det
( ˜̃RY X (θ) − κ1[K (K−1)+1]×11T[K (K−1)+1]×1

)

� det( ˜̃RY X (θ)) · det
(
I − κ

˜̃R−1

Y X (θ)1[K (K−1)+1]×11T[K (K−1)+1]×1

)

� 0 (38)
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As ˜̃RY X (θ) is non-singular, the determinant of ˜̃RY X (θ) can not be zero. Therefore, it is
obvious that

det

(
I − κ

˜̃R−1

Y X (θ)1[K (K−1)+1]×11T[K (K−1)+1]×1

)

� det

([
I − κ

˜̃R−1

Y X (θ)1[K (K−1)+1]×11T[K (K−1)+1]×1 κ
˜̃R−1

Y X (θ)1[K (K−1)+1]×1

0T[K (K−1)+1]×1 1

])

� det

([
I κ

˜̃R−1

Y X (θ)1[K (K−1)+1]×1

1T[K (K−1)+1]×1 1

])

� det

⎛

⎝

⎡

⎣ I κ
˜̃R−1

Y X (θ)1[K (K−1)+1]×1

0T[K (K−1)+1]×1 1 − κ1T[K (K−1)+1]×1
˜̃R−1

Y X (θ)1[K (K−1)+1]×1

⎤

⎦

⎞

⎠

� 1 − κ1T[K (K−1)+1]×1
˜̃R−1

Y X (θ)1[K (K−1)+1]×1

� 0 (39)

So (39) has the analytical solution κ as

κ � 1

1T[K (K−1)+1]×1
˜̃R−1

Y X (θ)1[K (K−1)+1]×1

(40)

Cao andYe (2013) has also presented amethod to estimate
∑K

k�1 σ 4
k . However, themethod

in Cao and Ye (2013) is based on Eigen-decomposition, and it has no closed form solution.
The comparisons are given in Sect. 4.

With 1 component being subtracted, the Hadamard product matrices can be modified as

R̃X (θ) �
K∑

k2�1

K∑

k1�1
k1 ��k2

γ(θk1, θk2)γ
H (θk1, θk2)σ

2
k1σ

2
k2 � �(θ)R̃′

S�
H (θ) (41)

R̃Y X (θ) �
K∑

k2�1

K∑

k1�1
k1 ��k2

γ(θk1, θk2)γ
H (θk1, θk2)e

− j
2πdy (cos θk1−cos θk2)

λ σ 2
k1σ

2
k2

� �(θ)�̃
′
(θ)R̃′

S�
H (θ) (42)

R̃Z X (θ) �
K∑

k2�1

K∑

k1�1
k1 ��k2

γ(θk1, θk2)γ
H (θk1, θk2)e

− j
2πdx (sin θk1−sin θk2)

λ σ 2
k1σ

2
k2

� �(θ)�̃′(θ)R̃′
S�

H (θ) (43)

where

�(θ) � [γ(θ1, θ2), γ(θ1, θ3), . . . , γ(θk1, θk2), . . . , γ(θK , θK−1)
]

R̃′
S � diag

([
σ 2
1 σ 2

2 , σ 2
1 σ 2

3 , . . . , σ 2
k1σ

2
k2, . . . , σ

2
Kσ 2

K−1

]T )

�̃
′
(θ) � diag

([
e− j

2πdy (cos θ1−cos θ2)
λ , . . . , e− j

2πdy (cos θk1−cos θk2)
λ , . . . , e− j

2πdy (cos θK −cos θK−1)
λ

]T)
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�̃′(θ) � diag

([
e− j

2πdx (sin θ1−sin θ2)
λ , . . . , e− j

2πdx (sin θk1−sin θk2)
λ , . . . , e− j

2πdx (sin θK −sin θK−1)
λ

]T)

In order to obtain �̃
′
(θ) and �̃′(θ), the orthogonal joint diagonalization based on second-

order statistics for (41)–(43) is introduced.
First whiten (41)–(43) by a whitening matrix W as

R̃′
X (θ) � W�(θ)R̃′

S�
H (θ)WH � UUH � I (44)

R̃′
Y X (θ) � W�(θ)�̃

′
(θ)R̃′

S�
H (θ)WH � UΦ̃

′
(θ)UH (45)

R̃′
Z X (θ) � W�(θ)�̃

′
(θ)R̃′

S�
H (θ)WH � U�̃

′
(θ)UH (46)

where whitening matrix W is defined as

W �
[
(
ε(1)
)−1/ 2 V(:,1),

(
ε(2)
)−1/ 2 V(:,2), . . . ,

(
ε(K (K−1))

)−1/ 2
V(:,K (K−1))

]H

where ε represents Eigen-value vector of R̃X (θ) in which Eigen-values are arranged in
descending order, and V denotes Eigen-matrix whose column vectors are Eigen-vectors
of R̃X (θ) corresponding to the elements in ε.

So the problem of estimating �̃
′
(θ) and �̃

′
(θ) can be transformed to jointly diagonalize

R̃′
Y X (θ) and R̃′

Z X (θ). Let R̃′(θ) �
{
R̃′

Y X (θ), R̃′
Z X (θ)

}
be a set of two matrices. The “joint

diagonality” (JD) criterion is defined for any [K (K − 1)] × [K (K − 1)] matrix Q, as the
following non-negative function of Q:

C(Q)
def� ∑

i�Y,Z

∥∥∥diag
(
QR̃′

i X (θ)Q
H
)∥∥∥

2

2
(47)

A unitary matrix is said to be a joint diagonalizer of the set R̃′(θ) if it maximizes the JD
criterion (47) over the set, which can be expressed as

max
Q

C(Q) �
∑

i�Y,Z

∥∥∥diag
(
QR̃′

i X (θ)Q
H
)∥∥∥

2

2

s.t. QQH � QHQ � I (48)

The estimate of Q in (48) approximate to UH can be deduced by the simultaneous diag-
onalization method such as Jacobi technique, which can be seen in “Appendix C”.

To determine DOA pair (θk1, θk2), based on (45) and (46), as QH can be regarded as
the eigenvector of both R̃′

Y X (θ) and R̃′
Z X (θ), the one-to-one correspondence preserved in

the positional correspondence on the diagonals between �̃
′(i,i)

(θ)’s and �̃
′(i,i)

(θ)’s can be
obtained. And then the analytical solution of θk1 and θk2 can be estimated from the diagonals
of �̃

′
(θ) and �̃

′
(θ) referring to “Appendix A”.

Remark 4 As all three Hadamard product matrices R̃X (θ), R̃Y X (θ) and R̃Z X (θ) are indepen-
dent of the phase errors, the DOAs estimated with the three matrices are independent of the
phase errors.

Remark 5 �̃
′
(θ) and �̃

′
(θ) canbe estimatedby joint diagonalizationmethod, and the elements

of them in the positional correspondence on the diagonals can be paired through this process,

which means that pair matching techniques for (e− j
2πdy (cos θk1−cos θk2)

λ , e− j
2πdx (sin θk1−sin θk2)

λ ) is
not required.
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3.3 Estimate phase errors

The phase errors can be calculated with the estimated DOAs as in the method used in Weiss
and Friedlander (1990):

�̂Whole � T−1(θ̂ ) · w
wTT−1(θ̂ )w

(49)

where

T(θ̂ ) �
K∑

k�1

FH (θ̂k)UWhole−NUH
Whole−NF(θ̂k)

F(θ̂k) � diag(αWhole(θ̂k))

w � [1, 0, 0, . . . , 0]T

where αWhole andUWhole−N denote the ideal steering vector of the whole array and the noise
subspace of covariance matrix of the whole array respectively.

Consequently, the proposed method is summarized as follows.

Step 1 Gain errors are estimated by (13) and compensated;
Step 2 If the number of signal is only one, the DOA can be estimated with (22) and (23); if
the number of signals is larger than one, the DOAs can be obtained from �̃

′
(θ) and �̃

′
(θ)

in (45) and (46) estimated with joint diagonalization method;
Step 3 Based on the DOA estimates from step 2, phase errors are estimated by (49).

The DOA estimation is presented above in the presence of gain-phase errors. The gain
and phase errors can also be calculated in step A and C respectively. Based on the analysis,
it is clear that the proposed method is independent of phase errors and it requires neither
calibrated sources nor parameter search. However, its drawback is also obvious that sensors
of sub-array should be more than sources and this method is difficult to be implemented in
estimating 2-D DOAs.

4 Discussions

4.1 Compared with the method proposed in Cao and Ye (2013)

Now the comparison between the proposed method and the one in Cao and Ye (2013) is
presented in this section. It can be found that these methods have some similarities. Both of
them consist of three steps and the steps for gain errors estimation and phase errors estimation
are the same. And these methods perform independently of phase errors.

Of course, there are some differences between the proposed one and the method in Cao
and Ye (2013), which can be seen as the improvements of the one in Cao and Ye (2013).

First, the proposed method exploits the relationship between the signal subspace and the
steering vector, and Hadamard product of signal subspace and its conjugate to solve the
problem of DOA estimation when the number of signal is only one, which is difficult to deal
with by the method in Cao and Ye (2013).

Second, the proposedmethodproposes amethod to estimate the coefficient of 1 component
with the relationship between rank and determinant, which can obtain analytical solution
of κ . However, the solution of κ in Cao and Ye (2013) has no closed form. The detail is
demonstrated in section B.
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Third, in proposed method, rotation invariant property between sub-arrays of double L-
shaped array and orthogonal joint diagonalization are utilized to estimate �̃

′
(θ) and �̃

′
(θ),

which include the information on DOA. While the method in Cao and Ye (2013) adopts 2-D
MUSIC to search DOA pair which indicates the heavy load of complexity, and the discussion
on complexity is presented as follows.

If the number of signal is only one, in the proposed method the complexity mainly comes
from the Eigen-decomposition of Ri (θ ) in (12) and R̄i (θ ) (R̄i (θ + �θ )) in (15), and the
total complexity is 3M3. If the number of signal is larger than one, the complexity mainly
comes from the Eigen-decomposition of Ri and orthogonal joint diagonalization of R̃X (θ),
R̃Y X (θ) and R̃Z X (θ) in (41)–(43). The complexity of Eigen-decomposition of Ri is M3, and
complexity of orthogonal joint diagonalization of R̃X (θ), R̃Y X (θ) and R̃Z X (θ) is similar to
three times diagonalization of a single K (K−1)-dimensional squarematrix,whichmeans that
complexity of diagonalization is 3[K (K−1)]3. So the total complexity is 3M3+3[K (K−1)]3

when K>1.
Meanwhile, the complexity of the method in Cao and Ye (2013) is from the Eigen-

decomposition of the covariance matrix, the estimate of κ and peak search of the spatial
spectrum. Obviously, the Eigen-decomposition is (2M)3. The load of estimate of κ is
Q(2M)3 which is discussed in the following section B (Q denotes the times of Eigen-
decomposition ofR4), and the complexity of 2-DMUSIC peak search of the spatial spectrum
is (2M)[4M−2K (K−1)+1]ν (ν � (π

/
�α)2 denotes the search number, where�α denotes

the search step; if�α � 0.1◦, the search number is more than 3×106). So the total complex-
ity is (2M)[4M − 2K (K − 1) + 1]ν + Q(2M)3 + (2M)3. From the comparison it is clear that
the complexity of proposed method is much lower than the method in Cao and Ye (2013),
which can be seen as an improvement relative to method in Cao and Ye (2013).

4.2 Discussion on eliminating 1 component

Cao and Ye (2013) also presents a method to estimate the coefficient of 1 component, which
is based on the relationship between large Eigen-values corresponding to signal subspace
and rank of matrix. It can be described as a non-convex optimization problem on κ:

κ̂ � min
κ

χ(K (K−1)+1)

∑K (K−1)
i�1 χ(i)

κ ∈
⎡

⎣
(

K∑

k�1

σ 2
k

)2/

K ,

(
K∑

k�1

σ 2
k

)2⎤

⎦ (50)

R4(κ) � R2 − κ1 · 1T (51)

where R2 represents Hadamard product of the covariance matrix of the whole array output
removing gain errors and noise and its conjugate, χ denotes Eigen-value vector of R4, and
the Eigen-values in χ are arranged in descending order.

As the objective function in (50) is not convex, the common convex optimization methods
are not available. The method in Cao and Ye (2013) is searching the minimum of (50) with
a limited sample of κ , whose performance depends on the search step of κ . Furthermore, the
estimation of (50) at each iteration requires Eigen-value vector χ, which means the Eigen-
decomposition of a 2M-dimensional square matrix. And in order to guarantee the accuracy,
the search step can’t be too large, which may bring on a huge search number, indicating
Eigen-decomposing a 2M-dimensional square matrix lots of times.

Unlike Cao and Ye (2013), the estimate of κ is owing to the relationship between determi-
nant and rank of matrix in proposed method. From (35) to (40) it can be seen that analytical

solution of κ can be obtained and the complexity mainly comes from the inversion of ˜̃RY X ,
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which is only [K (K − 1) + 1]3. So compared with Cao and Ye (2013), the proposed method
has an advantage of estimating the coefficient of 1 component obviously.

5 Simulation results

In this section, simulation results are presented to illustrate the validity of the proposed
method. The range of the DOAs of signals is confined in

(− π
/
2, π

/
2
)
. Consider a double

L-shaped array consisting of 18 elements (M=9) with dx � λ/4 and dy � λ/2. The gain-
phase uncertainties are described by (Liu et al. 2011)

G(m,m)
i � 1 +

√
12δ ξ

(m,m)
i

� �
(m,m)
i � √

12μς
(m,m)
i

where ξ
(m,m)
i and ς

(m,m)
i are independent and identically distributed random variables dis-

tributed uniformly over (−0.5, 0.5), δ and μ are the standard deviations of G(m,m)
i and

� �
(m,m)
i , respectively.
The simulations include two cases as follows:

Case 1 K=1 Here we compare the performance of the proposed method withW–Fmethod
and the method proposed in Ng et al. (2009) named by B–J method, which are the repre-
sentative on-line and off-line methods respectively.
Case 2 K>1 The compared methods chosen are W–F method, B–J method, the method
in Liu et al. (2011) named by Liu’s method and the method in Cao and Ye (2013) named
by Cao’s method. The reason for choosing the first two methods as reference is the same
with Case 1, and comparing the proposed method with the last two methods is to illustrate
the improvements of the proposed method. In Liu et al. (2011) the authors also proposed
a strategy of combining Liu’s method with the W–F method, which is not considered
here. The reason is that this combined strategy requires both alternative iteration and 2-D
MUISC search, which means its computation load is heavier than Liu’s method.

In the simulations below, δ � 0.1 and for all Monte Carlo experiments, the number of
trials is 200.

5.1 Case 1 K=1

In this case there are four experiments on the effects of array rotating angle�θ , phase errors,
signal-to-noise ratio (SNR) and sample number presented as follows.

5.1.1 Effect of �θ

In this experiment the SNR is 10 dB, number of samples is 500 and μ is 25°. The single
source comes from 40°. Figure 2 shows the root mean square error (RMSE) of DOA estimate
versus �θ . From Fig. 2 it is shown that the performance gets better as �θ increases in the
proposed method. The reason is that the proposed method can be seen as a calibrated method
using two disjoint sources (unknown DOAs) with separated angle �θ , and as �θ increases
the correlation of signal subspace Ūi (θ ) and Ūi (θ + �θ ) decreases, which indicates that the
accuracy and resolution of DOA estimates increase.
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Fig. 2 RMSE of DOA estimates versus array rotating angle

Fig. 3 RMSE of DOA estimates versus μ

5.1.2 Effect of phase errors

Consider a signal impinging on the array from direction 40°, and the array rotating angle
�θ � 5◦. The calibrated source for B–J method is at 25°. The SNR is 10 dB and number of
samples is 500. Based on Monte Carlo experiments, the RMSE curves of DOA versus the
standard deviation of the phase errors μ are shown in Fig. 3.

From Fig. 3 it is clear that the accuracy of B–J method is the best in the three methods
as it is an off-line method which can estimate the gain-phase errors exactly with a calibrated
source. Meanwhile W–F method performs better than the proposed method in the case of
small phase errors, and as phase errors increase the accuracy of the proposedmethod becomes
higher than W–F method because W–F method fails when phase errors are large. The reason
is that the W–F method converges to suboptimal solutions in large phase errors, which leads
to the degradation of its performance. And it is noted that both the proposed method and
B–J method perform independently of phase errors, while the performance of W–F method
is affected by phase errors seriously.

123



Multidim Syst Sign Process (2019) 30:465–491 481

Fig. 4 RMSE of DOA estimates versus SNR

Fig. 5 RMSE of DOA estimates versus sample number

5.1.3 Effect of SNR

This experiment is to confirm the performance of the three methods versus SNR. Consider a
signal impinging on the array from direction 40°, and the array rotating angle �θ � 5◦. The
calibrated source for B–J method is at 25°. The number of samples is 500 and μ is 25°.

Figure 4 shows the RMSE of the DOA estimates versus SNR. From Fig. 4 it is shown
that both the proposed method and B–J method perform better as the SNR increases. And
regardless of SNR, the performance of B–Jmethod is better than the proposedmethod, which
is the advantage of off-line method. However, in such large phase errors, the W–F method
stays at a low level as it fails no matter how high the SNR is.

5.1.4 Effect of sample number

To demonstrate the effect of sample number, we provide an experiment for DOA estimates
versus sample number. Consider a signal impinging on the array from direction 40°, and the
array rotating angle �θ � 5◦. The calibrated source for B–J method is at 25°. The SNR is
10 dB and μ is 25°. The RMSE of the DOA estimates is shown in Fig. 5.
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Table 1 Estimation error and complexity of Cao’s method for κ

Search step Number of Eigen-
decomposition

Running time Estimate of κ Error of κ (%)

10 W 24 25 ms 150 4.2

5 W 48 49 ms 140 2.7

1 W 240 232 ms 142 1.3

0.5 W 480 476 ms 143 0.62

0.1 W 2400 2.1 s 144.5 0.42

0.01 W 24,000 22.4 s 143.72 0.12

Table 2 Estimation error and complexity of proposed method for κ

Running time Estimate of κ Error of κ (%)

1.2 ms 143.78 0.07

From this figure we can see that in large phase errors, the W–F method fails regardless
of the number of samples, meanwhile the other two methods behave better as the sample
number increases as covariance matrix is closer to its true value as the number of samples
increases, which can result in the signal subspace of covariance matrix approximate to the
true value. And similar to Fig. 4, the proposed method performs worse than B–J method for
the same reason with the previous simulation.

5.2 Case 1 K>1

In this case there is a comparison on estimating κ and four experiments on the effects of
DOA separation, phase errors, SNR and sample number presented as follows.

5.2.1 Comparison on estimating κ

In this experiment there are three signals impinging on the array with the power 1.8, 5.7 and
10.4 W from direction 10°, 32° and − 48°, and the true value of κ is 143.89 W 2. The power
of noise is 1 W, number of samples is 500 and μ is 25°.

Carry out Cao’s method and the proposed method, and we can obtain Tables 1 and 2 as
follows.

Form Table 1 it is shown that in Cao’s method as the search step decreases the estimation
accuracy of κ becomes better because estimation resolution is dependent on search step, and
meanwhile the search number increases which indicates the number of Eigen-decomposition
grows up.

FromTable 2 it can be seen that the estimate accuracy of κ can reach 0.07% in the proposed
method, and running time is 1.2ms. To achieve the approximate accuracy in Cao’smethod the
search step should be 0.01 W, and the number of Eigen-decomposition is larger than 2× 104

whose running time is 22.4 s. From the comparison it can be seen that the proposed method
is superior to Cao’s method; especially when the number of sources are large, meaning the
high dimension array being used, the complexity can be reduced visibly comparedwith Cao’s
method.
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Fig. 6 RMSE of DOA estimates versus DOA separation

5.2.2 Effect of DOA separation

To verify the effect of the DOA separation, an experiment for the case is presented when
DOA separation of the signals are different. Assume that there are two signals impinging on
the array with the power 5.7 and 10.4 W, whose DOAs are denoted by θ1 and θ2 respectively.
θ1 is fixed at 10° and θ2 varies from 11° to 40°. So the DOA separation varies from 1° to 30°.
In order to guarantee the running time of Cao’s method, the search step is 1W. The calibrated
source for B–J method is at 25°. Other simulation parameters are the same as those in the
previous experiment. The RMSE curves of DOA versus DOA separation are shown in Fig. 6.
The Cramer–Rao bound (CRB) for on-line method is also displayed.

From Fig. 6 it is shown that when DOA separation is small, all calibrated methods fail. As
the DOA separation gets larger, the performance of all methods becomes better except W–F
method because of the large μ. From this figure we can also note that all on-line methods
cannot reach the CRB. In all of these methods (including CRB), the B–J method behaves best
as expected because this off-line method employs more effective information from calibrated
sources. Except the B–J method the proposed method has the best performance regardless
of DOA separation. The proposed method outperforms Cao’s method mainly resulting from
higher accuracy of κ estimated in proposed method, and as Liu’s method doesn’t eliminate
effect of 1 component its performance must be worst among the three methods especially
when the DOA separation is not large.

5.2.3 Effect of phase errors

In this experiment the simulation of DOA estimation versus the standard deviation of the
phase errors μ is given. Assume that there are three signals impinging on the array with the
power 1.8, 5.7 and 10.4 W from direction 10°, 32° and − 48°. The power of noise is 1 W,
number of samples is 500. The search step for Cao’s method and the DOA of calibrated
source for B–J method are the same with the previous experiment respectively.

Figure 7 shows the curves of DOA estimation versus μ. From Fig. 7 we can see the W–F
method is affected by phase errors obviously: when μ < 15◦ it can work however when
μ > 15◦ it fails. On the contrary, the rest four methods can perform independently of phase
errors. And the B–J method remains the best performance with the drawback of requirement
for calibrated source. Among the rest three methods whose performance is independent of
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Fig. 7 RMSE of DOA estimates versus μ

Fig. 8 RMSE of DOA estimates versus SNR

phase errors, the proposed one has the highest accuracy as expected. Cao’s method behaves
better than Liu’s as the effect of 1 component is eliminated. The CRB is also independent of
the sensor phase which is consistent with the Property 1 in Sect. 4 of Xie et al. (2017a).

5.2.4 Effect of SNR

Consider three signals with the same power from 10°, 32° and− 48°. The number of samples
is 500 and μ is 25°. SNR verifies from 0 to 30 dB. Figure 8 shows the RMSE of the DOA
estimates versus SNR.

From Fig. 8 it is shown that all methods perform better as the SNR increases. In low SNR
interval, the performance of W–F method gets better visibly meanwhile when SNR exceeds
10 dB, the variety of its performance is not obvious as the performance is subject to phase
errors. Among the other four methods, the B–J method still has the highest accuracy; and the
performance of the proposed method comes second. Cao’s method performs still better than
Liu’s. As the SNR increases the performance of the four methods gets closer.
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Fig. 9 RMSE of DOA estimates versus sample number

5.2.5 Effect of sample number

This is the last experiment in this section. Consider three signals with the same power from
10°, 32° and − 48°. The SNR is 10 dB and μ is 25°. The sample number verifies from 100
to 1000. Figure 9 shows the RMSE of the DOA estimates versus sample number.

FromFig. 9 it can be found that all methods perform better as the sample number increases,
and among these methods the performance of W–F method meliorates least obviously. The
B–J method behaves better than the rest three methods regardless of sample number. The
proposed method can work when sample number reaches 300, meanwhile Cao’s method and
Liu’s method achieve the same accuracy the threshold of sample number should be more
than 500 and 700, respectively.

6 Conclusion

In this paper, we present a novel method to deal with the DOA estimation problem in the
presence of gain and phase errors. Considering taking use of rotation invariant property
and employing the least sensors, we choose the double L-shaped array as received array.
The proposed method based on double L-shaped array requires neither calibrated sources
nor multidimensional parameter search, and its performance is independent of the phase
errors. And Compared with Liu’s method, it inherits the advantage of Liu’s method and
can overcome the four drawbacks of Liu’s method mentioned above. Its drawback is also
obvious that sensors of sub-array should be more than sources and this method is difficult to
be implemented in estimating 2-DDOAs. How to deal with the 2-DDOA estimation problem
in the presence of gain and phase errors independently of the phase errors is still an open
question, which may take use of more information on signals or require more complicated
array configuration. And this method is also difficult to deal with multipath signals (Xie
et al. 2017b). So there is much room for improvement for this method according to these
drawbacks.

Acknowledgements The authors would like to thank the anonymous reviewers for their many insightful
comments and suggestions, which helped improve the quality and readability of this paper.
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Appendix A: Proof of the Property

Assume that there can exist different DOA pairs (θk, θl ) �� (θi , θ j )(θi �� θ j , θk �� θl ),
which can make γ(θi , θ j ) � γ(θk, θl ). So each element in γ(θi , θ j ) is the same with the
corresponding one in γ(θk, θl ). Based on this assumption, we have

γ(N−2)(θi , θ j ) � γ(N−2)(θk, θl ) (52)

γ(N )(θi , θ j ) � γ(N )(θk, θl ) (53)

Expanding (52) and (53), we obtain

e− j
2πdx (sin θi−sin θ j )

λ � e− j
2πdx (sin θk−sin θl )

λ (54)

e− j
2πdy (cos θi−cos θ j )

λ � e− j
2πdy (cos θk−cos θl )

λ (55)

It follows from (54) and (55) that

dx (sin θi − sin θ j )

λ
� dx (sin θk − sin θl )

λ
+ n (56)

dy(cos θi − cos θ j )

λ
� dy(cos θk − cos θl )

λ
+ m (57)

(m, n � 0,±1,±2, . . .)

As θi , θ j , θk and θl are all in the interval
(−π

/
2,π

/
2
)
, and under the condition that dx

is less than one quarter of wavelength λ and dy is less than the half, it can be seen that

dx (sin θi − sin θ j )

λ
− dx (sin θk − sin θl )

λ
� n ∈ (−1, 1) (58)

dy(cos θi − cos θ j )

λ
− dy(cos θk − cos θl )

λ
� m ∈ (−1, 1) (59)

From (58) and (59) we obtain

n � m � 0 (60)

Based on (56), (57) and (60) can be modified as

sin θi − sin θ j � sin θk − sin θl � p (61)

cos θi − cos θ j � cos θk − cos θl � q (62)

As sinusoidal function in the interval
(− π

/
2,π

/
2
)
is monotonically increasing, sin θi −

sin θ j can’t be zero.Meanwhile cos θi −cos θ j may be zero due to non-monotonicity of cosine
function in the same interval. So there are two cases on (62).

Case 1

cos θi − cos θ j � cos θk − cos θl � q � 0 (63)

Combining (61) with (63), we have

θi � θk � −θ j � −θl � arcsin
p

2
(64)

which contradicts the assumption (θk, θl ) �� (θi , θ j ).
Case 2

cos θi − cos θ j � cos θk − cos θl � q �� 0 (65)
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From (61) and (62) we have

tan
θi − θ j

2
� tan

θk − θl

2
� − q

p
(66)

So

cos2
θi + θ j

2
� cos2

θk + θl

2
� q2

p2 + q2
(67)

As θi , θ j , θk and θl are all in the interval
(−π

/
2, π

/
2
)
,

θi+θ j
2 ∈ (−π

/
2, π

/
2
)
and

θk+θl
2 ∈ (−π

/
2,π

/
2
)
. It follows (67) that

cos
θi + θ j

2
� cos

θk + θl

2
� |q|
√
p2 + q2

(68)

Submitting (61)–(68), we can obtain

sin
θi − θ j

2
� sin

θk − θl

2
� p

√
p2 + q2

2 |q| (69)

Combining (68) with (69), we have

θi � θk � arccos
|q|

p2 + q2
+ arcsin

p
√
p2 + q2

2 |q| (70)

θ j � θl � arccos
|q|

p2 + q2
− arcsin

p
√
p2 + q2

2 |q| (71)

which also contradicts the assumption (θk, θl ) �� (θi , θ j ).
From cases 1 to 2, it can be seen that the assumption that (θk, θl ) �� (θi , θ j )(θi �� θ j ,

θk �� θl ) can’t hold. So there exist no DOA pairs (θk, θl ) �� (θi , θ j ) (θi �� θ j , θk �� θl ) which
can make γ(θi , θ j ) � γ(θk, θl ).

In consequence, the proof of the property is completed, and it can also be regarded as
a special case of Theorem 2 in Xie et al. (2017), which gives the proof by geometrical
explanation of vectors on θp, θq .

Appendix B: Proof of the phase errors independence of DOA estimation
when K=1

Combining (15) with (16), we have

R̄i (θ ) � σ 2� iα(θ )α
H (θ )�H

i � γ̄i (θ )ūi (θ )ūH
i (θ ) (72)

Now define a new covariance matrix R̄′
i (θ ) as (73)

R̄′
i (θ ) � �H

i R̄i (θ )� i (73)

So (73) can be written as

R̄′
i (θ ) � �H

i R̄i (θ )� i � σ 2α(θ )αH (θ ) � γ̄i (θ )�
H
i ūi (θ )(�H

i ūi (θ ))H (74)

Because of the properties of � i that � i is a diagonal matrix and the absolute values of
diagonal elements are equal to unity, it is noted that

ūH
i (θ )ūi (θ ) � ūH

i (θ )� i�
H
i ūi (θ ) � 1 (75)
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Owing to (75), we right multiply (74) by �H
i ūi (θ ) and obtain that

R̄′
i (θ )�

H
i ūi (θ ) � γ̄i (θ )�

H
i ūi (θ ) (76)

which indicates that�H
i ūi (θ ) is the eigenvector of R̄′

i (θ ) corresponding to the only non-zero
Eigen-value.

As R̄′
i (θ ) � σ 2α(θ )αH (θ ) is independent of the phase errors, its eigenvector �H

i ūi (θ )
must be independent of the phase errors.

Similarly, �H
i ūi (θ + �θ ) must be independent of the phase errors.

So (22) can be rewritten with �H
i ūi (θ )

sin(θ + �θ ) − sin θ �
λ · �

{(
ū(N−2)
i (θ )
ξi (θ )

)/(
ū(N−2)
i (θ+�θ )
ξi (θ+�θ )

)}

2πdx

�
λ · �

{(
ū(N−2)
i (θ )

ū(N−1)
i (θ )

)/(
ū(N−2)
i (θ+�θ )

ū(N−1)
i (θ+�θ )

)}

2πdx

�
λ · �

{(
�H

i ū(N−2)
i (θ )

�H
i ū(N−1)

i (θ )

)/(
�H

i ū(N−2)
i (θ+�θ )

�H
i ū(N−1)

i (θ+�θ )

)}

2πdx
(77)

As �H
i ūi (θ ) and �H

i ūi (θ + �θ ) are both independent of the phase errors, their elements

�H
i ū(N−1)

i (θ ), �H
i ū(N−1)

i (θ + �θ ), �H
i ū(N−2)

i (θ ) and �H
i ū(N−2)

i (θ + �θ ) in (77) are all
independent of the phase errors.

The independence of (23) can be proved in the same way.
Consequently, (22) and (23) are both independent of the phase errors, so DOA estimated

from them must be independent of phase errors.

Appendix C: Realization of joint diagonalization

Similar to use Jacobi technique to achieve Eigen-decomposition, we can also extend it to
the joint diagonalization of a set of normal matrices. Just like the realization of Eigen-
decomposition of single matrix, joint diagonalization can be carried out by successive Givens
rotations, and each rotation leads to maximize criterion (47).

Considering a rotation indexed by (ε, η), the Givens rotation matrix g(ε, η, ϑ) can be
expressed as

g(ε, η, ϑ) �

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 · · · 0 · · · 0 · · · 0
...
. . .

...
...

...
0 · · · c∗ · · · s∗ · · · 0
...

...
. . .

...
...

0 · · · −s · · · c · · · 0
...

...
...
. . .

...
0 · · · 0 · · · 0 · · · 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

ε

η

ε η (78)

where ε � 1, 2, · · · K (K − 1) − 1, η � ε + 1, ε + 2, · · · , K (K − 1).

123



Multidim Syst Sign Process (2019) 30:465–491 489

As R̃′
Y X (θ) and R̃′

Z X (θ) are real symmetric matrices, the Eigen-matrix must be real-
valued. So real-valued c and s can be represented by one parameter ϑ as

c � cosϑ s � sin ϑ (79)

With the property of Givens rotation matrix, the problem of (48) can be transformed to
the following formula at each rotation:

max
g

∑

i�Y,Z

∥
∥
∥diag

(
�̃i X (θ) � g(ε, η, ϑ)R̃′

i X (θ)gH (ε, η, ϑ)
)∥∥
∥
2

2
(80)

Expanding (80), we can obtain

max
ϑ

∑

i�Y,Z

[(�̃
(ε,ε)
i X (θ))2 + (�̃

(η,η)
i X (θ))2] (81)

Noticing that

2[(�̃
(ε,ε)
i X (θ))2 + (�̃

(η,η)
i X (θ))2]

�
(
�̃
(ε,ε)
i X (θ) + �̃

(η,η)
i X (θ))2 + (�̃

(ε,ε)
i X (θ) − �̃

(η,η)
i X (θ)

)2
(82)

and that the trace �̃
(ε,ε)
i X (θ) + �̃

(η,η)
i X (θ) is invariant in a unitary transformation, at each Givens

step optimization of criterion (81) is equivalent to

max
ϑ

∑

i�Y,Z

(
�̃
(ε,ε)
i X (θ) − �̃

(η,η)
i X (θ)

)2
(83)

It is checked that

�̃
(ε,ε)
i X (θ) − �̃

(η,η)
i X (θ)

� (R̃′(ε,ε)
i X (θ) − R̃′(η,η)

i X (θ))(c2 − s2) − (R̃′(ε,η)
i X (θ) + R̃′(η,ε)

i X (θ))2cs

� (R̃′(ε,ε)
i X (θ) − R̃′(η,η)

i X (θ)) cos 2ϑ − (R̃′(ε,η)
i X (θ) + R̃′(η,ε)

i X (θ)) sin 2ϑ

�
[
−(R̃′(ε,η)

i X (θ) + R̃′(η,ε)
i X (θ)) (R̃′(ε,ε)

i X (θ) − R̃′(η,η)
i X (θ))

] [ sin 2ϑ
cos 2ϑ

]

� αT
i X (ε, η)β(ϑ) (84)

where

αi X (ε, η) �
[
−(R̃′(ε,η)

i X (θ) + R̃′(η,ε)
i X (θ)) (R̃′(ε,ε)

i X (θ) − R̃′(η,η)
i X (θ))

]T

β(ϑ) �
[
sin 2ϑ
cos 2ϑ

]

So (83) can be rewritten as

max
ϑ

∑

i�Y,Z

βT (ϑ)αi X (ε, η)α
T
i X (ε, η)β(ϑ)

� max
ϑ

βT (ϑ)G(ε, η)GT (ε, η)β(ϑ)

� max
ϑ

βT (ϑ)G(ε, η)GT (ε, η)β(ϑ)

βT (ϑ)β(ϑ)
(85)

where G(ε, η)GT (ε, η) �∑i�Y,Z αi X (ε, η)αT
i X (ε, η).
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Maximizing a quadratic form under the unit norm constraint of its argument is classically
obtained by taking β(ϑ) to be the eigenvector of G(ε, η)GT (ε, η) associated with the largest
Eigen-value. Once β(ϑ) is obtained, the Givens rotation matrix g(ε, η, ϑ) can be obtained.

Joint diagonalization of a set of normal matrices can be achieved by successive Givens
rotations, in other words it can be carried out by product of successive Givens rotation
matrices. The product of successive Givens rotation matrices can be considered as a joint
diagonalizer and as the iteration has been finished, �̃Y X (θ) (�̃Z X (θ)) can be seen as �̃

′
(θ)

(�̃
′
(θ)) respectively.
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