
Multidim Syst Sign Process (2018) 29:1757–1780
https://doi.org/10.1007/s11045-017-0527-3

Circular Uncertainty method for range-only localization
with imprecise sensor positions

Seçkin Uluskan1 · Tansu Filik1 · Ömer Nezih Gerek1

Received: 3 June 2017 / Revised: 27 August 2017 / Accepted: 21 September 2017 /
Published online: 30 September 2017
© Springer Science+Business Media, LLC 2017

Abstract This study provides an effective new method to solve the range-only localization
in the presence of sensor position errors. In practice, the sensors can stay only within a limited
region whereas the target can be far from there. To increase the estimation capability, some
peripheral measurements with moving sensors can be obtained, which results in the issue
of imprecise sensor positions. In these situations, sensor positions also become unknown
parameters which need to be jointly estimated together with the target location. Because of
the large number of unknown parameters, reaching the globalminimumbecomes a significant
challenge. Our study is dedicated to build a robust localization scheme for these scenarios.
We propose a new search strategy, namely Circular Uncertainty which allows the localization
system to safely find the global minimum of maximum likelihood cost function in case of
imprecise sensor positions. CircularUncertainty not onlymakes it possible to reachmaximum
likelihood estimation, but also significantly simplifies this task. Our solution is based on the
observation thatwhen the initial estimation is disturbedwith newmeasurements, the disturbed
estimation moves along the Circular Uncertainty which can be viewed as a circular valley
along the cost surface. The new method is compared to nonlinear least squares as well as
the squared range weighted least-squares algorithm which was previously designed in the
literature specifically for localization with imprecise sensor positions. Since the proposed
solution obtains maximum likelihood estimation, it attains Cramer Rao lower bound, where
other competing methods partly fail.
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1 Introduction

Sensor array processing is the field to deal with the data coming from multiple channels to
achieve various tasks. Source localization, as a sub-area of sensor array processing, attempts
to find the location of different of type of sources through the information fromvarious sensors
especially in noisy environments (Nehorai and Paldi 1994). There can be several types of
error within the information utilized in source localization such as the error at measurements
or the error at measurement positions etc. This study provides an effective new method to
solve the localization problem by means of distance-to-target measurements in the presence
of sensor position errors.

Source localization with imprecise sensor positions is an old research area which has been
subject ofmany different applications since the late 1970s. The uncertainty in sensor positions
first discussed for the large towed array of hydrophones in the field of underwater acoustic
research. The distortion in the shape of the array of hydrophones due to the movement of the
tow ship was mentioned as a reason of positional uncertainty in the receiving hydrophones
(Hinich and Rule 1975; Bucker 1978; Carter 1979). This type of arrays is then regarded
as randomly perturbed arrays and the initial Cramer Rao lower bound (CLRB) derivations
are obtained for range and bearing estimation (Schultheiss and Ianniello 1980). In Rockah
and Schultheiss (1987), it is mentioned that overall localization accuracy can be dominated
by the uncertainty in the sensor positions. Therefore, they mentioned about calibrations of
sensor array geometries for better localization of a single far-field source. In Krim and Viberg
(1996), the uncertainty in the sensor positions is listed under additional topics of the sensor
array processing.

In Chen et al. (2002), it is mentioned that error in sensor locations can emerge when
the sensors are randomly deployed in an ad hoc network or when sensors move to different
positions in time. In Ho et al. (2007), it has been discussed that in modern localization
applications, the receivers can be airplanes or unmanned aerial vehicles (UAVs) therefore
their positions as well as velocities can not be precisely known. Therefore, they explicitly
mentioned that deployment of UAVs as moving receivers brings the issue of uncertainty in
receiver positions. As a result, the new trend of using UAVs as moving sensors has increased
the importance of localization with imprecise sensor positions. Therefore, localization with
imprecise sensor positions via time difference of arrival (TDOA) or frequency difference of
arrival (FDOA) have remained as an interesting research area until today. In Ho and Yang
(2008), for TDOAbased localization, a calibration emitter is proposed to calibrate the location
of the sensors to compensate sensor position errors. In Qu and Xie (2012a, b), they give a
significant emphasis to TDOA based source localization with random sensor position errors
by dividing their study into two parts for specifically static sensors and then mobile sensors
with imprecise positions. Li et al. (2015) deal with TDOA and FDOA based localization and
Li and Ho (2016) discuss a TDOA based localization with inaccurate sensor positions. Array
shape calibration is also discussed for direction of arrival (DOA) estimation (Zhang et al.
2017) and so on.

Imprecise sensor positions are also specifically discussed for source localization with
distance-to-target measurements. In Srirangarajan et al. (2007) and Lui et al. (2009), they
introduced distance based localization schemes in wireless sensor networks when both the
locations of the nodes and the anchors are unknown or imprecise. They built semi-definite
and second order cone programming to address this issue. In Ma and Ho (2011), the focus is
directly on source localization by means of time of arrival (TOA) in the presence of sensor
position errors. They build CRLB for range based localization of a source with imprecise
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sensor positions. They emphasized that the source localization is highly sensitive to the
inaccuracy in sensor positions. Finally, they built a Weighted Least Square (WLS) solution
for sensor position errors which are quite small. In Chen and Ho (2014), TOA and TDOA
based localizationwith sensor position errors were discussed in terms of againWLS solutions
but this time for larger sensor position error levels compared to Ma and Ho (2011). They
also mentioned that maximum likelihood estimation (MLE) attains CRLB without explicitly
presenting MLE solution in their paper. In Li et al. (2014), TOA based localization with
sensor position errors is solved by a two-stage algorithm where an initial estimate for the
location of source at the first stage is further improved at the second stage.

Distance-to-target measurements are nonlinear observations with respect to the unknown
parameters namely the coordinates of the target location (Chen and Ho 2014). This situation
makes target localization which is based on distance-to-target measurements a challeng-
ing task. Therefore, the estimators seeking the best possible estimation such as maximum
likelihood estimation (MLE) require iterative searches along nonlinear cost surfaces. Itera-
tive solutions are computationally expensive and their accuracy significantly depends on the
initial points of the iterations. In various localization scenarios, MLE cost surface can be
complicated with a couple of local minima and saddles points. Therefore, depending on the
initial point, the minimization process can end up with a local minimum, so this can lead
the performance of estimator to diverge from the ideal case. However, this study proposes a
completely safe localization scheme without any convergence issue.

When the sensor positions have uncertainties in addition to the uncertainties in distance
measurements, this situation brings an additional difficulty for localization system. In these
cases, the positions of sensors also become unknown parameters which need to be jointly esti-
mated together with the target location. The number of parameters to be estimated becomes
very large, so reaching the global minimum becomes a significant challenge for iterative
solutions (Chen and Ho 2014). Taking this fact into account, this study removes this issue by
conveniently reducing the multi-dimensional search space to a single dimensional space by
means of our proposed method called Circular Uncertainty. The method of Circular Uncer-
tainty allows the localization system to safely find the global minimum even for complicated
cost functions in the presence of imprecise sensor locations.

Distance based localization can be solved by nonlinear least squares (NLS) of errors of
distance-to-target measurements. However, NLS solutions are not suitable to deal with the
uncertainties in sensor positions. Weighted least squares (WLS) can be regarded as a special
case of NLS where each term is skillfully weighted by taking the uncertainties in sensor
positions into account. Weighting the squared distance errors can be quite useful to manage
the uncertainties in sensor positions. However, to obtain a better scheme of localization, the
cost of estimation must be a complete equation which includes two different parts for both
distance-to-target measurement errors and sensor position errors. Therefore, in this study,
the complete maximum likelihood cost function is established and solved in a smart and
convenient way which guarantees to obtain the Cramer Rao Lower Bound (CLRB) in any
condition.

In practical situations, the sensors can only be allowed to be locatedwithin a limited region
whereas it is very likely that the target can be located far from this region. Our important
observation is that while it is very common to encounter this type of localization scenario, it
provides a very limited capability for estimating the angular position of the target via distance-
to-target observations. Therefore, in addition to the central measurements taken within a
limited region, a few number of peripheral measurements can be deployed to dramatically
increase the estimation capability of localization system. However, to scan a broad peripheral
area, the peripheral measurements can be designed as moving sensors, which, as a result,
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brings the issue of uncertainties in the positions of sensors. Moreover, both the error in the
sensor positions and the error of distance measurements can be significantly high in practical
situations. Therefore, the localization systems must be so robust that they keep functioning
even under high level of noise and they must try to localize the target as accurate as possible
in every case. Our study is dedicated to build this type of robust localization system.

In the rest of the paper, firstly CRLB for localization error is explicitly obtained for the case
of imprecise sensor positions. Next, the basis of the new proposed method namely Circular
Uncertainty is presented by visually displaying the cost surfaces of localization of targets.
Then, a formal proof for Circular Uncertainty is provided. Circular Uncertainty significantly
reduces the size of the search spaces of the minimization processes. It conveniently finds the
globalminimumof theMLEsurfacewhichgets quite complicatedbecause of the uncertainties
in the sensor positions. The performance of the new proposedmethod is tested by simulations
for different scenarios, and also compared with the WLS solution of Chen and Ho (2014)
which is specifically designed to attain CRLB in the presence of sensor position uncertainties.
Our solution, which takes the advantage of obtaining MLE in a robust way, attains CRLB
regardless of the noise level whereas other solutions partly fail to achieve this performance.

2 The basis for the research

2.1 Cramer Rao lower bound for localization with imprecise sensor locations

In this part, we formulate CRLB for localization with imprecise sensor positions. When
there are N independent distance observations from N different sensor locations, the Fisher
information matrix is as the following (Bishop et al. 2010),

I (x, y) = 1

σ 2
D

⎡
⎢⎢⎣

N∑
i=1

(x−xi )2

(x−xi )2+(y−yi )2

N∑
i=1

(x−xi ).(y−yi )
(x−xi )2+(y−yi )2

N∑
i=1

(x−xi ).(y−yi )
(x−xi )2+(y−yi )2

N∑
i=1

(y−yi )2

(x−xi )2+(y−yi )2

⎤
⎥⎥⎦ (1)

where (x, y) is the target location and (xi , yi )’s are the sensor positions where distance-to-
target measurements are taken for i = 1, .., N . Distance measurements are obtained with the
standard deviation σD . This Fisher Information Matrix is only for localization with precise
information for sensor positions. Therefore, we need to obtain Fisher information for the
case of imprecise sensor positions. Now, let us define the whole measurement model when
sensor positions are imprecise,

Di =
√

(x − xi )2 + (y − yi )2 + Wi ∼ N (0, σD) (2)

Xi = xi + Zi ∼ N (0, σX ) (3)

Yi = yi + Ti ∼ N (0, σY ) (4)

where Di is distance measurement at the sensor position (xi , yi ). The sensors are physically
in their exact positions (xi ,yi ). But, we do not have the precise information for the sensor
positions. However, this does not affect Di measurements. Therefore, we need also to model
the position of sensors as imprecise information. Consequently, in addition to Di namely
distance to target measurement, (Xi , Yi ) is also included within model as the observation of
i th sensor position i.e. (xi , yi ). In this model, Wi , Zi and Ti represent the zero-mean normal
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distributed error terms within Di , Xi and Yi respectively. The standard deviations of Di , Xi

and Yi are σD , σX and σY respectively.
Now, based on the addition rule of Fisher Matrix, we can write the Fisher information for

the measurement model that we have just defined above as the following,

I (�q) =
N∑
i=1

IDi (�q) +
N∑
i=1

IXi (�q) +
N∑
i=1

IYi (�q) = ID(�q) + IX (�q) + IY (�q) (5)

where �q is parameter set, which defines the location of the target and all sensors,

�q = [x , y, x1 , y1, . . . , xN , yN ] (6)

If we define a 2 × 2 matrix such that,

Ai =

⎡
⎢⎢⎣

(x−xi )2

(x−xi )2+(y−yi )2
(x−xi ).(y−yi )

(x−xi )2+(y−yi )2

(x−xi ).(y−yi )
(x−xi )2+(y−yi )2

(y−yi )2

(x−xi )2+(y−yi )2

⎤
⎥⎥⎦ (7)

The information matrix for a single distance-to-target measurement Di becomes,

IDi (�q) = 1

σ 2
D

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ai 0 . . . Ai

0 0
...

. . .

Ai Ai

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(8)

where 0 is the 2 × 2 zero matrix. Therefore, FIM for all distance measurements are,

ID (�q) = 1

σ 2
D

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N∑
i=1

Ai A1 . . . Ai . . . AN

A1 A1
...

. . .

Ai 0 Ai
...

. . . 0
AN 0 AN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

FIM for measurements of x positions of all sensor is,

IX (Q) = 1

σ 2
X

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

1
0

1
0

. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)
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and FIM for measurements of y positions of all sensors is,

IY (Q) = 1

σ 2
Y

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

0
1

0
1

. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

If the standard deviations of sensor position errors are equal in x and y-axis namely,

σS = σX = σY (12)

then, FIM of measurements of positions of all sensors can be written as,

IS (�q) = 1

σ 2
S

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

1
1

1
1

. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

Finally, the total FIM is as the following:

I (�q) = ID (�q) + IS (�q) (14)

The lower bound for the mean squared distance error of any localization scheme can be
calculated by summing the first two diagonal elements of the inverse of the total FIM, i.e.
I−1(�q) . The overall effect of having some level of uncertainty in the sensor positions is to
levitate the CRLB for all levels of distance error.

2.2 Maximum likelihood solution for target localization with imprecise sensor
positions

The ordinary NLS solution for range-only target localization can be written as the following
(Buehrer and Venkatesh 2012):

(
x̂, ŷ

) = argmin
(x,y)

N∑
i=1

(√
(x − Xi )

2 + (y − Yi )2 − Di

)2

(15)

where (Xi , Yi ) is the observed position of i th sensor and Di is the distance measurement
at this sensor. Dedicated to minimize only the overall error in distance measurements, this
solution neglects if the sensor positions are imprecise, however still it can be a convenient
way to solve the localization problem with imprecise sensor positions. Therefore, ordinary
distance NLS will be always included during our simulations as a baseline solution. The
ordinary distance NLS can be MLE solution when sensor positions are precise. However, for
imprecise sensor positions, the cost of estimationmust be a complete equationwhich includes
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two different parts for both distance-to-target measurement errors and sensor position errors.
Therefore, to obtain MLE cost function, let us write the log likelihood of all parameters in �q
as the following (see “Appendix”):

ln p
( �D, �X , �Y ; �q

)
= − 1

(σD)2

N∑
i=1

(√
(x − xi )2 + (y − yi )2 − Di

)2

− 1

(σS)
2

N∑
i=1

[
(Xi − xi )

2 + (Yi − yi )
2] + K (16)

where is K is a constant such that,

K = −N ln

(√
2π (σD)2

)
− 2N ln

(√
2π (σS)

2
)

(17)

From this point of view, we can propose a maximum likelihood estimation (MLE) for all
parameters of the parameter set �q as the following:

(
x̂, ŷ, x̂1, ŷ1 . . . x̂N , ŷN

)

= argmin
(x,y,x1,y1...xN ,yN )

⎛
⎜⎜⎜⎝

1
(σD)2

N∑
i=1

(√
(x − xi )2 + (y − yi )2 − Di

)2

+ 1
(σS)

2

N∑
i=1

(Xi − xi )2 + (Yi − yi )2

⎞
⎟⎟⎟⎠ (18)

This MLE function allows us to take into account the errors in sensor positions to better
estimate the target positions. To obtain theMLE solution, we need to find the globalminimum
of the MLE cost in a (2N + 2) dimensional space of the parameters included within �q.
Estimating jointly all these parameters, i.e. the location of target and all of the sensor positions
at the same time, is a quite difficult joint estimation problem. Therefore, we have built a
new concept, namely Circular Uncertainty, in order to conveniently search for the global
minimum of the MLE function.

3 Methodology

3.1 A new concept in range-only localization: circular uncertainty

With themotivation to solvemaximum likelihood localization problemwhen sensor positions
are imprecise, we propose a new search strategy, which we called Circular Uncertainty.
Circular Uncertainty roughly means that once “ a base cost surface” is established by means
of a couple of central measurements which are confined to a limited area, in case some new
measurements are received which disturb the initial estimation, the disturbed new estimation
has a tendency to move along a particular circle or arc. We name this special circle as
Circular Uncertainty of the base central measurements. Let us start to introduce this concept
by demonstrating examples of NLS cost surfaces obtained via some central measurements
with precise positions.

In Fig. 1a, the sensors are circularly located around the origin, then noisy distance mea-
surements are obtained in accordance with the distance measurement model in (2). Based
on these distance measurements, the value of distance NLS cost function shown in (15) is
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Fig. 1 Circular Uncertainty demonstration by means of examples of NLS cost surfaces
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obtained for all the (x , y) points, so the distance NLS cost surface is obtained. In Fig. 1a, this
NLS cost surface is depicted as a contour plot. As seen, the global minimum of NLS cost
surface naturally occurs around the target. However, the interesting point is that this NLS
cost function have a tendency to stretch along a special circle, so it has a croissant-like shape
surrounding the origin.

The croissant-like shape of contour of NLS surface is due to the fact that there exist a few
central distance-to-target measurements and the target is located far from the measurement
points. As a result, the angular position error of the target dominates the overall error of
the NLS solution. In other words, NLS solution for this scenario has a limited capability
for estimating the angular position of the target compared to its radial position. When we
plot the NLS surface with respect to polar coordinates as shown in Fig. 1b, it can be seen
that NLS surface has a neat appearance which resembles a bivariate normal distribution with
a diagonal covariance matrix. Of course, while the distribution can be an ordinary normal
distribution along radial coordinate, it must be a circular normal distribution (i.e. von Mises
distribution) along angular coordinate because of the periodicity of the angular coordinate.
It can be observed that the variance along the angular coordinate is quite larger than the
variance along the radial coordinate. In this sense, because this distribution is a bivariate
normal distribution in polar coordinates as seen Fig. 1b, then its Cartesian counterpart shown
in Fig. 1a can be viewed as a circularly wrapped bivariate normal distribution around the
origin of Cartesian plane. Consequently, this explains the croissant-like shape of NLS surface
in Fig. 1a.

The sensor geometry in Fig. 1a is a special one, so it may be wondered if this type of
behavior exists for random sensor geometries. In Fig. 1c for a randommeasurement geometry
located roughly around the origin, it can be again observed that NLS surface stretches along
a special circle i.e. not along some other type of closed curve. For this case, the croissant
shape is not symmetric around the global minimum, but it still perfectly stretches along a
circle. Consequently, we will name this circle as “the Circular Uncertainty” of the particular
cost surface. Intuitively, we will the define the parameters of the circular uncertainty as:

(xCU , yCU ) =
(
1

N

N∑
i=1

xi ,
1

N

N∑
i=1

yi

)
(19)

rCU = 1

N

N∑
i=1

Di (20)

where (xCU , yCU ) is the center and rCU is the radius of the Circular Uncertainty. The center
of Circular Uncertainty is defined as the centroid of measurement points, and the radius of
the Circular Uncertainty is defined as the average distance measurements. The important
property of Circular Uncertainty is that global minimum of cost surface occurs along the
Circular Uncertainty. In Fig. 1a, c, it can be observed that the global minimum is located
along the Circular Uncertainty. In Fig. 1d, another interesting point can be observed that when
NLS cost surface has a local minimum, this local minimum also occurs along the Circular
Uncertainty.

Next, it may be wondered if Circular Uncertainty starts to occur only after some specific
number of measurements. In Fig. 1e, the NLS cost surface of only two measurements are
shown where there must be two global minima. Surprisingly, in spite of the existence of only
two measurements (and consequently two global minima), NLS surface still tends to stretch
along the Circular Uncertainty. The Circular Uncertainty of this surface is quite visible in 3D
plot of the NLS surface shown in Fig. 1f. If we consider that a single distance measurement is
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Fig. 2 The distribution of disturbed NLS solutions along the Circular Uncertainty

also basically a circular uncertainty, then it can be argued that the definedCircularUncertainty
always occurs regardless of the number of measurements.

At the beginning of this section, we mentioned that once “a base cost surface” is
established by means of a couple of central measurements, in case of receiving some new
measurements which disturb the initial estimation, the disturbed new estimation has a ten-
dency to move along the Circular Uncertainty trajectory. This situation occurs because of
the croissant shape of the NLS surface along the Circular Uncertainty. Circular Uncertainty
is basically “a circular valley” within the surface of NLS cost function as demonstrated in
Fig. 1f. When new measurements are received which disturbs the initial estimation, the new
disturbed estimation will move along this “circular valley” instead of climbing the hillsides.

This phenomenon is depicted in Fig. 2 where there are two base measurements creating
a Circular Uncertainty. In addition to these base measurements, a third measurement with a
sensor position error is obtained. Finally, based on these three measurements, the location of
the target is estimated and then plotted as a small circular point in Fig. 2.When we repeatedly
add a random error to the position of third measurement, and then force NLS localization to
locate the target as a Monte Carlo simulation, we can obtain a set of disturbed NLS solutions.
Due to the above explanations, the disturbed solutions are accumulated along the Circular
Uncertainty. A similar picture can be observed in literature (see Fig. 9 in Olson et al. 2006),
yet the authors did not pay attention to the above defined Circular Uncertainty phenomenon.

Eventually, we can list “the properties of Circular Uncertainty” which helps to create a
new understanding in range-only localization of targets:

1. Global minimum occurs along the Circular Uncertainty trajectory (possibly with a small
deviation).

2. Local minima (if any) have a tendency to occur along the Circular Uncertainty.
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3. When the initial estimation is disturbed with newmeasurements, the disturbed estimation
moves along the Circular Uncertainty trajectory, which is the circular valley of the cost
surface.

Property 1 will allow us to conveniently find the global minimum of the cost surface of
localization when sensor positions are precise. Property 3 will further allow us to handle
the issue of imprecise sensor positions via Circular Uncertainty. The overall idea of Circular
Uncertainty is visually demonstrated bymeans of amovie to givemore tangible understanding
of this concept (https://youtu.be/sj5CUsZs8W8).

3.2 Proof of Circular Uncertainty

In this section, our new concept i.e., Circular Uncertainty which has just introduced in the
previous section will be proved by formulating the polar equation of the NLS solution. The
r value which minimizes the NLS cost for a specific the direction θ can be expressed as the
following:

r̂ (θ) = argmin
r

N∑
i=1

(√
(rcos (θ) − Xi )

2 + (rsin (θ) − Yi )2 − Di

)2

(21)

Therefore, the r value minimizing the NLS cost shown in (21) must satisfy the following
condition:

∂

∂r

N∑
i=1

(√
(rcos (θ) − Xi )

2 + (rsin (θ) − Yi )2 − Di

)2

= 0 (22)

When the derivate in (22) is accomplished, the following equation is obtained:

N∑
i=1

[
2
(
Di − D̃i (r)

) cos (θ) (rcos (θ) − Xi ) + sin (θ) (rsin (θ) − Yi )

D̃i (r)

]
= 0 (23)

where D̃i (r) represents the distance between the point (r cos (θ) , r sin (θ)) and the position
of i th sensor (xi , yi ) as shown in Fig. 3. Di is the distance-to-target measurement obtained
by the i th sensor. As seen in Fig. 3, the line which passes through the origin with the angle θ

with respect to x-axis is labeled as Lθ . It can be observed that the nominator of the division at
right in (23) is the projection of the line segment with the length D̃i on the line Lθ . Therefore,
(23) can be rewritten as:

N∑
i=1

[(
Di − D̃i

) D̃i cos (αi )

D̃i

]
= 0 (24)

where αi is the angle between Lθ and the line segment connecting the points (r cos (θ) , r sin
(θ)) and (xi , yi ). After canceling the common terms, the following expression is obtained:

N∑
i=1

[
Di cos (αi ) − D̃i cos (αi )

]
= 0 (25)

Then, we can replace D̃i cos (αi ) by
(
r − S p

i

)
, so the following expression appears:

N∑
i=1

[
Di cos (αi ) − (

r − S p
i

)] = 0 (26)
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Fig. 3 The proof for Circular Uncertainty and its parameters

where S p
i is the projection of the line segment connecting the origin to the position of i th

sensor (xi , yi ) onto the line Lθ as shown in Fig. 3. Obviously, S p
i is a function of θ , while

αi is a function of both θ and r , consequently (26) can be rewritten as the following:

N∑
i=1

(
S p
i (θ) + Di cos [αi (θ, r)] − r

) = 0 (27)

The difficult point is that αi is a function of r , so finding the root of (27) becomes a com-
plex task. To simplify this task, for sufficiently large r values, cos [αi (θ, r)] can be roughly
approximated as 1. This approximation is consistent with the case of Circular Uncertainty
where the central measurements are scattered just around the origin, and the target is assumed
to be located in a point far from the measurements. Finally by means of this approximation,
the following equation appears:

N∑
i=1

(
S p
i (θ) + Di − r

) ≈ 0 (28)

Therefore, the r value which minimizes the NLS cost for a specific the direction θ can be
formulated as the following:

r̂ (θ) ≈ 1

N

N∑
i=1

S p
i (θ) + 1

N

N∑
i=1

Di (29)

The first term in (29) is just the projection of the centroid of the sensor positions onto
the line Lθ as shown in (30) and (31). And, the second term in (29) is the average of the
measured distances by the central measurements. Therefore, (29) is the proof for our new
concept i.e., Circular Uncertainty and for its parameters which have been intuitively defined
in the previous section.

r̂ (θ) ≈ 1

N

N∑
i=1

[cos (θ) sin (θ)]

[
xi
yi

]
+ 1

N

N∑
i=1

Di (30)

r̂ (θ) ≈ [cos (θ) sin (θ)]

(
1

N

N∑
i=1

[
xi
yi

])
+ 1

N

N∑
i=1

Di (31)
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3.3 Solving NLS equation via Circular Uncertainty

In this section, it is demonstrated how Circular Uncertainty can be utilized to conveniently
solve the NLS equation in (15). By means of Circular Uncertainty, the size of search space
will be reduced. Asmentioned above, global minimum occurs along the Circular Uncertainty
possibly with a small deviation. Therefore, the global minimum must be searched along the
Circular Uncertainty whose parameters are defined in (19) and (20). Let us write the equation
of Circular Uncertainty as a function of θ as the following:

x (θ) = xCU + rCU cos (θ) (32)

y (θ) = yCU + rCU sin (θ) (33)

Therefore, the NLS equation in (15) can be rewritten as the following:

(
θ̂
)

= argmin
(θ)

N∑
i=1

(√
(xCU + rCU cos (θ) − Xi )

2 + (yCU + rCU sin (θ) − Yi )2 − Di

)2

(34)

As seen, the size of search space is reduced by means of Circular Uncertainty. Furthermore,
because θ is periodic, only the range (0, 2π ] is of interest instead of infinite intervals for
x or y in (15). In Fig. 4a, the setup of a Monte Carlo simulation which consists of 1000
iterations is shown. In each iteration, the eight sensors are randomly positioned within the
square area limited by the interval [−10, 10] along x and y axis. The target (emitter or
source) is randomly located anywhere within the interval [−80, 80] along x and y axis, yet
it is not allowed to stay close to the origin smaller than 30 units i.e. not inside the circle
drawn as dashed line. In Fig. 4b, the performances of localization by Circular Uncertainty
and conventional distance NLS are shown as root mean squared (RMS) distance error. As
seen, both distance NLS and Circular Uncertainty can attain CRLB. However, in Sect. 4.3,
it will be shown that the execution time of the Circular Uncertainty is quite smaller than
NLS. Therefore, Circular Uncertainty is found to be a convenient solution when all sensor

Fig. 4 a The simulation setup—a sample measurement scheme and b the RMS distance error of localization:
Circular Uncertainty and NLS
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positions are precise. However, the real benefit of this solution will be apparent in the next
sections in which the issue of imprecise sensor positions is discussed.

3.4 MLE solution by Circular Uncertainty

In practical situations, the sensors can only be allowed to be located within a limited region
and the target can be located far from the sensors. In order to increase estimation capability,
in addition to the central measurements taken within a limited region, a few number of
peripheral measurements can be deployed. However, to scan a broad peripheral area, the
peripheral measurements can be designed as moving sensors, which, as a result, brings the
issue of uncertainties in the positions of sensors as discussed in the literature (Ho et al. 2007).
In this section, it is demonstrated how Circular Uncertainty can be utilized to conveniently
solve the MLE for this type scenario in which there are uncertainties in sensor positions for
peripheral measurements. First, let us rewrite the parameters of the Circular Uncertainty as
the following:

(xCU , yCU ) =
(

1

M

∑
i∈C

xi ,
1

M

∑
i∈C

yi

)
(35)

rCU = 1

M

∑
i∈C

Di (36)

where C is the set of central measurements with precise positions and M is the number of
elements in this set. In accordance with the Circular Uncertainty equations of (32) and (33),
MLE equation in (18) can be rearranged as the following:

(
θ̂ ,

{
x̂ j , ŷ j | j ∈ P

})

= argmin
(θ,{x j ,y j | j∈P})

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
(σD)2

∑
i∈C

(√
(x (θ) − xi )2 + (y (θ) − yi )2 − Di

)2

+ ∑
j∈P

⎧⎪⎨
⎪⎩

1
(σD)2

(√(
x (θ) − x j

)2 + (
y (θ) − y j

)2 − Dj

)2

+ 1
(σS)

2

((
X j − x j

)2 + (
Y j − y j

)2)

⎫⎪⎬
⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(37)

where P is the set of peripheral measurements with imprecise positions. In order to find
the global minimum, the number of parameters to be estimated is 2L + 2 where L is the
number of measurements with imprecise positions (i.e. the size of the set P). By means of
Circular Uncertainty, this number is reduced to 2L + 1 by representing both x and y-axis of
the target as a function of θ . Moreover, if we also achieve to represent the imprecise sensor
positions minimizing the MLE cost as a function of θ , then the total number of parameters
to be estimated will be reduced to 1 i.e. only θ . Let us consider the estimation of a single
imprecise sensor position which minimizes jointly distance and sensor position errors given
the location of the target (x (θ) , y (θ)) :

(
x̂ j , ŷ j

) = argmin
(x j ,y j)

⎛
⎜⎝

1
(σD)2

(√(
x (θ) − x j

)2 + (
y (θ) − y j

)2 − Dj

)2

+ 1
(σS)

2

((
X j − x j

)2 + (
Y j − y j

)2)

⎞
⎟⎠ (38)
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Fig. 5 The estimated position of the sensor
(
x̂ j , ŷ j

)
, the measured position of the sensor

(
X j , Y j

)
and the

location of the target (x, y) must linearly align

First of all, in order to minimize (38), the estimated position of the sensor
(
x̂ j , ŷ j

)
, the

measured position of the sensor
(
X j , Y j

)
and the location of the target (x, y) must linearly

align because of triangular inequality.
Let us designate the distance error as Δ and the sensor position error as δ. In Fig. 5a,

an estimation for the sensor position is shown which does not lie on the line which passes
through

(
X j , Y j

)
and (x (θ) , y (θ)). It is apparent that the projection point of this estimation

onto this line would yield smaller Δ and δ so a smaller cost value. Therefore, the solution of
(38) must be located on the line which passes through the measured position of the sensor(
X j , Y j

)
and the location of the target (x (θ) , y (θ)) as shown in Fig. 5b. For this scheme,

we need to only find the lengths of Δ and δ. Therefore, solving (38) can be equivalently
achieved by solving the following equation:

(
Δ̂, δ̂

)
= argmin

(Δ,δ)

(
1

(σD)2
(Δ)2 + 1

(σS)
2 (δ)2

)
(39)

subjected to the constraint:

Δ + δ = ζ =
√(

x (θ) − X j
)2 + (

y (θ) − Y j
)2 − Dj (40)

where ζ is the difference between the measured distance Dj and the distance between the
target and the measured position of the sensor

(
X j , Y j

)
. If we insert the following equity

into the cost function shown in (39):

Δ = ζ − δ (41)

and then if we take the derivative of this cost function with respect to δ, we obtain the
following the equation:

2 (σD)2 δ − 2 (σS)
2 (ζ − δ) = 0 (42)
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Therefore, the estimated value of δ which minimizes (39) is as the following:

δ̂ = (σS)
2

(σS)
2 + (σD)2

(√(
x (θ) − X j

)2 + (
y (θ) − Y j

)2 − Dj

)
(43)

Based on this value, we can write the estimated sensor position
(
x̂ j , ŷ j

)
which minimizes

(38) is as the following:

x̂ j = X j + δ̂

(
x − X j

)
√(

x − X j
)2 + (

y − Y j
)2 (44)

ŷ j = Y j + δ̂

(
y − Y j

)
√(

x − X j
)2 + (

y − Y j
)2 (45)

Finally, we can write (44) and (45) as the functions of θ :

x̂ j (θ) = X j + (σS)
2

(σS)
2 + (σD)2⎛

⎝1 − Dj√(
x (θ) − X j

)2 + (
y (θ) − Y j

)2

⎞
⎠(

x (θ) − X j
)

(46)

ŷ j (θ) = Y j + (σS)
2

(σS)
2 + (σD)2⎛

⎝1 − Dj√(
x (θ) − X j

)2 + (
y (θ) − Y j

)2

⎞
⎠(

y (θ) − Y j
)

(47)

To sum up, we can rewrite the MLE cost function in (37) as a function of θ :

(
θ̂
)

= argmin
θ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
(σD)2

∑
i∈C

(√
(x (θ) − xi )2 + (y (θ) − yi )2 − Di

)2

+ ∑
j∈P

⎧⎪⎨
⎪⎩

1
(σD)2

(√(
x (θ) − x̂ j (θ)

)2 + (
y (θ) − ŷ j (θ)

)2 − Dj

)2

+ 1
(σS)

2

((
X j − x̂ j (θ)

)2 + (
Y j − ŷ j (θ)

)2)

⎫⎪⎬
⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(48)

After representing the imprecise sensor positions as a function of θ , the total number of
parameters to be estimated within MLE equation in (37) is reduced from 2L+1 to 1, in other
words, the global minimum will be only searched through the parameter θ .

4 Simulations

4.1 Imprecise sensor positions within central measurements

In this section, aMonteCarlo simulationwhich consists of 1000 iterations is conducted for the
scenario where there are eight central measurements with precise position together with three
central measurements with imprecise positions. The standard deviation of the sensor position
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Fig. 6 a The simulation setup—a sample measurement scheme with eight central precise and three central
imprecise measurements and b the RMS distance errors for various localization method

error σS is set to 3. Fig. 6a shows the simulation setup by means of a sample measurement
scheme. In each iteration, while both the sensors and target are randomly positioned, they
are subjected to the same constraints of Fig. 4a (concerning the positions of the sensors and
the target). In Fig. 6b, the performance of various localization techniques are compared to
each other by means of RMS distance error of localization.

Distance NLS is the localization which simply minimizes the conventional NLS cost
function in (15) without taking the uncertainties in sensor positions into account. Circular
Uncertainty is the localization technique thatwe have introduced in (34). CircularUncertainty
in (34) again does not take the uncertainties in sensor positions into account. “Circ. Unc. +
Dist NLS” is themethodwhere the estimation of the Circular Uncertainty is used as the initial
point of Distance NLS. The significance of this type initialization will be apparent in the next
sections. For this scenario, these methods i.e. Distance NLS, Circular Uncertainty and “Circ.
Unc. + Dist NLS” have the equivalent rate of performance which is significantly above
CRLB. SR-WLS is the abbreviation of the squared range weighted least-squares introduced
by Chen and Ho (2014). They introduce this algorithm in order to conveniently solve the
localization problems with imprecise sensor positions. Unlike MLE, SR-WLS avoids jointly
estimating the target and the sensor positions. It solves a least squares equation whose terms
are skillfully weighted by also taking the uncertainties in the sensor positions into account.

While implementing SR-WLS, because we assume that the standard deviation of sensor
position errors along x and y axis are the same i.e. σS and the errors are independent, the
A matrix (introduced in Chen and Ho 2014) is removed during calculation of the weighting
matrix W as shown below:

W = [B (QD + QS) B]
−1 (49)

where QD is the diagonal matrix whose diagonal elements are (σD)2, and QS is an 11× 11
matrix as the following:
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QS =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
. . .

0
σ 2
S

σ 2
S

σ 2
S

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
11x11

(50)

and B is the matrix as defined in Chen and Ho (2014). While constructing QS , it is assumed
that the last three measurements have imprecise positions. By removing the matrix A, the
need for an initial estimation for the target position mentioned in Chen and Ho (2014) is also
removed.

As seen in Fig. 6b, SR-WLS and MLE by the Circular Uncertainty in (48) introduced
in the previous section can attain CRLB while the former methods which do not take the
uncertainties in the sensor positions into account fail to achieve this performance. SR-WLS
weights the sensor according to their closeness to target, the relative error level in distance
measurements and the standard deviation of sensor positions. In this sense, for the simulation
setup that we have defined in Fig. 6a, SR-WLS opts to weight the three sensors with imprecise
positions with smaller numbers. By doing this, SR-WLS reduces the importance of these
sensors because they are not reliable due to their uncertain positions. This is the justification
of the success of SR-WLS in attaining CRLB. However, a trade-off will occur when you need
to heavily rely on the sensors with imprecise positions if they are peripheral measurements
instead of central ones. Therefore, the true benefit of MLE with Circular Uncertainty will be
more apparent in the next sections.

4.2 The benefit of peripheral measurements

It has been discussed that when there are only central sensors which take distance-to-target
measurements, the localization suffers froma lowcapability of estimating the angular position
of the target. Therefore, in addition to the central measurements, a few number of peripheral
measurements can be deployed to increase the estimation capability of localization system.
To scan a broad peripheral area, the peripheral measurements can be designed as moving
sensorswhich at the end brings the issue of uncertainties in the positions of peripheral sensors.
Nevertheless, in this section, it is shown how peripheral measurements even with imprecise
positions can significantly increase the performance of the localization systems. In Fig. 7,
two CRLBs are shown for two different localization scenarios. Both of these two scenarios
employ the same number of measurements i.e. eight measurements with precise positions
and three measurements with imprecise positions. However, the distinction is that in the
first scenario, three imprecise measurements are the central ones together with other eight
measurements while in the second scenario, they are employed as peripheral measurements.
The first scenario is the one which is already shown in Fig. 6a and the second scenario is
depicted in Fig. 8a. In the second scenario, the peripheral measurements are allowed to be
randomly distributed within peripheral area just like the target, however they are not allowed
to get close to the target smaller than 5 units. The standard deviation of the sensor position
error σS is set to 3. As seen in Fig. 7, the peripheral measurements can significantly increase
the performance of the range-only localization system. Please note that RMS distance errors
are plotted in log-scale, so the difference between these two CRLBs points to a significant
increase in the performance.
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Fig. 7 Increase in the
performance of localization
systems by means of peripheral
measurements

4.3 The simulation including peripheral measurements with imprecise positions

In this section, the simulation including peripheral measurements with imprecise positions
is presented. A Monte Carlo simulation which consists of 1000 iterations is conducted to
determine the localization performance of the algorithms. The simulation setup is depicted
in Fig. 8a by means of a sample measurement scheme where there are eight central measure-
ments with precise positions and three peripheral measurements with imprecise positions
and the standard deviation of the sensor position error σS is set to 3. In each iteration, the
sensors and the target are randomly positioned in accordance with the peripheral and cen-
tral constraints settled in previous simulations. As depicted previously, in order to take the
advantage of the peripheralmeasurements, the localization systemmust rely on the peripheral
measurements even though their positions are imprecise. The first method shown in Fig. 8b
is Distance NLS. Because of peripheral measurements, the surface of the conventional dis-
tance NLS cost function becomes somewhat complicated, so the conventional distance NLS
suffers from local minima. Therefore, Distance NLS presents the worst performance in this
scenario because of convergence issues. However, Circular Uncertainty that we have intro-
duced in (34) presents a better performance compared to distance NLS. We have mentioned
that Circular Uncertainty is a safe and reliable way of obtaining global minimum. When the
estimation of Circular Uncertainty is employed as the initial point of Distance NLS, then
Distance NLS can be also guided to obtain the global minimum. Therefore, “Circ. Unc. +
Dist. NLS” has the same level of RMS error with Circular Uncertainty, and this level is quite
smaller than that of only Distance NLS. In this context, the important advantage of Circular
Uncertainty which safely obtains the global minimum becomes visible.

The next thing to be discussed about Fig. 8b is that SR-WLS fails to attain CLRB for high
level of distance-to-target measurement errors. It has been discussed that the strategy of the
SR-WLS is to reduce the weights of the measurements with imprecise positions in order not
to rely on these measurements. However, our major aim here is to take the advantage of the
peripheral measurements as much as possible despite their positions are imprecise in order
to exploit all available information for localization of the target. Therefore, this situation
creates a trade-off for SR-WLS. On the other hand, as a complete basis for estimation, the
MLE solution can apparently do better than weighted least squares algorithms.MLE solution
automatically takes the standard deviations of errors in distance measurements and imprecise
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Fig. 8 a The simulation setup—a sample measurement scheme with eight central precise and three peripheral
imprecise measurements, b the RMS distance errors for various localization methods

Table 1 Average execution
times of the algorithms when
these algorithms are performed
on an ordinary desktop computer

Method Execution time (s)

Circular Uncertainty 0.049

Distance NLS 0.069

Circ. Unc. + Dist. NLS 0.071

SR-WLS (Chen and Ho 2014) 0.073

MLE by Circular Unc. 0.074

sensor positions into account. Not only these, it also takes the geometry or the arrangement
of sensors into account, which guarantees a superior performance. Eventually, our proposed
method, i.e. MLE by Circular Uncertainty, can demonstrate better performance compared to
all other competing methods. Circular Uncertainty or “Circ. Unc. + Dist. NLS” can not attain
CRLB for low σD levels and oppositely SR-WLS can not attain CRLB for high σD levels.
However, MLE by Circular Uncertainty can always attain CRLB for all levels of σD as seen
in Fig. 8b.

Finally, average execution times of these algorithms are provided in Table 1, when these
algorithms are performed on an ordinary desktop computer with Intel Core(TM) i7-3630QM
CPU@2.40 GHz Processor and 16 GB RAM via MATLAB. As can be seen, Circular Uncer-
tainty has the smallest execution time (0.049 s) while Distance NLS follows it with an
important gap. CircularUncertainty attains this performance gain because it skillfully reduces
the NLS localization problem to a simple task. Circular Uncertainty searches the global min-
imum in a one-dimensional space while distance NLSmakes a two-dimensional search. Circ.
Unc. + Dist NLS comes after these methods with 0.071 s. After these three methods which
do not take the uncertainty in the sensor positions into account, SR-WLS comes with 0.073
s of execution time in average. This execution time is quite closer to that of Distance NLS or
Circ. Unc. + Dist NLS. The success of SR-WLS in terms of execution time is that it makes
use of the squared ranges in order not deal with square roots in the estimation cost function.
The last method in terms execution time is MLE by Circular Uncertainty. However, the aver-
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age execution time of MLE by Circular Uncertainty and SR-WLS are almost same. When
it is considered that this method achieves a very complicated task and it outperforms all the
other methods in terms of localization error, MLE by Circular Uncertainty appears as the
most effective method among others. When, there exist uncertainties in sensor positions, the
success ofMLE by Circular Uncertainty in terms of both localization accuracy and execution
time is due the fact that it reduces themulti-dimensional search space in into one-dimensional
space without decreasing the localization accuracy.

5 Conclusion

In localization systems, the biggest problem with the MLE solution is that it is said to be
computationally inefficient. Moreover, because of local minima or irregular cost functions,
attempting to reach MLE solution can be sometimes problematic or even impossible. In this
study, a new method called Circular Uncertainty is introduced to effectively and reliably
solve a very complicated MLE problem. Circular certainty not only makes it possible to
reach MLE solutions, but also significantly simplifies this task. A high dimensional joint
estimation problem is reduced to the estimation of only a single parameter i.e. θ . The success
of Circular Uncertainty is to innovatively handle the range-only localization problem with
solid observations. Future studies can take the advantage of this or other similar structures
to make the complex localization problems easy or possible.

Acknowledgements This study is funded by TUBITAK (The Scientific and Technological Research Council
of Turkey) with the Project Number 115E185 and by Anadolu University with the Project Number 1606F559.

Appendix

In this section, the MLE cost function of range-only localization in the presence of uncer-
tainties of sensor positions is explained in detail. The multivariate likelihood function of all
parameters in �q based on the distance-to-target and sensor position measurements can be
written as the following,

p
( �D, �X , �Y ; �q

)
= 1√

(2π)N |CD|
e
−

( �D− �μd

)
C−1
D

( �D− �μd

)T

· 1√
(2π)N |CX |

e
−

( �X− �μx

)
C−1
X

( �X− �μx

)T

· 1√
(2π)N |CY |

e
−

( �Y− �μy

)
C−1
Y

( �Y− �μy

)T
(51)

where CD , CX and CY are the covariance matrices of the distance-to-target measurements
as well as the measurements of x and y position of the sensors respectively. �μd is the vector
of the distance-to-target values as a vector valued function of the parameters in �q,
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�μd =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
(x − x1)2 + (y − y1)2

...√
(x − xi )2 + (y − yi )2

...√
(x − xN )2 + (y − yN )2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(52)

Furthermore, �μx and �μy are the vectors of the x positions and the y positions of the sensors
respectively based on the parameters in �q . Because of the measurement model that is defined
in (2), (3) and (4), all measurements are independent, so the covariance matrices are diagonal
ones as the followings,

CD =

⎡
⎢⎢⎢⎣

σ 2
D

σ 2
D

. . .

σ 2
D

⎤
⎥⎥⎥⎦

NxN

(53)

CX = CY =

⎡
⎢⎢⎢⎣

σ 2
S

σ 2
S

. . .

σ 2
S

⎤
⎥⎥⎥⎦

NxN

(54)

Therefore, (51) can be rewritten as the following expression,

p
( �D, �X , �Y ; �q

)
=

⎛
⎝ 1√

2π σ 2
D

⎞
⎠

N

e
− 1

(σD)2
∑N

i=1

(√
(x−xi )2+ (y−yi )2− Di

)2

·
(

1√
2πσ 2

s

)N

e
− 1

(σS)
2
∑N

i=1(Xi−xi )2

.

(
1√
2πσ 2

s

)N

e
− 1

(σS)
2
∑N

i=1(Yi−yi )2

(55)

Finally, the log-likelihood of the all the parameters in �q can be written as the following,

ln p
( �D, �X , �Y ; �q

)
= − 1

(σD)2

N∑
i=1

(√
(x − xi )2 + (y − yi )2 − Di

)2

− 1

(σS)
2

N∑
i=1

[
(Xi − xi )

2 + (Yi − yi )
2] + K (56)

where is K is a constant such that,

K = −N ln

(√
2π (σD)2

)
− 2N ln

(√
2π (σS)

2
)

(57)
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Bishop, A. N., Fidan, B., Anderson, B. D., Doğançay, K., & Pathirana, P. N. (2010). Optimality analysis of
sensor-target localization geometries. Automatica, 46(3), 479–492.

123



Multidim Syst Sign Process (2018) 29:1757–1780 1779

Bucker, H. P. (1978). Beamforming a towed line array of unknown shape. The Journal of the Acoustical Society
of America, 63(5), 1451–1454.

Buehrer, R.M.,&Venkatesh, S. (2012). Fundamentals of time-of-arrival-based position location. In R. Zekavat
& R. M. Buehrer (Eds.), Handbook of position location: Theory, practice and advances (pp. 175–212).
New Jersey: Wiley.

Carter, G. C. (1979). Passive ranging errors due to receiving hydrophone position uncertainty. The Journal of
the Acoustical Society of America, 65(2), 528–530.

Chen, S., & Ho, K. C. (2014). Reaching asymptotic efficient performance for squared processing of range and
range difference localizations in the presence of sensor position errors. In IEEE international conference
on acoustics, speech and signal processing (ICASSP) (pp. 1419–1423).

Chen, J. C., Hudson, R. E., & Yao, K. (2002). Maximum-likelihood source localization and unknown sensor
location estimation for wideband signals in the near-field. IEEE Transactions on Signal Processing,
50(8), 1843–1854.

Hinich, M. J., & Rule, W. (1975). Bearing estimation using a large towed array. The Journal of the Acoustical
Society of America, 58(5), 1023–1029.

Ho, K. C., Lu, X., &Kovavisaruch, L. O. (2007). Source localization using TDOA and FDOAmeasurements in
the presence of receiver location errors: Analysis and solution. IEEE Transactions on Signal Processing,
55(2), 684–696.

Ho, K. C., & Yang, L. (2008). On the use of a calibration emitter for source localization in the presence of
sensor position uncertainty. IEEE Transactions on Signal Processing, 56(12), 5758–5772.

Krim, H., & Viberg, M. (1996). Two decades of array signal processing research: The parametric approach.
IEEE Signal Processing Magazine, 13(4), 67–94.

Li, J., Ho, K. C., Guo, F., & Jiang, W. (2014, June). Improving the projection method for TOA source
localization in the presence of sensor position errors. In IEEE 8th sensor array and multichannel signal
processing workshop (SAM) (pp. 45–48).

Li, J., Pang, H., Guo, F., Yang, L., & Jiang, W. (2015). Localization of multiple disjoint sources with prior
knowledge on source locations in the presence of sensor location errors. Digital Signal Processing, 40,
181–197.

Li, S., & Ho, K. C. (2016). Accurate and effective localization of an object in large equal radius scenario.
IEEE Transactions on Wireless Communications, 15(12), 8273–8285.

Lui, K. W. K., Ma, W. K., So, H. C., & Chan, F. K. W. (2009). Semi-definite programming algorithms for
sensor network node localization with uncertainties in anchor positions and/or propagation speed. IEEE
Transactions on Signal Processing, 57(2), 752–763.

Ma, Z., & Ho, K. C. (2011, May). TOA localization in the presence of random sensor position errors. In IEEE
international conference on acoustics, speech and signal processing (ICASSP) (pp. 2468–2471).

MATLAB. (2014). The MathWorks, Inc., Natick, MA, USA. License Number: 991708.
Nehorai, A., & Paldi, E. (1994). Vector-sensor array processing for electromagnetic source localization. IEEE

Transactions on Signal Processing, 42(2), 376–398.
Olson, E., Leonard, J., & Teller, S. (2006). Robust range-only beacon localization. IEEE Journal of Oceanic

Engineering, 31(4), 949–958.
Qu, X., & Xie, L. (2012, July). Source localization by TDOA with random sensor position errors-part I: Static

sensors. In 15th international conference on information fusion (pp. 48–53).
Qu, X., & Xie, L. (2012, July). Source localization by TDOA with random sensor position errors-part II:

Mobile sensors. In 15th international conference on information fusion (pp. 54–59).
Rockah, Y., & Schultheiss, P. (1987). Array shape calibration using sources in unknown locations-Part I:

Far-field sources. IEEE Transactions on Acoustics, Speech, and Signal Processing, 35(3), 286–299.
Schultheiss, P. M., & Ianniello, J. P. (1980). Optimum range and bearing estimation with randomly perturbed

arrays. The Journal of the Acoustical Society of America, 68(1), 167–173.
Srirangarajan, S., Tewfik, A. H., & Luo, Z. Q. (2007, April). Distributed sensor network localization with inac-

curate anchor positions and noisy distance information. In IEEE international conference on acoustics,
speech and signal processing (ICASSP) (Vol. 3, pp. 521–524).

Zhang, X., He, Z., Liao, B., Zhang, X., & Xie, J. (2017). DOA and phase error estimation using one calibrated
sensor in ULA. Multidimensional Systems and Signal Processing. doi:10.1007/s11045-017-0484-x.

123

http://dx.doi.org/10.1007/s11045-017-0484-x


1780 Multidim Syst Sign Process (2018) 29:1757–1780

Seçkin Uluskan received his B.S. degree in Electrical and Electron-
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