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Abstract This paper proposes a fast non-iterative approach to the design of an odd-order
bi-equiripple variable-delay (VD) digital filter whose mathematical model is a multi-variable
(MV) transfer function. The objective of the bi-equiripple design is to minimize the maxi-
mum frequency-response deviation of this MV transfer function while mitigating the large
overshoots of the VD response at the same time. Since the group-delay function is nonlinear
with respect to the MV transfer-function coefficients, it is first linearized through using an
approximate approach. This linearization enables the bi-equiripple VD filter to be designed
with linear constraints, and the bi-equiripple design is then formulated as a convex minimiza-
tion problem. The convex minimization does not require any iterations and thus it is fast and
yields a convergent optimal solution. Solving the convex minimization problem produces a
bi-equiripple VD filter with minimized worst-case frequency-response error and mitigated
VD-deviation overshoots (jumps). An illustrating example is presented to demonstrate the
above simultaneous deviation suppressions.

Keywords Multi-variable (MV) Transfer function · Group-delay · Variable-delay (VD)
filter · Odd-order VD filter · Linearized group-delay error · Bi-equiripple design

1 Introduction

Variable non-integer group-delay digital filters are recognized as an important class of
signal processing systems. Since such a delay system has continuously variable-delay
(VD) characteristics, arbitrary delay value can be obtained on-line in the process of sig-
nal processing applications (Farrow 1988; Liu and Wei 1992). The VD filters have lots of
applications, including sampling-rate alteration (arbitrary noninteger-ratio up-sampling or
down-sampling), signal interpolation, and delay estimation. Different from the traditional
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filter having unchangeable frequency response, the VD filter has a multi-parameterized
transfer function, i.e., its mathematical model is a multi-variable (MV) transfer function.
The extra parameter in the MV transfer function tunes the delay characteristics and thus
introduces the delay tunability. The VD filter design problem is basically an approxima-
tion problem involving two-dimensional (2-D) indices (delay element and delay parameter),
and the approximation problem itself is to approximate the desired VD characteristics in
the least-squares sense or minimax sense. Most of the developed design methods yield a
VD filter approximating the desired frequency-response (FreRes) by minimizing either the
integral squared error or the maximum FreRes error (Deng 2001, 2004; Deng and Lian
2006; Deng 2007; Soontornwong and Chivapreecha 2015; Tseng and Lee 2012; Liu and
You 2007; Pei et al. 2012; Deng 2011; Deng and Qin 2013; Deng 2012b), but this may
produce a VD filter whose group-delay deviations are too large. Hence, some efforts have
been devoted to the suppressions of the VD-error overshoots (jumps) such that the over-
shoots can be mitigated (Deng 2012a; Deng and Qin 2014; Deng and Soontornwong 2016;
Deng et al. 2012). For simplicity, we refer to such a design the bi-equiripple design. In
Deng (2012a) and Deng and Qin (2014), iterative procedures are taken to solve the bi-
equiripple design problem. The difficulty lies in the nonlinearity of the VD function because
the group-delay characteristic is nonlinear with respect to the transfer-function coefficients.
The nonlinear VD function makes the bi-equiripple design extremely nonlinear, which can-
not be solved by using a convex minimization technique. In Deng (2012a), the nonlinear
group-delay expression is first simplified as a bi-linear one, and then iterative procedures are
taken to find the two coefficient vectors by iteratively minimizing a mixed error function.
In Deng and Qin (2014), a weighting function is further adopted in the iterative process to
further enhance the delay-error suppression. As mentioned in Deng and Qin (2014), one
can only uses a heuristic method to find an appropriate weighting function and no way to
guarantee the optimality of the weighting function. Furthermore, the iterative design process
takes a long time to converge and the final solution is definitely a locally optimal solu-
tion.

This paper aims to overcome the above difficulty through approximately linearizing the
group-delay error function as a perfectly linear one (not bi-linear function). By employing this
newly proposed linearization technique, we can obtain a completely linearized group-delay
error formula. This linearized group-delay error enables us to formulate the bi-equiripple
design as a convex minimization problem. More specifically, a bi-equiripple VD filter can be
designed by converting the bi-equiripple design problem to a convex minimization problem.
The cost function to be minimized is a weighted summation of the upper bounds on the delay
errors and FreRes errors. That is, this cost function is a mixed one, where a weighting factor is
utilized to link the two error bounds. TheVD-filter designer can change the factor to adjust the
trade-off between the two error bounds. The convex minimization includes two sets of design
constraints. One set includes linear-inequality constraints, and the other includes quadratic-
cone (Qcone) constraints. The linear-inequality constraints are imposed on the upper bound
of group-delay errors, and the Qcone constraints are imposed on the upper bound of absolute
FreRes errors. Solving the convex minimization problem produces the optimal bi-equiripple
solution. To summarize, this non-iterative bi-equiripple design strategy has the following
distinct features and important advantages.

1. Since the constraints imposed on the VD errors are linear inequalities, they become linear
programming (LP) constraints in the bi-equiripple design. Thus, the bi-equiripple design
are non-iterative. This non-iterative design is much simpler and faster than the iterative
ones in Deng (2012a) and Deng and Qin (2014);
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2. A weighting function is no longer needed in the bi-equiripple design because the newly
derived VD-error formula is much more accurate than the existing one in Deng (2012a)
and Deng and Qin (2014). In Deng and Qin (2014), the weighting function is selected
by trial and error;

3. The proposed bi-equiripple design algorithm is weighting-free and non-iterative, which
is always convergent and can get more accurate design with much less computations than
the iterative ones in Deng (2012a) and Deng and Qin (2014).

2 Two kinds of error expressions

Since this paper uses both the complex-valued FreRes error function and group-delay error
function to formulate the bi-equiripple design, the next subsection first briefly reviews the
complex-valued FreRes error function derived in Deng (2007, 2012a) and Deng and Qin
(2014). This is for the easy-understanding reason.After reviewing the complex-valuedFreRes
error function, we proceed to the key point of this section, i.e., we derive a completely
linearized group-delay error function. The core of this paper is to formulate a new non-
iterative bi-equiripple design approach by employing the two error expressions.

2.1 VFR error

For the sake of easy understanding, this subsection needs to first briefly review the previously
derived FreRes in Deng (2007) and the complex-valued FreRes error function in Deng (2007,
2012a) and Deng and Qin (2014). This is because they will be used later in deriving the
linearized VD error and formulating the new non-iterative design.

The desired FreRes characteristic of the odd-order design is

D̂(ω, τ̂ ) = e− jωτ̂ , τ̂ ∈ [0, 1] (1)

where τ̂ is the ideal group-dealy. Obviously, this is a 2-D function that involves both ω and τ̂ .
In regard to the frequency ω, it is defined in the full frequency band ω ∈ [0, π], but we only
approximate D̂(ω, τ̂ ) in the interested band ω ∈ [0, ωc], 0 < ωc < π during the design, and
no approximation in the uninterested frequency band ω ∈ (ωc, π] is done. This is based on
the assumption that important frequency components of the signals are located only in the
frequency band of interest.

By using τ to substitute τ̂ as

τ̂ = 0.5 + τ

we arrive at

D̂(ω, τ̂ ) = e− j0.5ωD(ω, τ) (2)

with

D(ω, τ) = e− jωτ

τ ∈ [−0.5, 0.5]. (3)

Then, it is necessary to approximate D̂(ω, τ̂ ) in (2) by utilizing the transfer function

Ĥ(z, τ ) =
N1∑

k=−N

hk(τ )z−k (4)
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with N1 = N + 1, and

hk(τ ) =
I∑

i=0

c(k, i)τ i (5)

where I is the order of the polynomials hk(τ ). The primary objective is to determine the
optimal coefficients c(k, i). Once c(k, i) are found, we can change the coefficients hk(τ ) by
changing the value of τ . This generates a new FreRes of Ĥ(z, τ ).

By incorporating (5) into (4), we obtain the 2-variable transfer function

Ĥ(z, τ ) =
N1∑

k=−N

I∑

i=0

c(k, i)z−kτ i

=
Ie∑

i=0

Êi (z)τ
2i +

Io∑

i=1

Ôi (z)τ
2i−1

(6)

with

Ie =
⌊
I

2

⌋
, Io =

⌈
I

2

⌉
(7)

where � �, � � are the floor function and the ceiling function, respectively. Also, the filters

Êi (z) =
N1∑

k=−N

c(k, 2i)z−k , i = 0, 1, . . . , Ie

Ôi (z) =
N1∑

k=−N

c(k, 2i − 1)z−k, i = 1, 2, . . . , Io

(8)

have fixed coefficients and thus unchangeable frequency charactersitics (Farrow 1988). In
filtering applications, we only need to change the value of τ and get a new filter characteristic.

By adopting the symmetries

c(k, 2i) = c(1 − k, 2i), i = 0, 1, . . . , Ie
c(k, 2i − 1) = −c(1 − k, 2i − 1), i = 1, 2, . . . , Io

(9)

given in Deng (2007), we can change (6) to the form

Ĥ(z, τ ) = z−0.5H(z, τ ) (10)

with

H(z, τ ) =
Ie∑

i=0

Ei (z)τ
2i +

Io∑

i=1

Oi (z)τ
2i−1

Ei (z) =
N1∑

k=1

c(k, 2i)
[
z(k−0.5) + z−(k−0.5)

]

Oi (z) = −
N1∑

k=1

c(k, 2i − 1)
[
z(k−0.5) − z−(k−0.5)

]
.

(11)

Since Ĥ(z, τ ) in (10) approximates D̂(ω, τ̂ ) in (2), this implies that H(z, τ ) needs to approxi-
mate D(ω, τ) in (3).As shown inDeng (2007), the sub-filters Ei (z) andOi (z) can be designed
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to have different orders so as to further reduce the filter cost. By using such an unequal-order
formulation, we write the frequency responses

Ei (ω) =
Ne(i)+1∑

k=1

ai (k) cos(k − 0.5)ω = cTi (ω)ai

Oi (ω) = (− j) ·
No(i)+1∑

k=1

bi (k) sin(k − 0.5)ω = (− j) · sTi (ω)bi

(12)

where

ai (k) = 2c(k, 2i), k = 1, 2, . . . , Ne(i) + 1
bi (k) = 2c(k, 2i − 1), k = 1, 2, . . . , No(i) + 1

cTi (ω) = [
cos(ω

2 ) cos( 3ω2 ) . . . cos(Ne(i) + 0.5)ω
]

sTi (ω) = [
sin(ω

2 ) sin( 3ω2 ) . . . sin(No(i) + 0.5)ω
]
.

(13)

By using the vectors

ai =

⎡

⎢⎢⎢⎣

ai (1)
ai (2)

...

ai (Ne(i) + 1)

⎤

⎥⎥⎥⎦ , i = 0, 1, . . . , Ie

bi =

⎡

⎢⎢⎢⎣

bi (1)
bi (2)

...

bi (No(i) + 1)

⎤

⎥⎥⎥⎦ , i = 1, 2, . . . , Io

we obtain the vector-form FreRes

H(ω, τ) =
Ie∑

i=0

[
cTi (ω)ai

]
τ 2i − j

Io∑

i=1

[
sTi (ω)bi

]
τ 2i−1

=
Ie∑

i=0

uTi ai − j
Io∑

i=1

vTi bi

= uT a − jvT b

= �(ω, τ) − j�(ω, τ)

(14)

with

�(ω, τ) = uT a

�(ω, τ) = vT b

uT = [
uT0 uT1 . . . uTIe

]
, uTi (ω) = cTi (ω)τ 2i

vT = [
vT1 vT1 . . . vTIo

]
, vTi (ω) = sTi (ω)τ 2i−1

a =

⎡

⎢⎢⎢⎣

a0
a1
...

a Ie

⎤

⎥⎥⎥⎦ , b =

⎡

⎢⎢⎢⎣

b1
b2
...

bIo

⎤

⎥⎥⎥⎦ . (15)
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Thus, the complex-valued FreRes error can be computed as

eH (ω, τ) = H(ω, τ) − D(ω, τ)

= �(ω, τ) − j�(ω, τ) − e− jωτ

= ec(ω, τ) − jes(ω, τ)

(16)

with

ec(ω, τ) = �(ω, τ) − cos(ωτ)

es(ω, τ) = �(ω, τ) − sin(ωτ).
(17)

The next section will use (16) to formulate the new bi-equiripple design.

2.2 New delay-error expression: linearized group-delay error

We have shown that the group-delay error is a nonlinear function of the VD-filter coefficients
(Deng 2012a; Deng and Qin 2014). This makes the bi-equiripple design problem difficult to
solve. To tackle this design problem, the bi-equiripplemethods proposed inDeng (2012a) and
Deng and Qin (2014) have to incorporate iterative procedures. Unfortunately, such iterations
not only require heavy computation burden, but also may diverge. Furthermore, there is not
a systematic way to find the optimal weighting function, and this can only be done through
trial and error (Deng and Qin 2014). The final design accuracy is certainly affected by the
selected weighting function as well as the stopping (termination) criterion.

The main purpose of this paper is to present a non-iterative design approach that needs
no iterations and gets better design results. This non-iterative approach requires much less
computational burden and does not involve any divergence issue as the existing iterative
approach (Deng and Qin 2014). The core of this non-iterative design approach lies in the
following newly developed technique for linearizing the group-delay error function. The
technique can approximately linearize the group-delay error function as a linear one.

LetΘd(ω, τ) andΘ(ω, τ) be the desired phase and actual phase, respectively. The desired
FreRes in (3) implies that the desired phase is

Θd(ω, τ) = −ωτ.

Thus, the phase error is

eΘ(ω, τ) = Θ(ω, τ) − Θd(ω, τ). (18)

If Θ(ω, τ) approximates Θd(ω, τ) well, i.e., if eΘ(ω, τ) is small enough, then

eΘ(ω, τ) ≈ sin eΘ(ω, τ)

= êΘ(ω, τ)

= sin(Θ(ω, τ) − Θd(ω, τ))

= sinΘ(ω, τ) cosΘd(ω, τ) − sinΘd(ω, τ) cosΘ(ω, τ)

= −�(ω, τ)

A(ω, τ)
cosΘd(ω, τ) − sinΘd(ω, τ)

�(ω, τ)

A(ω, τ)

(19)

where A(ω, τ) is the amplitude response of H(ω, τ) in (14), i.e.,

A(ω, τ) = |H(ω, τ)|
= |�(ω, τ) − j�(ω, τ)|
=

√
�2(ω, τ) + �2(ω, τ).

(20)
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Since the desired amplitude in (3) is

Ad(ω, τ) = |D(ω, τ)| = |e− jωτ | = 1

if H(ω, τ) approximates D(ω, τ) well, then we have

A(ω, τ) ≈ Ad(ω, τ) = 1.

This leads to the approximation

êΘ(ω, τ) ≈ −�(ω, τ) cosΘd(ω, τ) − sinΘd(ω, τ)�(ω, τ). (21)

Utilizing (21) gets the group-delay error (or variable-delay error: VD error)

eg(ω, τ) = −∂eΘ(ω, τ)

∂ω

≈ êg(ω, τ)

= −∂ êΘ(ω, τ)

∂ω

= ∂�(ω, τ)

∂ω
cosΘd(ω, τ) − sinΘd(ω, τ)�(ω, τ) · (−τ)

+ ∂�(ω, τ)

∂ω
sinΘd(ω, τ) + cosΘd(ω, τ)�(ω, τ) · (−τ)

=
[
�̂(ω, τ) sinΘd(ω, τ) − �(ω, τ) · τ cosΘd(ω, τ)

]

+
[
�̂(ω, τ) cosΘd(ω, τ) + �(ω, τ) · τ sinΘd(ω, τ)

]

(22)

where �̂(ω, τ) and �̂(ω, τ) are the partial derivatives of �(ω, τ) and �(ω, τ) with respect
to ω, respectively, i.e.,

�̂(ω, τ) = ∂�(ω, τ)

∂ω
= ûT a

�̂(ω, τ) = ∂�(ω, τ)

∂ω
= v̂

T b
(23)

with

ûT = ∂uT

∂ω
=

[
ûT0 ûT1 . . . ûTIe

]

ûTi = ĉTi (ω)τ 2i , i = 0, 1, . . . , Ie

v̂
T = ∂vT

∂ω
=

[
v̂
T
1 v̂

T
2 . . . v̂

T
Io

]

v̂
T
i = ŝTi (ω)τ 2i−1, i = 1, 2, . . . , Io

and

ĉTi (ω) = ∂cTi (ω)

∂ω

= − [
0.5 sin(0.5ω) 1.5 sin(1.5ω) . . . (Ne(i) + 0.5) sin(Ne(i) + 0.5)ω

]

ŝTi (ω) = ∂sTi (ω)

∂ω

= [
0.5 cos(0.5ω) 1.5 cos(1.5ω) . . . (No(i) + 0.5) cos(No(i) + 0.5)ω

]
.
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Consequently, the group-delay error eg(ω, τ) can be approximated as

êg(ω, τ) =
[
ûT sinΘd(ω, τ) − uT · τ cosΘd(ω, τ)

]
a

+
[
v̂
T cosΘd(ω, τ) + vT · τ sinΘd(ω, τ)

]
b

= μT a + νT b

(24)

with

μT = ûT sinΘd(ω, τ) − uT · τ cosΘd(ω, τ)

νT = v̂
T cosΘd(ω, τ) + vT · τ sinΘd(ω, τ).

(25)

Clearly, the resulting êg(ω, τ) is a completely linear function of the unknown vectors a and
b.

3 Non-iterative bi-equiripple approach

To reduce the delay-error overshoots while retaining the FreRes errors at a specified low
level, we state the bi-equiripple design as

minimize ε = γ εH + (1 − γ )εg

subject to (s.t.)

{
constraint-1: |eH (ω, τ)| ≤ εH
constraint-2: |êg(ω, τ)| ≤ εg

(26)

where the cost function ε combines the two error bounds εH and εg , and γ is a weighting fac-
tor, 0 ≤ γ ≤ 1. A large γ implies that the minimization of the FreRes-errors is emphasized,
and a small γ implies that the minimization of the group-delay errors is emphasized. There-
fore, there is a trade-off between εH and εg . Clearly, this design problem is a constrained
minimization problem subject to two error bounds.

Next, let us analyze the two constraints in detail. The constraint-1

|eH (ω, τ)| =
√
e2c (ω, τ) + e2s (ω, τ)| ≤ εH

in (26) is imposed on the FreRes errors to constrain the FreRes errors below the upper bound
εH . More specifically, this constraint is a Qcone constraint, which can be written as

⎡

⎣
εH

ec(ω, τ)

es(ω, τ)

⎤

⎦ =
⎡

⎣
εH

uT a − cos(ωτ)

vT b − sin(ωτ)

⎤

⎦ ∈ Kq (27)

where Kq stands for Qcone. On the other hand, the constraint-2

|êg(ω, τ)| ≤ εg

in (26) is imposed on the group-delay errors, which means

−εg ≤ êg(ω, τ) ≤ εg

and can be further split into two inequalities

εg + êg(ω, τ) ≥ 0

εg − êg(ω, τ) ≥ 0
(28)
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where êg(ω, τ) is given in (24). Since êg(ω, τ) is a linear function of the unknown vectors,
the constraints in (28) are simply the LP-constraints. This is the core point of the proposed
non-iterative design approach.

By combining the above two constraints (Qcone constraint and LP constraints) together,
we can rewrite the original form in (26) as

minimize ε = γ εH + (1 − γ )εg

s.t.
⎡

⎣
εH

ec(ω, τ)

es(ω, τ)

⎤

⎦ =
⎡

⎣
εH

uT a − cos(ωτ)

vT b − sin(ωτ)

⎤

⎦ ∈ Kq

εg + êg(ω, τ) ≥ 0
εg − êg(ω, τ) ≥ 0.

(29)

By letting

βT = − [
γ (1 − γ ) 0 . . . 0

]
, y =

⎡

⎢⎢⎣

εH
εg
a
b

⎤

⎥⎥⎦

c1 =
⎡

⎣
0

− cos(ωτ)

− sin(ωτ)

⎤

⎦ , AT
1 = −

⎡

⎣
1 0 0 0
0 0 uT 0
0 0 0 vT

⎤

⎦

c2 =
[
0
0

]
, AT

2 = −
[
0 1 μT νT

0 1 −μT −νT

]

the minimization expression in (29) can be converted to the maximization problem

maximize − ε = βT y

s.t.

c1 − AT
1 y ∈ Kq

c2 − AT
2 y ≥ 0.

(30)

This is the dual problem of the primal minimization problem in (26), which is solved subject
to two kinds of constraints (Qcone and LP constraints).

To solve this problem, L1 sampled points in ω ∈ [0, ωc] and L2 sampled points in
τ ∈ [0, 0.5] are used. That is, the maximization problem in (30) is solved at L1L2 grid
points. In addition, as mentioned in (12), this paper uses unequal orders

Ne = [
Ne(0) Ne(1) . . . Ne(Ie)

]

No = [
No(1) No(2) . . . No(Io)

] (31)

and those orders can be determined by using an order-optimization technique similar to that
in Deng (2011). This optimization algorithm is originally proposed for finding the optimal
orders for the even-order case, but we can readily extend it to this odd-order case. In Deng and
Qin (2014), the above orders are found by using this optimization technique. The first step is
to determine the optimal orders byminimizing the FreRes errors only such that the maximum
FreRes error is smaller than a given upper bound ε̂H , for example, ε̂H = −103 decibel (dB).
Then, the second step is to apply the proposed non-iterative bi-equiripple method to design
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Fig. 1 FreRes errors |eH (ω, τ)| (Qcone method)
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Fig. 2 FreRes errors |eH (ω, τ)| for τ = 0.2, 0.4, 0.5 (Qcone method)
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Table 1 Peak errors and CPU-time (min)

Method εH (dB) ετ Coefficients CPU-time
(min)

Qcone design (Deng 2012b) − 103.2997 0.000551 162 1.15

Qcone design (Deng 2012b) − 100.0929 0.000719 154 1.09

New non-iterative method
(γ = 0.94)

− 100.0406 0.000192 162 3.28

Iterative bi-equiripple (Deng
2012a) (γ = 0.987748)

− 101.4385 0.000295 162 7.61

Iterative bi-equiripple (Deng
and Qin 2014)
(γ = 0.987748)

− 100.0372 0.000231 162 5.79

Allpass two-step scheme
(Deng and Soontornwong
2016) (τ ∈ [−0.5, 0.5])

− 95.1521 0.001379 171 4.00
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Fig. 5 Relation between γ and εH (non-iterative bi-equiripple)

a bi-equiripple VD filter with group-delay-error overshoots suppressed. For comparison, the
next section will use the same orders optimized in Deng and Qin (2014).

Before ending this section, we need to further comment on the trade-off between the
FreRes errors and the VD errors. Generally speaking, a large value of the weighting factor γ

in (26) leads to small peak value (εH ) of the absolute FreRes errors, but this conversely leads
to large group-delay overshoots. Therefore, the proposed bi-equiripple design compromises
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Fig. 6 Relation between γ and εg (non-iterative bi-equiripple)

the two peak values εH and εg . Once an upper bound ε̃H dB of the final FreRes errors is
given, for example, ε̃H = −100 dB, we can always find a γ to meet the design requirement.
The next section will use a bi-equripple design example to demonstrate the trade-off between
εH and εg . We will also show the relation between γ and εH and the relation between γ and
εg .

4 Odd-order bi-equiripple example

Let us approximate D(ω, τ) in (3) for ωc = 0.9π . That is, the interested frequency band is
ω ∈ [0, 0.9π]. For the comparison with Deng and Qin (2014), other design parameters are
also set the same. More specifically, the polynomial order is I = 7, i.e., (Ie, Io) = (3, 4), the
grid-point numbers are (L1, L2) = (201, 31), and the optimized orders are

[
Ne(0) Ne(1) Ne(2) Ne(3)

] = [
34 33 25 13

]
[
No(1) No(2) No(3) No(4)

] = [
18 17 11 3

]
.

(32)

As mentioned previously, those orders are optimized subject to the upper bound ε̂H = −103
dB (Deng and Qin 2014). Thus, the designed VD-filter Ĥ(z, τ ) employs 162 coefficients.
Because these orders are determined by minimizing the largest value of the absolute FreRes
errors, the design may cause too large group-delay errors around the boundaries of ω ∈
[0, ωc], τ ∈ [−0.5, 0.5]. Hence, it is necessary to proceed to the non-iterative bi-equiripple
design to weaken the overshoots of the group-delay errors. The objective of the non-iterative
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Fig. 7 Trade-off between εH and εg (non-iterative bi-equiripple)

bi-equiripple design is to further weaken the overshoots of the group-delay errors subject
to the condition that the peak value (εH ) of the absolute FreRes-errors does not exceed the
predetermined upper bound ε̃H = −100 dB.

The design accuracy is evaluated by using the maximum absolute FreRes-error εH and
the maximum group-delay error εg defined by

εH = max
{
20 log10 |eH (ω, τ)|}

εg = max
{|eg(ω, τ)|}

and the two errors are computed by using the samples of ω ∈ [0, ωc], τ ∈ [−0.5, 0.5]. The
sampling intervals for ω and τ are ωc/(L1 − 1) and 0.5/(L2 − 1), respectively. Therefore,
201 × 61 grid points are used in the error computations.

For comparing the proposed non-iterative bi-equiripple designwith other existing designs,
we first begin by performing the Qcone design proposed in Deng (2012b) that only mini-
mizes the peak value of the absolute FreRes-errors |eH (ω, τ)|. The resulting FreRes errors
|eH (ω, τ)| are illustrated in Fig. 1. For the three individual values of τ = 0.2, 0.4, 0.5, the
corresponding errors |eH (ω, τ)| are separately plotted in Fig. 2. Although this Qcone design
yields flat FreRes errors, the group-delay errors |eg(ω, τ)| have overshoots as shown in
Fig. 3. Figure 4 plots the details for the three individual values τ = 0.2, 0.4, 0.5. Obviously,
the errors |eg(ω, τ)| near the boundaries become very large (overshoots). The non-iterative
bi-equiripple design aims to cut such overshoots. Table 1 lists the peak values (εH and εg)
of |eH (ω, τ)| and |eg(ω, τ)|, where the Qcone design yields εH = −103.2997 dB and
εg = 0.000551.
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Fig. 8 FreRes errors |eH (ω, τ)| (non-iterative bi-equiripple, γ = 0.94)

Before performing the newly proposed non-iterative bi-equiripple design, we first inves-
tigate the relation between the weighting factor γ and εH as well as the relation between γ

and εg . Figure 5 depicts εH versus γ , and Fig. 6 plots εg versus γ . The two figures show that
as γ increases, εH gradually decreases whereas εg gradually increases. As γ approaches one,
εg becomes significantly large. Therefore, we can select an appropriately large value of γ to
mitigate εg without significantly increasing εH . Figure 7 illustrates the trade-off between εH
and εg when γ varies in the range [0.8, 1).

Here, we design a bi-equiripple VD filter by using the new non-iterative approach such
that it satisfies the requirement ε̃H = −100 dB. The same illustrative example has also been
taken in Deng and Qin (2014). To satisfy this requirement, we take γ = 0.94 and design a
bi-equiripple VD filter using a PC with 3.20GHz-CPU. The resulting errors εH , εg and CPU-
time are given in Table 1. For the sake of comparison, Table 1 also provides the design results
by employing the existing design approaches in Deng (2012a) and Deng and Qin (2014) that
intend to weaken the overshoots of the group-delay errors. Evidently, the final εH from the
proposed non-iterative bi-equiripple is just below the upper-bound requirement ε̃H = −100
dB. Also, the maximum group-delay error εg is the smallest. As for the computation time, the
non-iterative approach also costs much shorter CPU-time than the iterative designs (Deng
2012a; Deng and Qin 2014). For reference, Table 1 also shows the computer simulation
results of using the Qcone method in Deng (2012b) to satisfy the requirement ε̃H = −100
dB. It follows that less coefficients (154 coefficients) are required to satisfy the requirement,
but the overshoot (0.000719) of the group-delay errors is fairly large.

Figure 8 plots the absolute FreRes errors |eH (ω, τ)| from the non-iterative bi-equiripple
design with λ = 0.94, and Fig. 9 depicts |eH (ω, τ)| for the three individual values τ =
0.2, 0.4, 0.5. Clearly, the errors |eH (ω, τ)| are nearly equiripple. Figure 10 plots the group-
delay response, and Fig. 11 shows the errors |eg(ω, τ)|, where the peak value is 0.000192. The
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Fig. 9 Absolute FreRes errors for τ = 0.2, 0.4, 0.5 (non-iterative bi-equiripple, γ = 0.94)

group-delay errors |eg(ω, τ)| for τ = 0.2, 0.4, 0.5 are individually illustrated in Fig. 12. We
can see that the overshoots of |eg(ω, τ)| have been mitigated through using the non-iterative
design technique as compared to Fig. 2. Therefore, our design results have verified that
the proposed non-iterative bi-equiripple approach can obtain a bi-equiripple VD filter with
greatly weakened delay-error overshoots. Moreover, the non-iterative bi-equiripple design
costs much shorter CPU-time than the existing iterative approaches (Deng 2012a; Deng and
Qin 2014). Another key point that is worthy to notice again is that this non-iterative bi-
equiripple approach does not involve any divergence issue because the design problem is
converted into a convex minimization problem, while the weighting function selected in the
existing iterative approach Deng and Qin (2014) affects the VD-filter accuracy and may lead
to a non-convergent solution. Therefore, the proposed non-iterative bi-equiripple design is
simpler, faster, and more accurate than the iterative ones.

In Deng and Soontornwong (2016), an allpass bi-equiripple design has been proposed,
and its computer simulation results are given in Table 1 (τ ∈ [−0.5, 0.5]). It follows from
Table 1 that the new non-iterative method can achieve better results than the allpass counter-
part.

5 Conclusion

This paper has introduced a new algorithm for linearizing the group-delay error of a VD filter
and this linearized delay-error function has been successfully employed in converting the bi-
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Fig. 11 Group-delay errors |eg(ω, τ)| (non-iterative bi-equiripple, γ = 0.94)
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Fig. 12 Group-delay errors |eg(ω, τ)| for τ = 0.2, 0.4, 0.5 (non-iterative bi-equiripple, γ = 0.94)

equirippleVD-filter design to a convexminimization problem.The cost function of the convex
minimization problem is a linear combination of both the peak value of absolute FreRes-errors
and the peak value of absolute group-delay errors. Solving the convex minimization problem
yields a bi-equiripple VDfilter with greatlymitigated delay-error overshoots while the upper-
bound requirement on the FreRes errors can be perfectly satisfied. Since the non-iterative
approach does not need any iterations, it is computationally efficient and can always arrive at a
convergent solution. From the viewpoint of computation time, the proposed non-iterative bi-
equiripple design also requires much shorter CPU-time than the iterative approaches (Deng
2012a; Deng and Qin 2014). Thanks to the newly derived group-delay error function, the
bi-equiripple VD-filter can be designed fast and accurately. A bi-equiripple example has
verified the accuracy improvement and the computational reduction. It is possible to extend
this odd-order non-iterative scheme to the design of even-order VD filters with weakened
overshoots of the group-delay errors.
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