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Abstract Parameter estimation has wide applications in one-dimensional and multidimen-
sional signal processing and filtering. This paper focuses on the parameter estimation problem
of multivariate output-error autoregressive systems. Based on the data filtering technique and
the auxiliary model identification idea, we derive a filtering based auxiliary model general-
ized stochastic gradient algorithm. The key is to choose an appropriate filter to filter the
input-output data and to study a novel method to get the system model parameters and noise
model parameters respectively. By employing the multi-innovation identification theory, a
filtering based auxiliary model multi-innovation generalized stochastic gradient algorithm is
proposed. Compared with the auxiliary model generalized stochastic gradient algorithm, the
proposed algorithms can generate more accurate parameter estimates. Finally, an illustrative
example is provided to verify the effectiveness of the proposed algorithms.

Keywords Parameter estimation - Filtering technique - Multi-innovation identification -
Multivariate system - Auxiliary model

1 Introduction

With the development of control theory and the demand of engineering practices, the mul-
tivariable systems widely exist in all kinds of control processes (Cheng and Ugrinovskii
2016) and signal processing (Li and Zhang 2015). Compared with single variable systems,
multivariable systems have more complex structures (Saikrishna et al. 2017) and uncertain
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disturbances (Xing et al. 2016; Jafari et al. 2014). As a consequence, the identification prob-
lems for multivariable systems have attracted a lot of attention (Mercere and Bako 2011;
Mu and Chen 2013; Cham et al. 2017). Katayama and Ase (2016) considered the linear
approximation and identification of multi-input multi-output (MIMO) Wiener—-Hammerstein
systems and applied the separable least squares algorithm to estimate the parameters. In order
to improve the estimation accuracy, Wang and Ding (2016) proposed an auxiliary model
based recursive least squares parameter estimation algorithm for MIMO systems by filtering
input-output data. Cheng et al. (2017) proposed the subspace identification methods for two-
dimensional causal, recursive, and separable-in-denominator systems, which are applicable
to both open-loop and closed-loop data. Recently, a gradient based parameter estimation
method has been proposed for multivariate pseudo-linear systems using the multi-innovation
and the data filtering (Ma and Ding 2017). In this paper, we use the multidimensional input
and output signals to study the parameter identification problems for the multivariate system.

The data filtering technique is used to eliminate noises and outliers to reduce the noise-
to-signal ratio in signal processing (Dhabal and Venkateswaran 2017; Ding et al. 2017,
Tseng and Lee 2017; Zhao et al. 2017b), and has been employed to deal with the parameter
estimation problem of systems which contains colored noises (Afshari et al. 2017). Differing
from eliminating noises, the data filtering method in system identification only changes
the structure of the system and does not change the relationship between the inputs and
outputs (Pan et al. 2016; Ding et al. 2017a). Pan et al. (2017) used the filtering technique and
the multi-innovation identification theory to identify the multivariable system with moving
average noise, and proposed the filtering based multi-innovation extended stochastic gradient
algorithm for improving the parameter estimation accuracy.

Many identification methods has been studied for linear systems and nonlinear systems
(Li et al. 2017a,b,¢), such as the least squares (Wan et al. 2016), the Newton iteration (Xu
2016, 2015; Xu et al. 2015) and the stochastic methods (Xu and Ding 2017b). Compared with
the recursive least square algorithm (Wang et al. 2016; Zhang and Mao 2107), the stochastic
gradient algorithm requires less computational cost and has been applied in parameter esti-
mation (Liang et al. 2014; Levanony and Berman 2004). However, the stochastic gradient
algorithm has a slow convergence rate and can not reach a satisfactory estimation accuracy
(Li et al. 2014). To solve this problem, we use the multi-innovation identification theory to
improve the performance of the stochastic gradient algorithm (Xu and Ding 2017c; Xu et al.
2017). Ding et al. (2017) presented a filtering based multi-innovation gradient algorithm for
linear state space systems with time-delay by adopting the data filtering technique.

This paper studies the parameter estimation methods for multivariate output-error systems
whose disturbance is an autoregressive noise (Aslam 2016) using the data filtering and the
auxiliary model (Ding et al. 2017b; Jin et al. 2015). The main idea is to use a filter to filter
the input-output data, then the system can be transformed into two identification models:
a multivariate output-error model with white noise and an autoregressive noise model. The
difficulty is that the two models have unmeasurable variables. We employ the auxiliary model
identification idea to establish the auxiliary models and replace the unknown variables with
the outputs of the auxiliary models. The main contributions of this paper are in the following
aspects.

— A filtering based auxiliary model generalized stochastic gradient algorithm is derived for
multivariate output-error autoregressive systems by using the data filter technique and
the auxiliary model. Compared with the auxiliary model based generalized stochastic
gradient algorithm, the proposed algorithm can generate more accurate estimates.
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— A filtering based auxiliary model multi-innovation generalized stochastic gradient algo-
rithm is proposed in order to improve the performance of the filtering based auxiliary
model generalized stochastic gradient algorithm and it can get more accurate parame-
ter estimates than the auxiliary model multi-innovation generalized stochastic gradient
algorithm for the same innovation length.

The rest of this paper is organized as follows. In Sect. 2, we give some definitions and
the identification model for multivariate output-error autoregressive systems. Section 3 gives
the auxiliary model based stochastic gradient algorithm and the auxiliary model based multi-
innovation stochastic gradient algorithm for comparisons. Section 4 derives the filtering
identification model and presents the filtering based auxiliary model generalized stochas-
tic gradient algorithm and the filtering based auxiliary model multi-innovation generalized
stochastic gradient algorithm. An illustrative example is shown to verify the effectiveness of
the proposed algorithms in Sect. 5. Finally, we offer some concluding remarks in Sect. 6.

2 The system description

Some notation is introduced. “A =: X or “X := A” stands for “A is defined as X”’;
the superscript T stands for the vector/matrix transpose; the symbol I, denotes an identity
matrix of appropriate size (n x n); 19(1) denotes the estimate of ¥ at time ¢; 1, stands for
an n-dimensional column vector whose elements are 1; the norm of a matrix (or a column
vector) X is defined by || X ||? := tr[X X"].

Consider the following multivariate output-error autoregressive (M-OEAR) system in
Fig. 1,

D (1) 1
t) = 0+ —v(), 1
y() AG) e () (1
where y(t) = [y1(t), y2(¢),..., yvm(@®)]" € R™ is the output vector of the system,
D,(r) € R™" is the information matrix consisting of the input signals u(r) =
[t1(2), ua(t), ..., ur(r)] € R" and output signals y(t), # € R" is the parameter vector
to be identified and v(¢) := [v((¢), v2(?), ..., v, (#)]" € R™ is a white noise vector with

zero mean, A(z) and C(z) are the polynomials in the unit backward shift operator 71

[z='y(t) = y(t — 1], and defined as

AR) = 1+aiz7 fayz™?

C@) :=1+cz"! + 772

+ e + an(lz_na’ al e R!
+ o Fepz ', i €R
Assume that the orders m, n, n, and n. are known and y() = 0, @(t) = 0 and v(r) =0
fort < 0.
Define the parameter vectors:
a:=lay, a, ..., a1 € R",
c:=[cr,c2, ..., 0p] € R™,
B :=1[0",a",c"]" e RMHatre

and the information matrices:

&,(1) i=[—x(t—1),—x(t —=2),..., —x(t —ny)] € R™"*"a,
o () =[-wt—1),—w(E —2),...,—w( —n;)] € R™"*",
B (1) = [Ds(1), $, (1), p.(1)] € R"* " Hnatne),
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Fig. 1 A multivariate output-error autoregressive system

Define the intermediate variables:

x(t) = ‘ZS((;))()

= [1 — AQ@)]x (1) + ()0

- —iajx(t — J) + Ds(1)0

= «p:;)]o +¢,t)a, ()
w(r) = ﬁva)

= [1-C@Iw@) +v(@)

ne
= = cjw(t —j)+v()
j=1
= ¢.(t)c+ v(1). 3)
Equation (3) is the noise identification model.
Substituting (2) and (3) into (1) gives

Y = x(0) +w()

= &(1)0 + ¢, (Ha + w(r) )
=&(1)0 + ¢, ()a+ ¢ (H)c+v()
=d()} +v(1). 5)

Equation (5) is the identification model for the M-OEAR system and the parameter vector #
contains all the parameters to be estimated. The object of this paper is to derive anew algorithm
for the M-OEAR system by using the data filtering technique and the multi-innovation theory,
which can generate more accurate estimates.

This paper studies the parameter estimation problem for the multivariate system by using
the multidimensional input and output signals. The information matrix @¢(¢) is composed of
the m-dimensional output signals and the »-dimensional input signals. Therefore, the problem
under consideration belongs to the multidimensional signal processing and estimation.
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3 The auxiliary model based generalized stochastic gradient identification
algorithm

In this section, we give the generalized stochastic gradient (AM-GSG) identification algo-
rithm based on the auxiliary model identification idea. In order to improve the convergence
rate and parameter estimation accuracy, an auxiliary model based multi-innovation stochastic
gradient (AM-MI-GSG) algorithm is derived.

3.1 The AM-GSG algorithm

The stochastic gradient algorithm has been used to identify the multivariable system, and its

convergence has been analyzed under weak conditions (Ding et al. 2008). On the basis of

the work in Ding et al. (2008), we derive the AM-GSG algorithm for M-OEAR systems.
According to the identification model (5), we can define a gradient criterion function

1
@) = Zly0) - (1),

Using the negative gradient search and minimizing the criterion function J; (#) give

1

F() =Bt — 1) — —grad[J1(F(t — 1))]
r(n)
. (1) .
=3 -1+ (1) —@0d @ — 1], ©)
r(t)
r@) =rt—D+ 8O, r0) =1. (7

Here, some problems arise. The information matrix @ () contains the unknovyn terms {x (t —
i),i = 1,2,...,ns} and {w(t —i),1 = 1,2,...,n.}, thus the estimate #(¢) in (6-7) is
impossible to compute. An effective method to solve this problem is to employ the auxiliary
model identification idea. Establish the appropriate auxiliary models, use their outputs x , (r —
i) and W(¢ — i) to replace the unknown variables x (# — i) and w(¢ — i). The estimates ¢, (¢)
and (ic.(t) of ¢,(¢) and ¢, (¢) can be formed by x,(z — i) and w(r — i). Then we can get the
estimate dA)(t) by using @(7), (ia (t) and qASC (t). Define

b (1) i= [—xa(t — 1), —xa(t —2), ..., —xa(t — ng)] € R™*"a,

G.(1) == [t — 1), —h(t —2),...,—(t —n.)] € R"¥",

B (1) = [D5(0). by (1), § ()] € ™ Hatn),

According to (2), replacing the ¢,(¢), @ and a with their estimates &a (1), é(l) and a(r), the
output x,(¢) of the auxiliary model can be computed by

xXa(1) = S(OO(1) + b, (D).
Similarly, from (4), w(¢) can be computed through

W(t) := y(t) — S(NO(1) — b, (D)a(t)
= y(1) — xa(0).

For convenience, define the innovation vector

e(t) = y(t) — )Pt — 1) € R".

@ Springer



1786 Multidim Syst Sign Process (2018) 29:1781-1800

Replacing @ () in (6-7) with its estimate <1A>(t), we can obtain the auxiliary model based
generalized stochastic gradient (AM-GSG) algorithm:

by =9 -1+ % 0. ®)
e(t) = y(1) — ()Pt — 1), ©)
rty =rt— 1)+ 20| (10)
D(1) = [B(1). §,(1). p.(1)]. (11)
b (1) = [—xa(t — 1), —xa(t = 2), ..., —xa(t — na)], (12)
¢ (1) = [~ — 1), —ib(t —2), ..., —W({ — n)l, (13)
xa(t) = S(DO(1) + , (Da(r), (14)
W(1) = y(1) — xa(0), (15)
d() = [0 (1), a" (1), & 0" (16)

The procedure for computing the parameter estimation vector #(¢) in the AM-GSG al go-
rithm (8-16) is as follows.

1. Set the initial values: let t = 1, @(O) = Lyjng+n./P0, r(0) = 1, x,(t — i) = 1,/ po,
wt—i)=1,/po,i =1,2,...,max[ng, n.], po = 10° and set a small positive number
E.

2. Collect the observation data y(¢) and @ (), and construct the information matrices (})a (1),

¢ (1) and @ (1) using (12-13) and (11).

Compute the innovation vector e(¢) and the step-size r(¢) according to (9) and (10).

Update the parameter estimation vector # () using (8).

Compute xa(1) and w(t) using (14—15)

Compare 19([) with 0([ — :if ||19(t) — 19(t — 1)|| < &, terminate recursive calculation

procedure and obtain 0(t) otherwise, increase ¢ by 1 and go to Step 2.

AR

Remark I :1Inorder to improve the transient performance and parameter estimation accuracy
of the AM-GSG algorithm, we can introduce a forgetting factor (FF) A in (10):

r) =art—D+ISDOI% 0<Ar <1, r(0) =1. (17)

Equations (8-9), (11-16) and (17) form the auxiliary model based forgetting factor gradient
stochastic gradient (AM-FF-GSG) algorithm for the M-OEAR system. When A=1, the AM-
FF-GSG algorithm reduces to the AM-GSG algorithm (8-16).

Remark 2 In order to improve the stable state performance, a convergence index & can be
introduced in (8),

@' (1)
ré(n)
Then Eqgs. (9-16) and (18) form the Modified AM-GSG (M-AM-GSG) algorithm. When
& = 1, the M-AM-GSG algorithm reduces to the AM-GSG algorithm in (8-16).

PO = —1)+ e(t), % <e< 1. (18)

3.2 The AM-MI-GSG algorithm

In order to improve the convergence rate and parameter estimation accuracy of the AM-
GSG algorithm, we expand the dimension of the innovation vector e(¢) by employing the

@ Springer



Multidim Syst Sign Process (2018) 29:1781-1800 1787

multi-innovation identification theory and derive the auxiliary model based multi-innovation
generalized stochastic gradient algorithm for the M-OEAR system.

Let p represents the innovation length, consider p data from j =¢ — p+ 1to j =t and
define a new multi-innovation vector:

e(t) y(0) = @03 — 1)
e(t—1) yt—1) - — 13t —2)
E(p,1) = . = . e R™,
et—p+1) y(r—p+1>—<i>(}—p+1>19(r—p)

Itis usually considered that the estimate # (t — 1) is more closer to the true value than ? (t—1i)
and E(p, t) is modified as

Y0 = dDd (1 — 1)
yt—1) =& —Dd@—1)
E(p,t) = :
yi—p+D)—®@—p+ DR —1)

Define the stacked output vector Y (p, t) and the stacked information matrix r (p,t) as

y(@)
ye—1)
Y(p,1) = : e R™P,
Lyt —p+1
@ (1)
I(p.t):= Pt —1) c RmP) x(n+na+ne)
L&t — p+1)

Then the innovation vector E(p, t) can be equivalently expressed as
E(p,0) =Y(p,0) = [ (p,0d(t — 1) e R™.

Thus, we have

b =de-1+ L DEop 0, (19)
r(t)

E(p.0y=Y(p.t) — T(p,# (1 — 1), (20)

r) =r—1+ 20> 1)

Y(p.t) =[y'®),y (¢t —1),....y"(t = p+ DT, (22)

Fp.y=[® @), ® @t —-1),....8 (¢t —p+DI". (23)

Equations (19-23) and (11-16) consist the AM-MI-GSG algorithm. When the innovation
length p = 1, the AM-MI-GSG algorithm reduces to the AM-GSG algorithm in (8-16).
That is to say, the AM-GSG is a special case of the AM-MI-GSG algorithm. Similarly, a
forgetting factor A can be introduced in (21),

r)=rar =D+ 20> r()=1,0<ar< 1. (24)
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C Start: let t = 1 and set e >

Collect y(t) and Ps(t), ti=t+1
form Y (p, 1), &, (1), d.(t), D(t), I'(p,t)

!

Compute E(p,t) and 7(t)

l

Update 9(t)

!

Read 0(t) and a(t) from 9(t)

l

Compute x4 (t) and w(t)

No

Yes

Obtain the estimate 9 (t)

G

Fig. 2 The flowchart of computing the AM-MI-GSG parameter estimates 1§(t)

Equations (19-20), (24), (22-23) and (11-16) form the auxiliary model based forgetting
factor multi-innovation stochastic generalized gradient (AM-FF-MI-GSG) algorithm for the
M-OEAR system.

To initialize the AM-MI-GSG algorithm, we should set the innovation length p and some
initial values, e.g., #(0) = Lyyn,n./P0s Xa(t — i) = L/ po, W(t — i) = L,/po, i = 1,
2, ..., max[ng, n.] and pg = 10°. The flowchart of computing 13(t) in the AM-MI-GSG
algorithm is shown in Fig. 2.

4 The filtering based AM-GSG identification algorithm

In this section, a linear filter L(z) is introduced to deal with the colored noises. We derive
two identification models by filtering the input and output data including a system model
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and a noise model, and identify each subsystems respectively. A filtering base AM-GSG
(F-AM-GSG) and a filtering base AM-MI-GSG (F-AM-MI-GSG) identification algorithms
are proposed in order to improve the convergence rate and parameter estimation accuracy.

4.1 The F-AM-GSG algorithm

For the M-OEAR model in (1), choose the polynomial C(z) as the filter, that is to say,
L(z) = C(z). Multiplying the both sides of (1) by C(z) gives

D(1)
A(2)

C@)y)=C() 0+ v(). (25)

Define the filtered output vector y;(¢) and the filtered information matrix ®(¢) as

Ye(0) == L(z)y(0)

= C(@)y() e R™, (26)
¢ (1) == L(2)Ps(1)
= C()Ps(r) € R™", (27)

which can be expressed as the following recursive forms:

ye() = C)y(@)

& (1) = C()Ps(1)
=&,(t)+ [Pt — 1), DP(t —2),..., P —n¢)le. (29)
From (25), we have o
(D)
¥ = D 0 +v(). (30)

Define an inner variable

¢ (1)

x¢(t) = A(z)o
= [1 - A@)]x (1) + ¢ (1)0
= - iajxf(f — )+ ()0
= rp:(j)lof eR™, (€19}
where
Dr(1) = [pe(0), —x(t — 1), =xp(t = 2), ..., =x¢(t —ng)] € RM*CH1),
0; = [z] € R"tha,
Then Eq. (30) can be rewritten as
Ye() = @ ()05 + v(1). (32)
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For the filter identification model in (32) and the noise identification model in (3), defining
and minimizing the two gradient criterion functions

1
B0 = 1y ) - ¢ (1)0¢ %,

! 2
S llw@®) = é.(D)el”,

Jz(c) :

result in the following gradient recursive relations:

A A~ D) S
Or(t) =0¢(t — 1) + () [ye(®) — ()0t — D], (33)
ri(t) = ri(t = 1)+ @0, r1(0) = 1. (34
c)y=c¢t—-D+ L) [w(®) — ¢ (t)e — 1]
ra(t)

. é.(1) R

=ct—-D+ () [y(®) — @50 — ¢, (t)a — ¢ .(t)c(t — 1)], (35)
) =rE -1+ “¢c(t)”27 r2(0) = 1. (36)

As we can see, Egs. (33-36) cannot generate the estimates of éf(I) and ¢(r), because the
filter C(z) is unknown, then the filtered matrix @¢ is unknown, in addition, x (¢t — i) and
w(t — i) are unmeasurable, the information matrices ¢, (t) and ¢.(7) contain those unknown
terms. In order to solve those difficulties, we employ the auxiliary model method to replace
the unknown variables with the output of the auxiliary model.

Use the outputs of the auxiliary models x,( — i) and w(¢ — i) to construct the estimates

bo(t) = [—xa(t — 1), —xa(t —2), ..., —xa(t —ng)] € R™",
G, (1) = [t — 1), —ib(t —2),...,—W( —ne)] € R™e.

Similarly, we use the estimate x, (t —i) of x¢(f —i) and the estimate $t~(t) of @¢ (1) to define
Di(1) = [Pp(1), —xXpalt — 1), —xpa(t = 2), ... —Xpa(t — ng)] € R™ 410,

From (2), (4) and (31), we can compute the outputs x,(¢), w(r) and x,(¢) of the auxiliary
models by

xa(1) = D0 (1) + b, (D)a(r),
W(t) = y(1) — x,(0),
X (t) = De()0¢(1).

Use the parameter estimates of the noise model
et =1[01(0), &), ..., & (D] € R™,
to construct the estimate of C(z):
Clt.2) =140z +e)z 2+ 4 &, ()77
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Replacing the C(z) in (26) and (27) with ¢ (1, z), the estimates of the filtered output vector
y¢(¢) and the filtered information matrix ¢¢(¢) can be computed by
ety = Ct,2)y(0)
=y + [yt =D,y =2),....y —nc)e@),
O (1) = C(1, 2)Ps(1)
=P 1)+ [@s(t — 1), Ps(t — 2), ..., P(t —nc)]c(d).
Replace the unknown information matrix @¢(¢) in (33—34) with its estimate d)t(t) ¢.(¢) in
(35-36) with (15c (), ¢,(t) in (36) with ¢a (t) and the filtered output y;(¢) in (33) with y;(z),
the parameter vector # and a in (36) with 0(t — 1) and a(¢ — 1) respectively. Furthermore,
define the innovation vectors:
ei(t) := §p(t) — Dr(;(t — 1) € R,
ex(t) = y(1) = BB — 1) — $,(NaGt — 1) — (et — 1) e R".

Then, we can derive a filtering based auxiliary model generalized stochastic gradient (F-AM-
GSG) algorithm to estimate the parameter vectors @¢(¢) and ¢(¢) for the M-OEAR system:

b = b — 1+ 28 (()) (1), (37)
e1(t) = §p(1) — S(Dh(t — 1), (38)
r0) =ri -1+ @), (39)

&) = ¢ ‘fz((t’)) ex(1), (40)
ex(t) = y(t) — DOt — 1) — §,(Da(t — 1) — (Ve — 1), 41)
r() =@ — 1)+ g0 42)
B (1) = [Pe(1), —Xga(t — 1), =Xga(t = 2), ..., —Xga (1 — 101, 43)
Yy =y + [yt =D,y =2),...,y(t —n)le), (44)
be(1) = Di(1) + [Ds(1 — 1), Dyt —2), ..., Bt —n)]e(), 45)
b (1) = [—xa(t — 1), —xa(t = 2), ..., —xa(t — 1)1, (46)
gi)c(t) =[-w(—1),—-wk—-2),...,—wE —nl, 47
X (1) = ()0 (1), (48)
xa(t) = D(O() + §,(Da0), (49)
W(1) = y(1) — xa(0), (50)
br(t) = 10" (1), a" O] (51)

The steps involved in the F-AM-GSG algorithm are listed as follows.

1. Set the initial values: lett =1, 9f(0) = 1y4n,/p0,€0) = 1,./po, r1(0) = 1,r2(0) = 1,
xta(t — i) = L/ po, Xa(t — 1) = Ly /po, W(t —i) =1,/ po, i = 1,2, ..., max[ng, ncl,
po = 10°, and set a small positive number &.

2. Collect the observation data y(¢) and @(t), construct the information matrices qASa (1)

and ¢, (1) by (46) and (47).
. Compute e;(¢) by (41), r2(t) by (42).
4. Update the parameter estimate ¢(¢) by (40).

(98]
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5. Compute the filtered output vector y;(z) by (44) and the filtered information matrix (iSf (1)
by (45), and form @(r) by (43).

6. Compute e (¢) by (38) and r1(¢) by (39).

7. Update the parameter estimate @f(t) by (37).

8. Compute xg,(¢) by (48). Read é(t) and a(r) from éf(f) and compute x,(¢) and w(z) by
(49-50).

9. Compare ¢ (t) with ¢ (t — 1) and compare &(¢) with é(t — 1): if |0 (t) — 85(t — D|| < &
and ||¢(r) — ¢(t — 1)|| < e, terminate recursive calculation procedure and obtain 19(t);
otherwise, increase ¢ by 1 and go to Step 2.

4.2 The F-AM-MI-GSG algorithm

The F-AM-GSG algorithm can identify the parameter vectors 9f(t) and ¢(r), but has slow
convergence speed. To improve the convergence rate and parameter estimation accuracy
of the F-AM-GSG algorithm, according to the multi-innovation identification theory, we
expand the innovation vectors e () = y;(t) — é)f(t)ét-(t — 1) e R"in (38) and ex(¢) =
y() — ¢S(t)9(t —1) - (ia(t)&(t —-1) - (;Sc(t)i'(t — 1) € R™ in (41) into large innovation
vectors (p represents the innovation length):

Fi(0) = (Dbt 1)
yet —1) — @t — DO (r — 1)
Ei(p.1) - .

e R"P,

Lyt —p+1) — &t — p+ Dopc — 1)
Ei(p,1)
y(0) = DO — 1) — p (DAt — 1) — p (e — 1)

Y —1) =@t — DO — 1) — $,(t — Dt — 1) — ¢t — Dt — 1)
= ) eR™,

Ly —p+ D)=t —p+ DB —1)—¢,(t — p+ Dalt — 1) — d(t — p+ Dér — 1)

Define the stacked filtered output vector Y t(p, 1), the stacked filtered information matrix
I: t(p, 1), the §tacked output vector Y (p,t), the stacked information matrices I's(p,t),
R,(p,t)and .(p, 1) as

Yi(p, 1) = [5{@), 5it — 1, ..., 5@ — p+ D" € R,

Fe(p.1) == [®;(0), Bt — 1), ..., ¢t — p+ D] € ROP*0na),
Y(p.t) :=[y' @),y (t—=1,....,y"(t —p+ D' e R",

Ly(p,t) :=[®(r), It —1),...,®"(t — p+ D]" € R"P*1,

R2a(p.1) = (b (0). §ot — 1), .... §y(t — p+ D" € ROP*1a,

Re(p.1) = [$o(0). delt — 1), ... §o(t — p+ DI € RPI*ne,

Then E{(p, t) and E>(p, t) can be equivalently expressed as

Ei(p, 1) = Ye(p,1) — Fe(p, 1)0s(t — 1) € R™,
Ex(p, 1) :=Y(p,1) — [s(p, 0)0(t — 1) — 24(p, )t — 1) — 2.(p, et — 1) € R™.
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According to the F-AM-GSG algorithm in (37-51), we can obtain the following equations:

br() = bet — 1+ 12D gy, (52)
r1(t)

E\(p.t) = Yi(p.0) — F(p, )85t — 1), (53)
ri(t) = ri(t — 1) + 1@ (1), (54)
d0y = e -1+ LD g, (55)

(1)

Ex(p,t)) =Y(p, 1) = Ts(p, 08t — 1) — 24(p, Dt — 1) — 2c(p, EE — 1), (56)
() = ra(t — 1) + g0, (57)

Ye(p.t) = [Ji®). it — 1), ... 5f(t — p + DI", (58)

Fe(p.t) = [@;(1), Syt — 1), ..., 8t — p+ DT, (59)

Y(p.t) = [y'(0), y"(t = D,....y"(t = p+ D", (60)

I's(p,t) = [F:(z), Fz(t —1D,..., Fg(t —-p+ DI, (61)

2a(p.1) = [dy@), $yt = Dy, iyt — p+ DT, (62)

2cp.0) = 9o, $et = 1), ..., ot — p+ DI". 63)

The equations above and (43-51) form the data filtering based auxiliary model multi-
innovation generalized stochastic gradient (F-AM-MI-GSG) algorithm. When p = 1, the
F-AM-MI-GSG algorithm reduce to the F-AM-GSG algorithm in (37-51). The proposed
method in this paper can be extended to study the parameter estimation of transfer functions
(Xu 2014; Xu and Ding 2017a), time-varying systems (Ding et al. 2016) and signal models
(Xu 2017; Wang et al. 2018), and applied to other fields (Feng et al. 2016; Li et al. 2017d; Ji
and Ding 2017; Cao and Zhu 2017; Chu et al. 2017; Zhao et al. 2017a).

S Example

Consider the following multivariate output-error autoregressive system:

(1) = ¢s(t)0 + (1)

Y= Tco""”
D) = [—yl(t — 1, i1t = 2)sin(y2(t = 2)), y2(r = 1), y2(t = 2uy (1 = 2),
* =yt =1, yi(t =2)sint/m), y2(t — 1), y1(t = 2ur(t — 2),

ur(t — 1), ur(t —2ua(t —2),  uz(t —1)cos(r) R2X7
Wit —1),  sin(ua(t —2)), wui(t — 1)+u2(z—2)] € ’
AR = 1+aiz ' +az™?
=140.12z7" 403772,
C(z) =1 +ez7! +czz_2
=1-0.11z"" 408772,
0 = [0.70,0.41, 0.47, —0.52, 0.10, —0.30, 0.40]",
a = [a1,a] =[0.12,0.3]",
¢ = [c1,c2] =[-0.11,0.8]",
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Fig. 3 The AM-MI-GSG parameter estimation errors § versus ¢
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Fig. 4 The F-AM-MI-GSG parameter estimation errors § versus ¢

¥ =1[0",a",cT",
0 =[0",a"]".

In simulation, the inputs {u(#)} and {u>(¢)} are taken as two independent persistent
excitation signal sequences with zero mean and unit variances, {vy(¢)} and {v(¢)} are taken
as two white noise sequences with zero mean and variances 012 for v (z) and 022 for vy ().
Taking 012 = 022 = ¢2 = 0.507 and based on the above model, we generate the system’s
output signals y(r) = [y1(¢), y2(£)]". By using u (t), ua (), y1(¢) and y(¢) and applying the
AM-MI-GSG algorithm and the F-AM-MISG algorithm to estimate the parameters of this
system, the parameter estimates and errors are shown in Tables 1 and 2 with p = 1,2,4,6
and 12. The estimation errors § := ||1§(t) — #||/||?| versus ¢ are shown in Figs. 3 and 4.

From Tables 1 and 2 and Figs. 3 and 4, we can draw the following conclusions.
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1. The parameter estimation errors of the AM-MI-GSG and the F-AM-MI-GSG algorithms
become smaller with the data length t increasing — see the estimation errors of the last
columns in Tables 1 and 2.

2. A larger innovation length p leads to smaller parameter estimation errors both for the
AM-MI-GSG algorithm and the F-AM-MI-GSG algorithm—see from Figs. 3 and 4. The
estimation errors can almost converge to zero if the innovation length p is large enough
and the data length goes to infinity.

3. Under the same innovation length p, the F-AM-MI-GSG algorithm can give more accu-
rate parameter estimates than the AM-MI-GSG algorithm.

6 Conclusions

In this paper, we employ the data filtering technique to propose an F-AM-GSG algorithm for
M-OEAR systems and derive an F-AM-MI-GSG algorithm by adopting the multi-innovation
identification theory, taking account into an autoregressive noise. This work can be extended
to the case with an autoregressive moving average noise. Compared with the AM-MI-GSG
algorithm, the F-AM-MI-GSG algorithm has smaller estimation errors under the same inno-
vation length. The proposed filtering based identification method can be applied to study the
parameter estimation of other multivariate systems with different structures and disturbance
noise, e.g., nonlinear multidimensional multivariate systems with colored noise. These are
worth further studying in multidimensional multivariate systems in the future.
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