
Multidim Syst Sign Process (2018) 29:1203–1226
https://doi.org/10.1007/s11045-017-0494-8

Adaptive resource management algorithm for target
tracking in radar network based on low probability
of intercept

Chenguang Shi1 · Jianjiang Zhou1 · Fei Wang1

Received: 27 January 2016 / Revised: 30 December 2016 / Accepted: 25 April 2017 /
Published online: 15 May 2017
© Springer Science+Business Media New York 2017

Abstract In this paper, a low probability of intercept (LPI) performance driven adaptive
resource management algorithm for target tracking in a radar network is presented, where
the radar network consists of a dedicated radar transmitter and multiple receivers. Firstly,
the intercept probability for radar network systems is derived. Then, an adaptive resource
management scheme based on LPI is proposed, in which a novel objective function for
LPI performance is defined and minimized by optimizing the revisit interval, dwell time, and
transmit power in radar networks to guarantee a specific target tracking accuracy with passive
time difference of arrival and frequency difference of arrival cooperation. Numerical simula-
tions demonstrate the superior performance of the proposed adaptive resource management
scheme over other methods via Monte Carlo simulations.

Keywords Low probability of intercept (LPI) · Resource management · Intercept
probability · Radar networks · Target tracking

1 Introduction

In recent years, distributed radar networks have received significant attention in a novel
class of radar system, where the term radar networks refer to spatial distributed multiple-
input multiple-output (MIMO) radar systems (Li and Stoica 2009; Pace 2009; Haimovich
et al. 2008). Radar networks with widely separated antennas can capture information from
different views of target’s radar cross section (RCS) and employ spatial and signal diversities
(Fisher et al. 2006). For a radar network architecture withM transmit antennas and N receiver
antennas, the MN transmitter–receiver pairs observe different aspects of the target, while
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the conventional radar systems observe only one single aspect of the target. Thus, the radar
networks can overcome deep fades other than the conventional radars (Shi et al. 2016b).
Extensive research has been conducted into the potential use of radar networks for achieving
system performance improvement owing to their advantage of spatial and signal diversities,
including target detection (Fisher et al. 2006; Naghsh et al. 2013; Song et al. 2012b), target
localization (Niu et al. 2010; Dogancay 2007), target tracking (Godrich et al. 2012b; Nguyen
et al. 2014), waveform design (Chen et al. 2013; Shi et al. 2016b, e), sensor selection (Godrich
et al. 2012a; Nguyen et al. 2015b; Shi et al. 2016c), parameter estimation (Shi et al. 2016c, e),
and information extraction Song et al. (2012a). In Fisher et al. (2006), the authors introduce
the concept of distributed MIMO radar and investigate the inherent performance limitations
of both conventional phased array radars and the newly proposed radars. The problem of
code design to improve the detection performance of multi-static radar in the presence of
clutter is studied in Naghsh et al. (2013), where the information-theoretic criteria are used
as design metrics. Niu et al. (2010) develop the localization and tracking algorithms for
noncoherent MIMO radar systems, in which it is demonstrated that the noncoherent MIMO
radar can provide a significant performance improvement over traditional monostatic phased
array radar with high range and azimuth resolutions. In Nguyen et al. (2015a), the authors
investigate the problem of target tracking in a multistatic radar system from the perspective
of adaptive waveform selection, in which the transmitted waveform parameters are selected
to minimize the target tracking covariance matrix.

Powermanagement andmode control play a key role in industrial andmilitary applications
such as energy storage systems, power converters, sensor networks, etc. (Liu et al. 2016, 2017;
Su et al. 2016, 2017). This paper focuses on the problem of adaptive transmitting resource
management for radar networks. The objective of resourcemanagement is to optimize the LPI
performance for network systems. The study of power allocation in distributed radar network
architectures has received sizeable impetus, which has been extensively studied from various
perspectives (Song et al. 2012a; Chavali and Nehorai 2012; Yan et al. 2015, 2016; Sun
et al. 2014; Chen et al. 2015, 2016; Ma et al. 2014). Yan et al. (2015) extend the previous
results in Chavali and Nehorai (2012) and propose a performance-driven power allocation
strategy for Doppler-only target tracking in unmodulated continuous wave (UCW) radar
network, where the Bayesian Cramer–Rao lower bound (BCRLB) is derived and utilized as
an optimization criterion for the optimal power allocation scheme. The authors in Sun et al.
(2014) and Chen et al. (2015) study the problem of optimal power allocation with the goal of
maximizing the determinant of Bayesian Fisher information matrix (B-FIM) in distributed
MIMO radar networks for target localization and tracking respectively, where it is formulated
as a cooperative game and the Shapley value is exploited as the solution to the proposed
scheme. Ma et al. (2014) presents a joint strategy of antenna subset selection and optimal
power allocation for target localization in distributed MIMO radar sensor networks, and the
authors develop a two-step suboptimal approach to tackle the optimization problem. The
power management games for wireless sensor network localization with agent cooperation
in both asynchronous and synchronous networks are analyzed in Chen et al. (2016), whose
objective is to minimize the individual power-penalized cost function to achieve a better
trade-off between target localization performance and power consumption for each agent.
In Yan et al. (2016), a joint beam selection and power allocation algorithm is proposed for
multiple target tracking in netted colocated MIMO radar system, and a fast two-step solution
technique is developed to decide the assignment and transmit power of each radar. Overall, the
previous studies lay a solid foundation for the problem of performance optimization in radar
networks, and it should be pointed out that the target tracking performance improvement can
be obtained with an increase of either the transmitted energy or the number of radar nodes.

123



Multidim Syst Sign Process (2018) 29:1203–1226 1205

Since the notion of low probability of intercept (LPI) design is an essential part of military
operations inmodern electronicwarfare, LPI performance optimization is a primary issue that
needs to be taken into account in designing radar system (Schleher 2006; Lynch 2004). An
LPI radar is defined as a radar that uses a special emitted waveform intended to prevent a non-
cooperative interceptor from intercepting, detecting and classifying its emission (Stove et al.
2004). In order to obtain good LPI performance, it is necessary to strictly control the radiation
of radar system. Transmit power and dwell time management, ultra-low side-lobe antenna,
waveform agility and selection are employed to guarantee the LPI performance. Hence,
extensive research has been conducted in LPI optimization for radar system, and some of the
noteworthy works include (Stove et al. 2004; Shi et al. 2016a; Chen et al. 2014; Narykov et al.
2013). In Shi et al. (2016a), the problem of LPI-based adaptive radar waveform design in
signal-dependent clutter for joint radar and cellular communication systems is investigated,
and three different criteria for radar waveform optimization are proposed to minimize the
total transmitted power of radar by optimizing the multicarrier radar waveform with a given
signal-to-interference-plus-noise ratio (SINR) constraint and a minimum required capacity
for the communication systems.Chen et al. (2014) present a time difference of arrival (TDOA)
cooperation based radar radiation control in multiple aircraft platforms, which utilizes the
comparison of covariance and the predefined threshold to control the radar radiation state.
The authors in Narykov et al. (2013) investigate the sensor scheduling algorithm of selecting
and assigning sensors dynamically for target tracking, which can obtain a good trade-off
between the target tracking accuracy and the LPI performance. Shi et al. (2014) address
the problem of LPI optimization in radar networks for the first time, where it has been
demonstrated that radar network architectures with multiple transmitters and receivers can
provide remarkable LPI performance advantages over traditional monostatic radar system,
and has triggered a resurgence of interest in radar networks. Later, LPI based robust waveform
optimization schemes are proposed for distributed multiple-radar systems (Shi et al. 2016d),
where SINR and mutual information (MI) are used as the metrics for target detection and
information extraction, respectively. Panoui et al. (2014) presents a novel game theoretic
approach for power allocation in a MIMO radar network. The aim of each clusters of radars
in the network is to minimize the total transmitted power in the cluster while guaranteeing
a specific target detection threshold. Zhang and Tian (2016); Zhang et al. (2016) study the
radio frequency-based coordination strategy of opportunistic array radars for target tracking
in clutter. Simulation results demonstrate that the presented strategies not only have excellent
target tracking performance in clutter but also savemuch transmit power comparedwith other
algorithms. Reference Deligiannis et al. (2016) models the interaction between the radar
network and multiple jammers as a non-cooperative game. The goal of the radar network
is to minimize the total power transmitted by the radars while achieving a predetermined
detection performance for each of the targets, while the jammers have the ability to observe
the radar transmitted power and consequently decide its jamming power to maximize the
interference to the radars. However, almost all of those works focus on the single parameter
optimization.On the basis of the researchmentioned above, the problemofLPI based adaptive
resource management for target tracking in radar network, which has not been considered,
needs to be investigated.

This paper aims to investigate the problemof adaptive resource schedulingbasedonLPI for
target tracking by a distributed radar network, wherein the radar network with one dedicated
radar transmitter and multiple receivers is considered. Firstly, the intercept probability for
distributed radar network systems is calculated. Then, a novel objective function is developed,
which is minimized by optimizing the revisit interval, dwell time, and transmit power in radar
networks to improve the LPI performance for a given target tracking accuracy with TDOA
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and frequency difference of arrival (FDOA) cooperation. We employ an interacting multiple
model (IMM) algorithm incorporating extended Kalman filter (EKF) for target tracking. The
proposed algorithm can be formulated as a two-step optimization problem: the outer one
is for revisit interval control, and the inner one is for transmission parameters scheduling.
Numerical simulation results show the effectiveness of the proposed algorithm. To the best
of authors knowledge, no literature discussing the LPI based adaptive resource management
in radar network was conducted prior to this study.

The remainder of this paper is organized as follows. Section 2 introduces the considered
radar network system model. In Sect. 3, with the derived intercept probability for radar
network, a novel adaptive resource management algorithm for target tracking based on LPI
is formulated. The performance of the proposed algorithm is validated by Monte Carlo
simulations in Sect. 5. Finally, conclusion remarks are drawn in Sect. 6.

2 System model

2.1 Target tracking model

Consider a two-dimensional target tracking scenario. The target state is given by X(k) =
[x(k), ẋ(k), y(k), ẏ(k)]†, where [x(k), y(k)] denotes the target position, [ẋ(k), ẏ(k)] denotes
the target velocity, and the superscript † represents matrix transpose. The target dynamic
model can be described as:

X(k) = FX(k − 1) + N(k − 1), (1)

whereF is the transitionmatrix. The termN(k−1) in (2) represents the process noise of target
motion, and is supposed to be an additive Gaussian noise vector with a known covariance
matrixQ(k−1) = E[N(k−1)N(k−1)†], where E[·] denotes the mathematical expectation.

The nonlinear observation equation is given by:

Z(k) = h (X(k)) + W(k), (2)

where Z(k) is the observation vector at time index k, W(k) stands for the observation error,
and h(·) is a vector of nonlinear transformation function.

2.2 Passive mode in radar networks

In this paper, we consider a distributed radar network consists of one dedicated radar trans-
mitter and Nr receivers, which are located at different sites as depicted in Fig. 1. The radar
network can work in two modes, i.e., passive mode and active mode. If the expected target
tracking accuracy is satisfied, the radar networkswork in passivemode, wherein the dedicated
radar transmitter does not transmit any signals, and all the radar receivers in radar networks
locate and track the target by receiving the signal s(t) radiated from the target. Herein, it
is supposed that the radar receivers in radar networks can receive the signals radiated from
the target all the time, so that the passive TDOA and FDOA method (Wu et al. 2014) can
be employed to locate and track the target. If the expected target tracking accuracy is not
satisfied, the radar networks work in active mode. In this case, the dedicated radar transmitter
transmits radar signals x(t) and all the receivers in radar networks can receive and process the
echoes y j (t)( j = 1, . . . , Nr ) that are reflected from the target. The estimates of target range,
Doppler shift, and arrival angle can be obtained from all receivers, where target range and
Doppler shift are estimated employing matched filters and square-law envelope detectors,
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Fig. 1 Distributed radar network systems considered in paper

and arrival angle is estimated utilizing phased array antennas. Then, radar estimates are sent
to the radar transmitter that incorporates a fusion processor to perform target tracking and
resource management.

It is known to all that different modes have different observation vectors. Herein, we
assume that the elevation angle is zero for concise description. In our case, Nr radar receivers
are employed to track a single target with TDOA and FDOA method (Wu et al. 2014). In
order to locate a 2D target, the TDOA and FDOA system should comprise three stations at
least. The measurements received from all the receivers must be sent to the radar transmitter,
where the time difference and the target position estimate are computed.

Without loss of generality, it is assumed that the dedicated radar transmitter is located at
the origin (x1, y1) = (0, 0)km with a receiver colocated and the j th receiver is located at
(x j , y j )( j = 2, . . . , Nr ), respectively. The TDOA equations can be given by:

{
r2j (k) = [x(k) − x j ]2 + [y(k) − y j ]2,
r21 (k) = x2(k) + y2(k),

(3)

where r1(k) denotes the range between the target and the radar transmitter, r j (k) denotes the
range between the target and the j th receiver. Then, we can obtain:

�r j,1(k) = r j (k) − r1(k) = c � t j,1(k), (4)

where c represents the speed of electromagnetic transmission. �t j,1(k) stands for the corre-
sponding time difference of �r j,1(k):

� t j,1(k) = t j (k) − t1(k), (5)
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where t1(k) and t j (k) are the time when the targets radiated signal is received by the radar
transmitter and receviers, respectively.

The time derivative of (3) shows the relationship between the range rate and target position
parameters: ⎧⎨

⎩
ṙ2j (k) = (x(k)−x j )ẋ(k)+(y(k)−y j )ẏ(k)

r j (k)
,

ṙ21 (k) = x(k)ẋ(k)+y(k)ẏ(k)
r1(k)

.
(6)

To make use of FDOA measurements, taking the time derivative of the range difference
�r j,1(k) in (4), we can have its rate �ṫ j,1(k) as follows:

�ṙ j,1(k) = ṙ j (k) − ṙ1(k)

= c � ṫ j,1(k) = c

fc
� f dj,1(k), (7)

where fc is the carrier frequency, and � f dj,1(k) is the corresponding frequency difference.
The observation vector of the passive mode can be described as:

ZPM(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�r2,1(k)
�ṙ2,1(k)
θ2PM(k)

...

�rNr ,1(k)
�ṙNr ,1(k)

θ
Nr
PM(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c(t2(k) − t1(k))
c(ṫ2(k) − ṫ1(k))

arctan
(
y(k)−y1
x(k)−x1

)
...

c(tNr (k) − t1(k))
c(ṫNr (k) − ṫ1(k))

arctan
(
y(k)−yNr
x(k)−xNr

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ WPM(k), (8)

where θ
j
PM(k)( j = 2, . . . , Nr ) denotes the passive arrival angle at the j th receiver,WPM(k)

denotes the observation error with covariance NPM(k), and hPM(·) denotes the nonlinear
transformation from the target state vector of target position in Cartesian coordinates to the
observation vector of time difference.

2.3 Active mode in radar networks

When the radar networks work in active mode, the network systems can be broken into
1× Nr transmitter–receiver pairs each with a bistatic component contributing to the entirety
of the radar network signal-to-noise ratio (SNR). We assume that the radar networks have
a common precise knowledge of space and time. The total SNR in radar networks can be
obtained by aggregating the SNR of each transmit–receive pair as follows:

SNRnet =
Nr∑
j=1

PtG tGr jσt jλ
2GRP

(4π)3kT0Br j Fr j R2
t R

2
r j

, (9)

where Pt is the transmit power of the dedicated radar transmitter, Gt is the transmitting
antenna gain, Gr j is the j th receiving antenna gain, σt j represents the target’s RCS for
the dedicated radar transmitter and j th receiver, λ represents the transmitted wavelength,
GRP denotes the radar network processing gain, k and T0 are Boltzmanns constant and the
receiving system noise temperature respectively, Br j denotes the bandwidth of the matched
filter for the transmitted waveform at the j th receiver, Fr j denotes the noise factor for the j th
receiver, Rt and Rr j are the distance from the dedicated radar transmitter to the target and
the distance from the target to the j th receiver, respectively.
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Moreover, the observation vector of the active mode includes target range measurement
r j
AM(k), Doppler-shift measurement ν j

AM(k), and arrival angle measurement θ j
AM(k) at each

receiver, which can be written as:

ZAM(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1AM(k)

ν1AM(k)

θ1AM(k)
...

r Nr
AM(k)

ν
Nr
AM(k)

θ
Nr
AM(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√[x(k) − x1]2 + [y(k) − y1]2
1
λ

[
ẋ(k)(x(k)−x1)+ẏ(k)(y(k)−y1)√

[x(k)−x1]2+[y(k)−y1]2

]
arctan

(
y(k)−y1
x(k)−x1

)
...√[x(k) − xNr ]2 + [y(k) − yNr ]2

1
λ

[
ẋ(k)(x(k)−xNr )+ẏ(k)(y(k)−yNr )√[x(k)−xNr ]2+[y(k)−yNr ]2

]
arctan

(
y(k)−yNr
x(k)−xNr

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ WAM(k), (10)

whereWAM(k) represents the observation error with covariance NAM(k), and hAM(·) is the
nonlinear transformation from the target state vector of target position in Cartesian coordi-
nates to the observation vector of range and azimuth angle.

2.4 IMM–EKF algorithm

The standardEKF is sufficient to track the targetwith a single target dynamicmodel.However,
for the target with time-varying or multiple dynamic models, a single dynamic model cannot
represent the actual target motion well. For that reason, we employ the IMM method which
incorporates three standard EKFs in this paper.

The IMM algorithm can estimate the target state with multiple tracking filters running
in parallel, where each tracking filter is responsible for a particular target dynamic model,
and finally obtain a weighted combination of the state estimates and tracking covariances
from individual tracking filters (Nguyen et al. 2015a). In this paper, we consider three target
dynamic models: (1) a constant velocity model, (2) a coordinate turn model with positive
turn rate, and (3) a coordinate turn model with negative turn rate.

The crucial feature of the resource management algorithm in radar network is that it
must be predictive. The predictive error covariance matrix can gives us the ability to make

decisions in advance based on current knowledge. Given the predicted target state X̂
i
(k),

model probability u(k + 1|k), and error covariance matrix Pi (k + 1|k) at time index k, we
can calculate the predictive error covariance matrix PIMM

pre (k+1|k). For real time application,
the combined target state can be calculated by:

X̂
IMM
pre (k + 1|k) =

3∑
i=1

X̂
i
(k + 1|k)ui (k + 1|k). (11)

Then, we can obtain the predictive error covariance matrix as follows:

PIMM
pre (k + 1|k) =

3∑
i=1

ui (k + 1|k)
{
Pi (k + 1|k) +

[
X̂
i
(k + 1|k) − X̂

IMM
pre (k + 1|k)

]

×
[
X̂
i
(k + 1|k) − X̂

IMM
pre (k + 1|k)

]† }
. (12)
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3 Problem formulation

In this section, the adaptive resource management strategy can be mathematically formulated
as the problem of minimizing a novel objective function for LPI performance subject to a
predetermined target tracking performance. With the derived intercept probability for radar
network, we are then in a position to design and minimize the objective function in order to
achieve effective LPI performance improvement in radar networks.

3.1 Intercept probability for radar network

In this paper, intercept probability is utilized to evaluate the LPI performance for radar
network. Based on the discussions in Lynch (2004), intercept probability is a function of
several variables. The transmit power of radar networks obviously is an important element
(Shi et al. 2014); so are the illumination time of the interceptor by the radar network, or
time-on-target, and the revisit interval.

Intercept probability is especially important in any situation in which a time-varying
radar network is to be detected (Lynch 2004). Time variations may result from radar network
platformsmotion, antenna scanning, waveform on-time, and frequency variations. Given that
the radar network presents (in some sense) the intercept receiver with an opportunity to detect
it, the intercept probability is the likelihood that the intercept receiver system is both pointed
in the right direction and tuned to the right frequency when that opportunity occurs.

For the sake of simplicity, it is supposed that the intercept receiver is carried by the target.
Thus, the probability that the radar beam illuminates the interceptor location is 1, that is:

ps = 1. (13)

In practice, frequency scanning and spatial scanning are carried out simultaneously. We
assume that a radar system scans across the location of an intercept receiver so that the antenna
beam remains pointed toward the receiver for TOT, referred to as the time on target. During
the time on the target, the interceptor will be able to listen to a total of NL combinations of
beam positions and frequency channels. Then, we have that:

NL = TOT/tL, (14)

where tL denotes the time that the interceptor listens in each beam position and frequency
channel.

It is assumed that the interceptor scans a total of NFreq frequency channels and NB beam
positions, one of which corresponds to the radar platform position and frequency. Thus, the
time-frequency probability that an intercept occurs during the time TOT can be expressed as:

pt · pf ≈ min

{
NL

NFreq · NB
, 1

}
. (15)

Furthermore, the intercept receiver total search time TI can be defined as the time that it
takes for the interceptor to scan through its set of beam positions and frequency channels,
that is:

TI = NFreq · NB · tL.(TI ≥ TOT) (16)

Actually, the time on target TOT is equal to the dwell time Td. Therefore, the time-frequency
probability (13) can be rewritten as follows:

pt · pf ≈ Td
TI

. (17)
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The probability that the interceptor detects the radar transmitted signal when it is above
the threshold of the intercept receiver is p

′
d, which refers to the probability that radar network

is detected assuming illumination and proper tuning. With the derivations in Liu et al. (2015)
and Mahafza and Elsherbeni (2009), we can obtain:

p
′
d =1

2
erfc

(√
−lnp

′
fa −

√
SNRO + 1

2

)
, (18)

erfc(z) =1 − 2√
π

∫ z

0
e−v2dv, (19)

where p
′
fa represents the probability of false alarm at intercept receiver, SNRO represents the

SNR of a single pulse at the intercept receiver signal processor output.
The signal power available at the intercept receiver from the radar system is:

Pi = PtG
′
tG iλ

2GIP

(4π)2R2
t

, (20)

where G
′
t is the gain of the radars transmitting antenna in the direction of the interceptor,

Gi is the gain of the interceptors antenna, GIP is the interceptor processing gain. Here, the
intercept receiver detects the radar main lobe, then G

′
t = Gt . In addition, the sensitivity in

the interceptor is:

SI = kT0BIFI(SNRI), (21)

where BI denotes the bandwidth of the intercept receiver, FI denotes the intercept receiver
noise factor, and SNRI denotes the SNR at the intercept receiver signal processor input. Thus,
the SNR of a single pulse at the intercept receiver signal processor output is given by:

SNRO = Pi
kT0BIFI

= PtG
′
tGiλ

2GIP

(4π)2R2
t kT0BIFI

, (22)

For any fixed value of the probability of false alarm p
′
fa, (16) can be derived as:

p
′
d = 1

2
erfc

(√
−lnp

′
fa −

√
PtG tG iλ2GIP

(4π)2R2
t kT0BIFI

+ 1

2

)
, (23)

From the above all, the intercept probability for radar network can be obtained as follows:

pI = ps · pt · pf · p′
d

= Td
2TI

erfc

(√
−lnp

′
fa −

√
PtG tG iλ2GIP

(4π)2R2
t kT0BIFI

+ 1

2

)
. (24)

3.2 LPI based resource management algorithm

Herein, the objective function for LPI performance is defined as a quotient of the intercept
probability pI, divided by the revisit interval �T for one step horizon:

L(k) = pI(k)

�T (k + 1)
, (25)

where pI(k) is the intercept probability for radar network at time step k, and �T (k + 1) is
the expected time after the measurement at time step k. In this case, we can observe that the
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objective function L(k) is related to the intercept probability for radar network and the revisit
interval. Intuitively, minimization of the objective function means better LPI performance
for radar network. Thus, the objective function (23) can provide guidance to the problem of
resource management for radar network architecture.

In this paper, we concentrate on the LPI based adaptive resource management for radar
network, whose purpose is to minimize the objective function by optimizing the revisit
interval, dwell time, and transmit power with passive TDOA and FDOA cooperation for
a given target tracking accuracy, such that the LPI performance is met on the guarantee of
tracking performance. Consequently, the underlying resource management problem for radar
network can be developed as:

min�T (k+1),Td(k),Pt(k)
L(k), (26a)

s.t. :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

SNR(k) ≥ SNRmin,

δ · Pd − PIMM
pre (k + 1|k) ≥ 0,

0 ≤ Pt(k) ≤ Pmax,

Tr ≤ Td(k) ≤ cτ
2ν .

(26b)

where SNR(k) denotes the achieved SNR in radar network at step k,SNRmin denotes the
SNR threshold for target detection performance, δ · Pd is the expected covariance matrix,
and the scalar δ(0 < δ < ∞) is defined as radar radiation control factor (RRCF), which
can be used to control target tracking accuracy. The transmit power of the dedicated radar
transmitter at step k is constrained by a maximum value Pmax and a minimum value 0, Tr
represents the pulse repetition interval, τ is the pulse width, and ν is the target radial velocity.

In what follows, we approach the problem of LPI based resource management as a two-
step optimization problem: the outer one is for revisit interval control, and the inner one is
for transmitting parameters scheduling. This way the problem of resource management in
radar network is designed as a set of problems for individual parameters. The general LPI
optimization strategy is detailed as follows.

3.2.1 Revisit interval control with TDOA and FDOA cooperation

One can notice from (10) that there exists a restrictive relationship between the predictive
error matrix PIMM

pre (k + 1|k) and the revisit interval �T (k + 1). Specifically, increasing the

revisit interval�T (k+1) leads to enlarging the trace of PIMM
pre (k+1|k), which in turn results

in the degradation of target tracking performance. Then, a new measurement needs to be
scheduled as soon as the tracking accuracy degrades to a predefined level.

It is notable that the term PIMM
pre (k+1|k) in (10) implies the feedback information from the

tracker to radar network, based on which the adaptive resource management scheme can be
implemented. Herein, we can utilize (10) to generate a so-called uncertainty ellipse, which
describes the spatial variance distribution of an efficient target estimate (Yan et al. 2015).

Generally, the uncertainty ellipse of PIMM
pre (k +1|k) would be contained in the uncertainty

ellipse of δ · Pd, which denotes the lower bound on the error covariance of the estimation of
the target position and velocity, if the expected target tracking accuracy is satisfied. Hence,

it is sufficient for us to use
[
δ · Pd − PIMM

pre (k + 1|k)
]
as a criterion for the revisit interval

control strategy. In other words, we can judge whether PIMM
pre (k+1|k) meets the requirement

of δ ·Pd according to whether
[
δ · Pd − PIMM

pre (k + 1|k)
]
is positive semi-definite or not. The
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radar network will work in active mode only when the expected target tracking accuracy is
not satisfied, which means that the dedicated radar transmitter will be used to radiate radar
signals at time slot k + 1 only when PIMM

pre (k + 1|k) meets the following constraint:

δ · Pd − PIMM
pre (k + 1|k) < 0. (27)

To be specific, if δ · Pd − PIMM
pre (k + 1|k) ≥ 0, the expected target tracking accuracy is

satisfied. The radar network works in passive mode, and all the netted radars locate and track
the target with TDOA and FDOAmethod. While if δ ·Pd −PIMM

pre (k+1|k) < 0, the expected
target tracking accuracy is not satisfied, and the radar network works in active mode. The
dedicated radar transmitter transmits radar signals and all the receivers in radar networks can
receive and process the echoes that are reflected from the target.

3.2.2 Transmitting parameters scheduling

When the radar network works in active mode to track a single target during the time Td,
several pulses will be scattered from the target. The process of summing up all the radar
echoes available from a target can significantly improve the SNR for radar network. Here,
we employ the coherent integration method.

If Np pulses, all of the same SNR, are perfectly integrated by an ideal lossless integrator,
the integrated SNR would be exactly Np times that of a single pulse, that is:

SNRc = Np · SNRs, (28)

where SNRs denotes the SNR of a single pulse, and SNRc denotes the integrated SNR of Np

pulses. Then, we can obtain:

Td = Np · Tr. (29)

Substituting (26) into (27), one can observe that:

SNRc = Td

Tr
· SNRs. (30)

Thus, (28) can be calculated as follows:

SNRc = Td

Tr
·

Nr∑
j=1

PtG tGr jσt jλ
2GRP

(4π)3kT0Br j Fr j R2
t R

2
r j

. (31)

It is assumed that each transmitter–receiver pair combination in radar network is the same.
Rearranging terms in (29) yields:

SNRc = Td

Tr
· PtG tGrλ

2GRP

(4π)3kT0BrFrR2
t

Nr∑
j=1

σt j

R2
r j

. (32)

When the target signals arrive at an angle φ with respect to the normal direction, the
corresponding main lobe gain of phased array radar can be calculated as:

G t = ηNπcosφ, (33)
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where η is antenna efficiency, and N is the number of elements. Substituting (31) into (30),
the SNR equation for radar network can be simplified as follows:

SNRc = TdPt(cosφ)2

TrBrR2
t

C1

Nr∑
j=1

σt j

R2
r j

, (34)

where

C1 = (ηNπ)2λ2GRP

(4π)3kT0Fr
, (35)

It is known to us all that transmitting energy is the minimum if the achieved SNR in radar
network at each time index is equal to the predetermined SNR threshold. Then, we have:

TdPt(cosφ)2

TrBrR2
t

C1

Nr∑
j=1

σt j

R2
r j

= SNRmin. (36)

Rearranging terms yields:

Pt = SNRmin
TrBrR2

t

TdPt(cosφ)2C1

∑Nr

j=1

R2
r j

σt j
. (37)

Substituting (35) into (22), (22) can be rewritten as:

pI = ps · pt · pf · p′
d

= Td
2TI

erfc

⎛
⎜⎝√−lnp

′
fa −

√√√√√SNRmin
TrBrC2

TdC1cosφ

Nr∑
j=1

R2
r j

σt j
+ 1

2

⎞
⎟⎠ . (38)

where

C2 = ηNπG iλ
2GIP

(4π)2kT0BIFI
. (39)

Let us define a =
√

−lnp
′
fa, b = SNRmin

TrBrC2
C1cosφ

∑Nr
j=1

R2
r j

σt j
, x = Td, c = TI, then (36) can

be described as:

pI(x) = x

2c
erfc

(
a −

√
b

x
+ 1

2

)
. (40)

After basic algebraic manipulations in Chen et al. (2014), we can obtain:

d2 pI
dx2

< 0, x ∈ [Tr, Tmax]. (41)

Therefore, it can be concluded from (39) that the intercept probability is upper convex with
respect to the dwell time. Intuitively, the optimal point is always at the boundary, i.e., Td =
Tmax, or Td = Tr. That is to say, the minimum intercept probability can be obtained at the
boundary, that is, min{pI(Tr), pI(Tmax)}. Moreover, the transmit power can be calculated in
(35) with the obtained Td. To be specific, if Td = Tmax, the corresponding LPI strategy is
called the minimum power strategy, in which case the radar transmitter transmits at minimum
power at all times and use maximum signal integration. The intent is always to stay below the
intercept receiver threshold (Lynch 2004). While if Td = Tr, the LPI strategy is known as the
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Table 1 Radar transmitter and
receivers locations

Radar Locations

Radar transmitter [0, 0] km
Receiver 1 [0, 0] km
Receiver 2 [8, 6] km
Receiver 3 [−8, 6] km
Receiver 4 [0, 10] km

Table 2 Radar network
parameters

Parameter Value Parameter Value

N 2000 τ 1 × 10−6 s

η 0.9 Br 1 MHz

σt j (∀ j) 30 m2 Fr 3 dB

GRP 40 dB λ 0.03 m

Tr 5 × 10−4 s fc 10 GHz

Pmax 12 KW SNRmin 16.2 dB

Table 3 Intercept receiver
parameters

Parameter Value Parameter Value

p
′
fa 10−8 GIP 2 dB

Fr 6 dB TI 2 s

GI 0 dB BI 1 GHz

minimum dwell strategy, which is to keep the exposure time as short as possible. This means
that the radar transmitter should be in its high power mode for the minimum time possible.
Generally, the revisit interval, dwell time, and transmit power should be optimized based
on the real-time status information in hostile environment, such that the LPI performance in
radar network can be enhanced.

So far, we have completed the formulation of LPI based adaptive resource management
strategy for target tracking in distributed radar network systems. In the following, some
numerical simulations are dedicated to show the effectiveness of our presented method.

4 Numerical results

In this section, numerical simulation results are provided to verify the accuracy of the theo-
retical derivations as well as demonstrate the enhancement of the LPI performance brought
by our proposed adaptive resource management scheme. A distributed radar network with
one dedicated radar transmitter and Nr = 4 spatially distributed receviers is considered.
Herein, the locations of radar transmitter and receivers are shown in Table 1. We set the
system parameters as shown in Tables 2 and 3.

The IMM–EKF algorithm is employed in the simulationwith three target dynamicmodels:
(1) a constant velocity model FCV, (2) a coordinate turn model FCT with positive turn rate
ω = π/180, and (3) a coordinate turn model FCT with negative turn rate ω = −π/180.
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FCV =

⎡
⎢⎢⎣
1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

⎤
⎥⎥⎦ , (42)

FCT =

⎡
⎢⎢⎢⎢⎣
1 sin(ωT )

ω
0 cos(ωT )−1

ω

0 cos(ωT ) 0 −sin(ωT )

0 1−cos(ωT )
ω

1 sin(ωT )
ω

0 sin(ωT ) 0 cos(ωT )

⎤
⎥⎥⎥⎥⎦ , (43)

where T is the time interval between successive frames. For all the models, the covariance
matrix of the process noise is set to be:

Q(k − 1) = σ 2

⎡
⎢⎢⎢⎢⎢⎣

T 4

4
T 3

2 0 0
T 3

2 T 2 0 0

0 0 T 4

4
T 3

2

0 0 T 3

2
T 4

2

⎤
⎥⎥⎥⎥⎥⎦ , (44)

where σ 2 = 0.042. The covariance matrices of the measurement errors:

NAM(k) = diag {σ 2
r , σ 2

ν , σ 2
θ , . . . , σ 2

r , σ 2
ν , σ 2

θ }︸ ︷︷ ︸
3×Nr

, (45)

NPM(k) = diag {σ 2
TDOA, σ 2

FDOA, σ
′2
θ , . . . , σ 2

TDOA, σ 2
FDOA, σ

′2
θ }︸ ︷︷ ︸

3×(Nr−1)

, (46)

where σr = 0.1 km, σν = 0.1 Hz, σθ = 0.001o, σTDOA = 1.5 km, σFDOA = 5 Hz, and
σ

′
θ = 0.2o.
The expected covariance matrix Pd is set to be:

Pd =

⎡
⎢⎢⎣
0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1

⎤
⎥⎥⎦ , (47)

The initial model probabilities are 0.95 for the target to be in the constant velocity model,
0.025 for the target to be in the coordinate turnmodel with positive turn rate, and 0.025 for the
target to be in the coordinate turn model with negative turn rate. The initial model transition
probability matrix is set to be:

Pt =
⎡
⎣0.98 0.01 0.01
0.01 0.98 0.01
0.01 0.01 0.98

⎤
⎦ , (48)

The simulated target trajectory is illustrated in Fig. 2. The initial position and velocity of
the simulated target are [100, 80] km and [0.20, 0.15] km/s, respectively. The target takes
a right turn between 30 and 110 s, and takes a left turn between 140 and 200 s. The time
interval between successive frames is T = 2 s, and a sequence of 100 frames are utilized in
the simulation.
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Fig. 2 Simulated target trajectory

4.1 Simulation example 1: target tracking performance

To better show the optimality of our proposed strategy, Figs. 3 and 4 illustrate the root mean
square error (RMSE) and the average root mean square error (ARMSE) of the whole target
tracking process, respectively. The RMSE at the kth tracking interval can be calculated as:

RMSE(k) =
√

1

NMC

∑NMC

n=1

{[x(k) − x̂n(k|k)]2 + [y(k) − ŷn(k|k)]2
}
, (49)

where NMC is the number of Monte-Carlo trials, and [x̂n(k|k), ŷn(k|k)] is the target state
estimate at the nth trial. The ARMSE is defined as follows:

ARMSE = 1

NT

NT∑
k=1

RMSE(k), (50)

where NT is the total frames in the simulation. The target tracking performance, in terms of
RMSEof different RRCFs, has been compared in Fig. 3 averaged over 500MonteCarlo trials.
It can be clearly observed in Fig. 3 that the target tracking performance degrades as expected
with the increase of RRCF. This is due to the fact that the expected error covariance matrix
δ · Pd is increased as the RRCF goes up, which demonstrates that there exists a restrictive
relationship between the RRCF and the target tracking accuracy. In addition, there is sudden
increase in all errors both between 30 and 110 s and between 140 and 200 s, which are the
results of the targets turns during those periods. It is worth to mention that the proposed
algorithm can recover significantly fast from the target-turning event.

The comparisons of various target tracking algorithms are shown in Fig. 4. As depicted
in Fig. 4, the target tracking performance of the standard IMM–EKF algorithm is the best,
which exhibits the smallest ARMSE in target tracking. This is because that the dedicated
radar transmitter is scheduled to radiate the maximum energy in each time index. Moreover,
it is worth pointing out that the covariance control methods utilized in Chen et al. (2014)
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Fig. 3 Target tracking RMSE for
various algorithms with different
RRCFs. a δ = 1, b δ = 2, c δ = 3
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Fig. 4 Target tracking performance of various algorithms

and Narykov et al. (2013) do not perform well compared to our proposed algorithm. This is
due to the fact that the proposed algorithm can obtain the best trade-off between the target
tracking accuracy and the LPI performance in radar network. In other words, the uncertainty
ellipse of the predictive error covariance matrix PIMM

pre (k + 1|k) may be not contained in the
uncertainty ellipse of the expected error covariance matrix δ · Pd even though the trace of
PIMM
pre (k + 1|k) is much smaller than that of δ · Pd. This demonstrates the superior target

tracking performance of the proposed algorithm.

4.2 Simulation example 2: LPI performance

In order to disclose the effects of our proposed algorithm on the LPI performance in radar
network, Figs. 5, 6, and 7 illustrate the LPI performance for various algorithms with different
RRCFs. As can be seen, the intercept probability utilizing our proposed LPI based adaptive
resource management scheme is significantly smaller than those of other algorithms, which
confirms the remarkable LPI performance enhancement by exploiting the presented scheme
in radar network. Furthermore, taking Fig. 5 for example, the last two subplots in Fig. 5a
show the values of dwell time and transmit power, from which we observe that at each step
the radar radiation parameters, in terms of the revisit interval, transmit power, and dwell time,
are adaptively optimized to minimize the objective function in (23), resulting in the best LPI
performance for radar network.

Figure 8 shows the comparisons of the total times of radar radiation with different RRCFs.
Analyzing the results provided in Fig. 8 reveals that higher target tracking accuracy can be
obtained by decreasing of the RRCF, and so more measurements are needed to guarantee the
accuracy during the target tracking process. It should be noted that the total times of radar
radiation exploiting the covariance control algorithms proposed in Chen et al. (2014) and
Narykov et al. (2013) are much smaller, but they exhibit worse target tracking accuracy. At
last, as illustrated in Fig. 9, we depict the ratio of radiation times to ARMSE for various
algorithms with different RRCFs, from which it can be concluded that the presented strategy
achieves the best trade-off between the target tracking accuracy and the LPI performance in
radar networks.
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Fig. 5 LPI performance for various algorithms with δ = 1. a The proposed algorithm, b the algorithm
proposed by Jun, C., c the algorithm proposed by Narykov, A.S.
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Fig. 6 LPI performance for various algorithms with δ = 2. a The proposed algorithm, b the algorithm
proposed by Jun, C., c the algorithm proposed by Narykov, A.S.
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Fig. 7 LPI performance for various algorithms with δ = 3. a The proposed algorithm, b the algorithm
proposed by Jun, C., c the algorithm proposed by Narykov, A.S.
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Fig. 8 The total times of radar radiation for various algorithms with different RRCFs
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Fig. 9 The ratio of radiation times to ARMSE for various algorithms with different RRCFs

5 Conclusions

In this paper, the problem of adaptive resource management based on LPI in radar network is
investigated, in which the objective function for LPI performance is minimized by optimizing
the revisit interval, dwell time, and transmit power for a specific target tracking performance
with TDOA and FDOA cooperation. Simulation results are provided to demonstrate that the
proposed scheme not only provides excellent target tracking accuracy, but also has better
LPI performance comparing with other algorithms. It should be noted that only single target
is considered in this paper. Nevertheless, it is convenient to be extended to multiple-target
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scenario, and the conclusions obtained in this study suggest that similar LPI benefits would
be achieved for the multiple targets case.

In future work, we will extend our analysis to multiple-target scenario. We will utilize
real radar data for target tracking to validate the effectiveness of the presented algorithm.
Furthermore, we will extend this strategy to the problem of selecting the optimal radar trans-
mitter/receiver for radar network. Finally, we will employ the proposed objective function
for other radar network problems including radar task scheduling.
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