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Abstract In this paper, we are interested in the problem of Blind Source Separation using
a Second-order Statistics (SOS) method in order to separate autocorrelated and mutually
independent sources mixed according to a bilinear (BL) model. In this context, we propose a
new approach called Bilinear Second-order Blind Source Separation, which is an extension
of linear SOS methods, devoted to separate sources present in BL mixtures. These sources,
called extended sources, include the actual sources and their products. We first study the
statistical properties of the different extended sources, in order to verify the assumption of
identifiability when the actual sources are zero-mean andwhen they are not. Then, we present
the different steps performed in order to estimate these actual centred sources and to extract
the actual mixing parameters. The obtained results using artificial mixtures of synthetic and
real sources confirm the effectiveness of the new proposed approach.
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1 Introduction

Blind Source Separation (BSS) consists in decomposing several observed signals into a
set of source signals and their mixing parameters, with almost no prior knowledge about
them (Comon and Jutten 2010; Deville 2016). Most of the researches dealing with BSS
methods suppose that the mixing model is linear, where the observed signals result from
linear combinations of the source signals. Nevertheless, for some applications, the linear
mixing model is not valid, and must be replaced by a nonlinear one. This nonlinear model
provides a better description of the mixing process and the interactions between sources. Due
to the complexity of nonlinear models, the nonlinear BSS methods are more complex and
remain less studied (Taleb 2002; Deville andHosseini 2009; Hosseini andDeville 2013). This
complexity may be reduced by constraining the structure of the mixing models. Indeed, the
addition of simplifying assumptions has allowed the development of exploitable nonlinear
models.Among thesemodels, the linear-quadratic (LQ)model has drawn significant attention
[see e.g. the survey in Deville and Duarte (2015)]. Research focused on the LQ model has
demonstrated the relevance of its use in several applications such as remote sensing (Meganem
et al. 2014a, b; Eches and Guillaume 2014; Jarboui et al. 2014, 2016), analysis of gas sensor
array data (Bedoya 2006; Ando et al. 2015), and scanned document processing (Merrikh-
Bayat et al. 2011; Duarte et al. 2011; Almeida and Almeida 2012; Liu and Wang 2013).
The particularity of the LQ model as compared with the linear one is the presence of the
second-order terms. Thereby, considering K observations resulting from an LQ mixture of
L sources, the relationship between the observed and the source signals can be characterized
by the following equation

xi (n) =
L∑

j=1

a j (i)s j (n) +
L∑

j=1

L∑

k= j

a j,k(i)s j (n)sk(n), (1)

where xi (n) is the i th observed signal at time n, s j (n) is the j th unknown source signal,
aj(i) is the linear coefficient associated with the j th source signal and the i th observed
signal, a j,k(i) is the quadratic mixing coefficient associated with the i th observed signal and
resulting from the interaction between the j th and the kth sources. All the actual sources s j
and the pseudo-sources s j × sk are called extended sources, as in Deville and Duarte (2015);
Meganem et al. (2014b). There is a particular case of the LQ model called the bilinear (BL)
model where the squared term coefficients a j, j (i) are null. The model (1) then becomes

xi (n) =
L∑

j=1

a j (i)s j (n) +
L−1∑

j=1

L∑

k= j+1

a j,k(i)s j (n)sk(n). (2)

Various methods applicable to the LQ model have been proposed (Deville and Duarte 2015).
While some of them are only devoted to Blind Mixture Identification (BMI), in order to
only identify the mixing parameters (Krob and Benidir 1993; Abed-Meraim et al. 1996),
the others are dedicated to BSS, which aims also at estimating the source signals. They
include Sparse Component Analysis (SCA) methods (Jarboui et al. 2014; Deville and Hos-
seini 2007), which are only applicable to sparse sources, Non-negative Matrix Factorization
(NMF) methods (Meganem et al. 2014b; Eches and Guillaume 2014; Jarboui et al. 2016),
which may be used only when sources and mixing coefficients are non-negative, and Inde-
pendent Component Analysis (ICA) methods (Deville and Hosseini 2009; Hosseini and
Deville 2013; Castella 2008), which are based on the assumption that the source signals
are statistically independent. Nevertheless, the use of LQ ICA-based methods, either BMI
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or BSS, is usually constrained by other properties of the sources and/or the mixture. For
example, some of them can be used only when the sources are complex-valued and circu-
lar (Krob and Benidir 1993; Abed-Meraim et al. 1996) or binary (Castella 2008). Others
are suited only to determined mixtures (Deville and Hosseini 2009; Hosseini and Deville
2013; Almeida and Almeida 2012), which generally means overlooking a useful part of the
available observations. Moreover, most of the existent LQ ICA-based methods are time-
consuming.

In this paper, we study the bilinear model in an over-determined configuration. In addition,
we suppose that the sources are real-valued, stochastic, auto-correlated,mutually independent
and jointly strict-sense stationary signals. Then, we propose a new and fast BSS method,
called Bilinear Second-Order Blind Source Separation (B-SO-BSS), based on Second-order
Statistics (SOS) and the joint diagonalization of correlation matrices of the whitened centred
observed signals. Such SOS methods have already been proposed in the framework of linear
BSS (Tong et al. 1990; Belouchrani et al. 1997). We first study the correlation between
different extended sources in Sect. 2, then we present our proposed method developed based
on the results of this study in Sect. 3, and in Sect. 4, we eventually provide some simulation
results using artificial mixtures of synthetic and real-world sources.

2 Mutual correlation of the extended sources

In this section, by supposing that the actual sources s j are real-valued, stochastic, auto-
correlated , mutually independent and jointly strict-sense stationary, we investigate whether
all the extended sources are mutually uncorrelated in two different cases: when the actual
sources are zero-mean and when they are not.

2.1 Case of zero-mean actual sources

We here detail the study of the correlation between the different extended sources when the
actual sources are zero-mean. The pseudo-sources are then zero-mean, as will now be shown.
Indeed, these pseudo-sources are defined as s j (n)sk(n), with j �= k. Their factors s j (n) and
sk(n) are independent and thus uncorrelated, which yields

E{s j (n)sk(n)} = E{s j (n)}E{sk(n)}
= 0 (3)

where E{.} stands for expectation.
All extended sources are thus zero-mean in the considered case. Therefore, their cross-

covariance functions, which should be used to measure their correlation, are here equal to
their cross-correlation functions. The latter functions are derived hereafter.

2.1.1 Correlation function of si (n) and s j (n)

Two different actual sources si (n) and s j (n) being independent and zero-mean, their cross-
correlation function is equal to zero:

Rsi ,s j (τ ) = E{si (n + τ)s j (n)} = 0 . (4)
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2.1.2 Correlation function of si (n) and s j (n) × sk(n)

If (i �= j) and (i �= k), since si (n), s j (n) and sk(n) are independent, we can write

Rsi ,(s j sk )(τ ) = E{si (n + τ)(s j (n)sk(n))}
= E{si (n + τ)}E{s j (n)}E{sk(n)}
= 0. (5)

If (i = j) or (i = k), the reasoning is similar for the two cases, e.g. considering (i = j),
we get

Rsi ,(si sk )(τ ) = E{si (n + τ)(si (n)sk(n))}
= E{si (n + τ)si (n)}E{sk(n)}
= 0 . (6)

2.1.3 Correlation function of si (n) × s j (n) and sk(n) × sl(n)

If (i �= k), (i �= l), ( j �= k) and ( j �= l) , the independence of si (n), s j (n), sk(n) and sl(n)

yields

R(si s j ),(sk sl )(τ ) = E{(si (n + τ)s j (n + τ))(sk(n)sl(n))}
= E{si (n + τ)}E{s j (n + τ)}E{sk(n)}E{sl(n)}
= 0 . (7)

If (i = (k or l)) xor ( j = (k or l)), the reasoning is similar for all cases, e.g. considering
(i = k) and therefore ( j �= (k and l)), the sources si , s j and sl are independent so that

R(si s j ),(si sl )(τ ) = E{(si (n + τ)s j (n + τ))(si (n)sl(n))}
= E{si (n + τ)si (n)}E{s j (n + τ)}E{sl(n)}
= 0 . (8)

Thus, in the case of zero-mean actual sources, all the extended sources are mutually uncor-
related.

2.2 Case of non-zero-mean actual sources

In this case, (3) shows that the pseudo-sources are non-zero-mean, so that the correlation of
the extended sources must be measured using their cross-covariance functions. Assuming
that the actual sources are auto-correlated such that the covariance function Csi ,si (τ ) �= 0 at
a lag τ , we here present two types of extended sources which are mutually correlated.

2.2.1 Covariance function of si (n) and s j (n) × sk(n) when (i = j) or (i = k)

The reasoning is similar for the two cases, e.g. considering (i = j), calculating the covariance
function yields

Csi ,(si sk )(τ ) = E{si (n + τ)(si (n)sk(n))} − E{si (n + τ)}E{si (n)sk(n)}
= E{si (n + τ)si (n)}E{sk(n)} − E{si (n + τ)}E{si (n)}E{sk(n)}
=

(
E{si (n + τ)si (n)} − E{si (n + τ)}E{si (n)}

)
E{sk(n)}
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= Csi ,si (τ )E{sk(n)}
�= 0 (9)

Therefore, si (n) and si (n) × sk(n) are correlated.

2.2.2 Covariance function of si (n) × s j (n) and sk(n) × sl(n) when
(i = (k or l)) xor ( j = (k or l))

The reasoning is similar for all cases, e.g. considering (i = k) and therefore ( j �= (k and l)),
the covariance function reads

C(si s j ),(si sl )(τ ) = E{(si (n + τ)s j (n + τ))(si (n)sl(n))}
−E{si (n + τ)s j (n + τ)}E{si (n)sl(n)}

=
(
E{si (n + τ)si (n)}E{s j (n + τ)}E{sl(n)}

)

−
(
E{si (n + τ)}E{s j (n + τ)}E{si (n)}E{sl(n)}

)

= Csi ,si (τ )E{s j (n + τ)}E{sl(n)}
�= 0 (10)

Therefore, si (n) × s j (n) and si (n) × sl(n) are correlated.

3 Proposed BSS method

In this section, we propose a new BSS method, called Bilinear Second-Order Blind Source
Separation (B-SO-BSS), first for zero-mean and then for non zero-mean actual sources.

3.1 Case of zero-mean actual sources

The bilinear mixing model (2) can be written in the following matrix form

x(n) = As(n), (11)

where x(n) = [x1(n), . . . , xK (n)]T is the vector of K observed signals at time n, s(n) =
[s1(n), . . . , sL(n), s1(n)s2(n), . . . , sL−1(n)sL (n)]T is the vector of all the extended sources at
time n, and themixingmatrixA, which contains both linear and quadraticmixing parameters,
reads

A =
⎛

⎜⎝
a1(1) · · · aL(1) a1,2(1) · · · aL−1,L(1)

...
. . .

...
...

. . .
...

a1(K ) · · · aL(K ) a1,2(K ) · · · aL−1,L(K )

⎞

⎟⎠ . (12)

Then, the bilinearmixture can be considered as a linearmixture of the L(L+1)/2 extended
sources. In the following, we assume that K ≥ L(L + 1)/2 so that this reformulated linear
mixture is not under-determined. As shown in Sect. 2.1, all the extended sources are mutually
uncorrelated in the case considered here. If they are also auto-correlated with different auto-
correlation functions, the source separation may be achieved by jointly diagonalizing the
correlation matrices of the whitened centred observations at different lags as will be detailed
in Sect. 3.4.
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3.2 Case of non-zero-mean actual sources

As shown in Sect. 2.2, in this case some extended sources are mutually correlated. Here, we
show how the original bilinear mixing model may be used to derive a new mixing model
with new mutually uncorrelated extended sources. The mean E{s j (n)} of the actual source
s j (n) does not depend on the considered time n, since the actual sources are assumed to be
strict-sense stationary. The expectation of s j will be denoted by s̄ j hereafter. The centred
version of s j (n) is thus s̃ j (n) = s j (n) − s̄ j . The bilinear model (2) can then be written
as

xi (n) =
L∑

j=1

a j (i)(̃s j (n) + s̄ j ) +
L−1∑

j=1

L∑

k= j+1

a j,k(i)(̃s j (n) + s̄ j )(̃sk(n) + s̄k)

=
L∑

j=1

a j (i )̃s j (n) +
L∑

j=1

a j (i)s̄ j +
L−1∑

j=1

L∑

k= j+1

a j,k(i )̃s j (n)̃sk(n)

+
L−1∑

j=1

L∑

k= j+1

a j,k(i)(s̄k s̃ j (n) + s̄ j s̃k(n)) +
L−1∑

j=1

L∑

k= j+1

a j,k(i)s̄ j s̄k . (13)

The fourth term on the right hand side of (13), denoted as F in the following, can be rewritten
as

F =
L−1∑

j=1

L∑

k= j+1

a j,k(i)s̄k s̃ j (n) +
L−1∑

j=1

L∑

k= j+1

a j,k(i)s̄ j s̃k(n)

=
L−1∑

j=1

L∑

k= j+1

a j,k(i)s̄k s̃ j (n) +
L−1∑

k=1

L∑

j=k+1

ak, j (i)s̄k s̃ j (n), (14)

where the last term above is obtained just by inverting the roles of symbols j and k.
Then, we introduce the coefficients a j,k(i) with j > k, defined with respect to the actual

coefficients of (2), as a j,k(i) = ak, j (i).
This yields

F =
L−1∑

j=1

L∑

k= j+1

a j,k(i)s̄k s̃ j (n) +
L−1∑

k=1

L∑

j=k+1

a j,k(i)s̄k s̃ j (n)

=
( L−1∑

j=1

L∑

k= j+1

⋃ L−1∑

k=1

L∑

j=k+1

)
a j,k(i)s̄k s̃ j (n). (15)

The above sum contains all possible combinations of j ∈ [1, L], k ∈ [1, L] such that
j �= k. It can then be rewritten as

F =
L∑

j=1

L∑

k=1,k �= j

a j,k(i)s̄k s̃ j (n). (16)

Replacing (16) in (13) leads to
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xi (n) =
L∑

j=1

(
a j (i) +

L∑

k=1,k �= j

a j,k(i)s̄k
)
s̃ j (n) +

L−1∑

j=1

L∑

k= j+1

a j,k(i )̃s j (n)̃sk(n)

+
L∑

j=1

a j (i)s̄ j +
L−1∑

j=1

L∑

k= j+1

a j,k(i)s̄ j s̄k, (17)

which yields

xi (n) =
L∑

j=1

ã j (i )̃s j (n) +
L−1∑

j=1

L∑

k= j+1

a j,k(i )̃s j (n)̃sk(n) + Ci , (18)

where ãj(i) are the linear coefficients of the new model which are defined as

ãj(i) = a j (i) +
L∑

k=1,k �= j

a j,k(i)s̄k, (19)

and Ci is a constant defined as

Ci =
L∑

j=1

a j (i)s̄ j +
L−1∑

j=1

L∑

k= j+1

a j,k(i)s̄ j s̄k . (20)

Since the actual centred sources s̃ j (n) and s̃k(n) are zero-mean and independent, from (18)
the mean of the observed value xi (n) is equal to x̄i = Ci . Thus, its centred version can be
written as follows:

x̃i (n) = xi (n) − x̄i

=
L∑

j=1

ã j (i )̃s j (n) +
L−1∑

j=1

L∑

k= j+1

a j,k(i )̃s j (n)̃sk(n). (21)

As can be seen, the centred observations form a new bilinear mixture of the actual centred
sources, although the mixing parameters of the linear part in this new model are not the
same as those in the original mixture. According to the results provided in Sect. 2.1, the new
extended sources s̃ j (n) and s̃ j (n)̃sk(n) are all mutually uncorrelated. We can then rewrite
this new bilinear model in the matrix form (11) just by replacing s and x by s̃ and x̃, and the
parameters a j (i) by ã j (i) in the expression (12) of the matrix A to obtain the matrix Ã.

The approach that we developed at this stage therefore yields a modified set of observa-
tions, namely the centred observations x̃i (n), which form a determined (or overdetermined)
linear mixture of a modified set of mutually uncorrelated source signals, namely the extended
centred sources related to the actual centred sources. Moreover, we hereafter consider the
case when these modified source signals are auto-correlated with different auto-correlation
functions. With respect to these modified observations and source signals, the configuration
that we thus derived meets the same main assumptions as those which have previously been
used in the literature, for plain linear mixtures, to derive second-order BSS methods, such as
the Algorithm for Multiple Unknown Signals Extraction (AMUSE) (Tong et al. 1990) or its
improved version, that is the Second-Order Blind Identification (SOBI) method (Belouchrani
et al. 1997). This then allows us to derive extended versions of the above standard methods,
which were initially intended for linear mixtures, in order to process our configuration based
on bilinear mixtures. In particular, we hereafter propose an extension of SOBI.
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3.3 Identifiability condition

A necessary step in the proposed method is to check the mixture identifiability condition.
Similarly to the SOBI method, the proposed method uses several correlation matrices of the
whitened centred observations for a fixed set of different non-zero lags τi ∈ {τ1, . . . , τm}. For
a lag τi , the correlationmatrix of the L(L+1)/2whitened centred observations z(n) = Wx̃(n)

(where W is a whitening matrix) is given by:

Rz(τi ) = UR̃s(τi )UT (22)

where U denotes an orthogonal matrix, T stands for transposition, and R̃s(τi ) denotes the
correlation matrix of the extended centred sources associated with the lag τi , which is a
diagonal matrix since the extended centred sources are mutually uncorrelated.

Let us consider the following theorem:

Theorem Let τi = {τ1, . . . , τm} be m non-zero lags, V be an orthogonal matrix, such that:

∀1 ≤ i ≤ m VT Rz(τi )V = diag[d1(i), . . . , dL(L+1)/2(i)] (23)

∀1 ≤ j �= k ≤ L(L + 1)/2, ∃i, 1 ≤ i ≤ m d j (i) �= dk(i). (24)

Then, U and V are essentially equal, i.e. they are equal up to a multiplication by a matrix P,
such that U = VP, where P has one nonzero entry in each row and column, whose value is
equal to ±1.

This theorem provides a uniqueness condition for the matrix U and consequently the
mixing matrix Ã. Note that the mixing matrix cannot be identified when the extended centred
sources have identical normalized spectra. But, if they have different normalized spectra, it
is possible to find a set of lags τi satisfying the theorem condition. More details are provided
in Belouchrani et al. (1997).

It should in particular be noted that if one of the actual centred sources s̃i (n) is tempo-
rally uncorrelated, then all the pseudo-sources related to it, i.e. s̃i (n)̃s j (n) with i �= j are
temporally uncorrelated too, so that all these extended centred sources have identical (con-
stant) normalized spectra. Thus, a necessary condition for identifiability is that all the actual
centred sources must be autocorrelated.1

3.4 Proposed algorithm

Our proposed algorithm (B-SO-BSS), which provides estimates of centred actual sources up
to a permutation and scale factors, is summarized in Algorithm 1.

In the particular case in which the actual sources are zero-mean, the same algorithm may
be used just by choosing s̃ = s, Ã = A, and x̃ = x.

The last step of the proposed algorithm, which consists in identifying the estimated actual
centred sources among all the estimated extended centred sources, is detailed below.

3.5 Identifying the estimated actual centred sources

The first steps of the proposed method yield a set of signals ŝ(n) composed of estimates of the
L(L+1)/2 unordered extended centred sources, up to a permutation and scale factors. Thus,
if e.g. ŝ j (n) and ŝk(n) correspond to two centred actual sources and ŝi (n) corresponds to their
product, then ŝi (n) must ideally be proportional to ŝ j (n) × ŝk(n). As a result, the absolute

1 Note that in the linear SOBI, at most one source may be temporally uncorrelated.
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Algorithm 1 : B-SO-BSS

- Estimate the zero-lag correlation matrix Rx̃(0) of the centred observed signals x̃(n).

- Calculate the whitening matrix W = D−1/2ET where D and E are, respectively, the matrices containing
the eigenvalues on its diagonal and unit-norm eigenvectors of the estimate of Rx̃(0).

- Whiten the centred observed signals x̃(n): z(n) = Wx̃(n).

- Estimate the correlation matrices Rz(τi ) of z, where τi = {τ1, · · · , τm } are m chosen lags.

- Perform the joint diagonalization of the estimates of matrices Rz(τi ) to provide an estimate Û of an
orthogonal matrix U so that Rz(τi ) = UR̃s(τi )UT where τi = {τ1, · · · , τm } (Belouchrani et al. 1997).
- Calculate ŝ(n) = ÛT z(n) which provides an estimate of the extended centred source vector s̃(n), up to
permutation and scale indeterminacies.

- Calculate Â = W†Û (where † stands for pseudo-inverse) which provides an estimate of the matrix Ã, up
to permutation and scale indeterminacies.

- Identify the L estimated actual centred sources among all the estimated extended centred sources according
to Sect. 3.5.

value of the correlation coefficient between ŝi (n) and ŝ j (n)×ŝk(n)must be close to one. Thus,
by computing this correlation coefficient for all the possible triplets {i, j, k} , i �= j �= k, we
can identify the estimated actual centred sources among all the estimated extended centred
sources.2

3.6 Estimation of actual mixing coefficients

Many BSS applications only aim at estimating the actual source waveforms, which are
provided by our Algorithm 1. In some applications (like in hyperspectral image unmixing),
however, it is also needed to estimate the mixing parameters. In the case of non-zero-mean
actual sources, our algorithmprovides an estimate ofmatrix Ã, and notA (up to a permutation
and a diagonal matrix). As mentioned in Sect. 3.2, matrix Ã consists of:

– columns containing quadratic coefficients a j,k(i), like in matrix A,
– columns containingmodified linear coefficients ã j (i), which are different from the actual

coefficients a j (i) included in matrix A, and are defined by (19).
In the following, we propose a method to recover an estimate of the actual matrix A (up to
classical indeterminacies) from the estimate of matrix Ã provided by Algorithm 1.
From (19), we have

a j (i) = ãj(i) −
L∑

k=1,k �= j

a j,k(i)s̄k . (25)

Inserting (25) in (20) yields

Ci = x̄i

=
L∑

j=1

[̃a j (i) −
L∑

k=1,k �= j

a j,k(i)s̄k]s̄ j +
L−1∑

j=1

L∑

k= j+1

a j,k(i)s̄ j s̄k

2 In the special case of L = 2 actual centred sources, it is also possible to identify the estimated actual centred
sources among 3 estimated extended centred sources using a criterion measuring statistical independence, like
mutual information. Actually, we know that s̃1 and s̃2 aremutually independentwhile s̃1×s̃2 is not independent
from s̃1 and s̃2.
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=
L∑

j=1

ã j (i)s̄ j −
L∑

j=1

L∑

k=1,k �= j

a j,k(i)s̄k s̄ j +
L−1∑

j=1

L∑

k= j+1

a j,k(i)s̄ j s̄k

=
L∑

j=1

ã j (i)s̄ j − 2
L−1∑

j=1

L∑

k= j+1

a j,k(i)s̄ j s̄k +
L−1∑

j=1

L∑

k= j+1

a j,k(i)s̄ j s̄k

=
L∑

j=1

ã j (i)s̄ j −
L−1∑

j=1

L∑

k= j+1

a j,k(i)s̄ j s̄k

=
L∑

j=1

ã j (i)

d j
(d j s̄ j ) +

L−1∑

j=1

L∑

k= j+1

a j,k(i)

d j,k
(−d j,k s̄ j s̄k), (26)

where d j and d j,k are unknown arbitrary scale factors, up to which the extended centred
sources and the columns of matrix Ã have been estimated by Algorithm 1. The above result
can be written in the following matrix form

c = Ã1e, (27)

where c = [C1, . . . ,CK ]T , e = [d1s̄1, . . . , dL s̄L , (−d1,2s̄1s̄2), . . . , (−dL−1,L s̄L−1s̄L)]T ,
and Ã1 is the result of dividing the columns of matrix Ã by unknown scale factors d j and
d j,k . In other words, Ã1 is the matrix Â provided by Algorithm 1 up to estimation errors.3

Note that c can easily be obtained by estimating the means of observations. As a result, e
can be obtained using

e = Ã†
1c, (28)

where † stands for pseudo-inverse.
Furthermore, (25) can be rewritten as

a j (i)s̄ j = ã j (i)

d j
(d j s̄ j ) +

L∑

k=1,k �= j

a j,k(i)

d j,k
(−d j,k s̄ j s̄k). (29)

As mentioned above,
ã j (i)
d j

and
a j,k (i)
d j,k

(∀i = 1, . . . , K ) correspond to the columns of

Ã1, estimated by Algorithm 1, and (d j s̄ j ) and (−d j,k s̄ j s̄k) are the entries of e, estimated
using (28). Consequently, a j (i) ∀i = 1, . . . , K can be estimated up to unknown factors s̄ j
according to (29). In other words, this approach allows one to estimate the columns of the
actual matrix A containing the linear coefficients up to scale factors. Note that the columns
of this matrix containing the quadratic coefficients are directly provided by Algorithm 1 (up
to scale factors too).

4 Simulation results

In this section,we present and discuss the results obtained by the proposedB-SO-BSSmethod
presented in Algorithm 1 to unmix the bilinear mixtures, with adding the step described in

3 In fact, the columns of the matrix estimated by Algorithm 1 are also permuted. However, using the method
explained in Sect. 3.5, we can identify the columns containing linear coefficients and the columns containing
quadratic ones. It is then possible to arrange the columns of the estimated matrix so that the first L ones
correspond to the linear part (their order is not really important) and the other ones are matched correctly to
these first L columns.
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Sect. 3.6 to estimate the actualmixing coefficients. Herein,we just present the results obtained
when the sources are non-zero-mean since we found nearly the same performance for both
zero-mean and non-zero-mean cases. In our simulations, the processed data are non-negative,
and hence it is possible to compare the obtained results to those obtained by theNMF-Grd-LQ
algorithmpresented inMeganemet al. (2014b)which is anNMF-basedmethod adapted toLQ
mixtures, exploiting the non-negativity of data involved in mixtures. Note that the physical
constraints of theNMF-Grd-LQ algorithm, originally adapted to remote sensing applications,
i.e the sumof the linear coefficients equal to 1 and the quadraticmixing coefficients lower than
0.5, have been omitted in our simulations and the NMF-Grd-LQ method has been modified
accordingly.

4.1 Performance criteria

In order to evaluate the performance of the methods, we calculate the Signal-to-Interference
Ratio (SIR) and the Normalized Mean Square Error (NMSE) related to each actual centred
source according to the following equations

SI Rsi = 10 log10

∑N
n=1 s̃i (n)2

∑N
n=1(̃si (n) − ŝi (n))2

(30)

NMSEsi =
∑N

n=1(̃si (n) − ŝi (n))2

∑N
n=1 s̃i (n)2

(31)

where N represents the number of available samples for each signal and the notation ‘ˆ’ refers
to the estimated values after removing the permutation and scale factor indeterminacies. In
the same way, we calculate SI Ra and NMSEa related to all the mixing parameters, a j and
a j,k , estimated according to Sect. 3.6.

4.2 Tests

We performed the following four experiments:

Experiment 1 Weconsidered artificialmixtures of synthetic sources.Themixingparameters
a j (i) and a j,k(i)were generated randomlywith values uniformly distributed between 0 and 1.
The generation of two sources was realized as follows: at first, we generated two independent
and identically distributed (i.i.d.) signals e1(n) and e2(n) uniformly distributed over [0, 1],
then we filtered them by two first-order auto-regressive filters in order to obtain two auto-
correlated source signals according to the model si (n) = ei (n) + ρi si (n − 1). The chosen
parameters were ρ1 = 0.7 and ρ2 = 0.5. The tests were repeated using different source
sample numbers N : 10,000, 1000, and 100. Finally, three observed signals were generated
using the BL model (2).

Experiment 2 We generated artificial mixtures of two real-world sources. These sources,
shown in Fig. 1 and described in Duarte et al. (2014), correspond to the activities (which can
be seen as effective ionic concentrations) of ions Na+ and K+ measured for 41 samples. As
in Experiment 1, the mixing parameters a j (i) and a j,k(i)were generated with random values
uniformly distributed between 0 and 1. Thereafter, we generated three observed signals using
the BL model (2), even if the mixture model of the concentrations of the chemical species is
usually approximated by a linear-quadratic model.
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Fig. 1 Activities of Na+ and K+ ions

Table 1 Simulation results using our algorithm (B-SO-BSS) with one and four lags, and using NMF-Grd-LQ
algorithm

Algorithms Number of samples

Synthetic sources
100 samples

Synthetic sources
1000 samples

Synthetic sources
10,000 samples

Chemical sources
41 samples

B-SO-BSS τi = 1

SI Rs (dB) 9.06 20.18 30.15 13.68

NMSEs 0.33 0.022 0.0022 0.072

SI Ra (dB) 8.71 11.25 19.38 17.58

NMSEa 0.36 0.33 0.08 0.31

CPU time (s) 6.4 e−4 8.8 e−4 2.1 e−3 3.9 e−4

B-SO-BSS τi = 1, 2, 3, 4

SI Rs (dB) 8.05 19.54 29.80 15.99

NMSEs 0.36 0.028 0.0024 0.068

SI Ra (dB) 8.73 11.15 18.89 18.52

NMSEa 0.39 0.32 0.08 0.31

CPU time (s) 2.4 e−3 2.8 e−3 8.7 e−3 8.5 e−4

NMF-Grd-LQ

SI Rs (dB) 7.65 12.27 14.87 7.48

NMSEs 0.37 0.069 0.06 0.51

SI Ra (dB) 7.21 7.45 11.09 6.80

NMSEa 0.64 0.70 0.18 0.41

CPU time (s) 4.94 19.87 127.77 3.11

SI RS and NMSES refer to sources, while SI Ra and NMSEa refer to mixing parameters

Experiment 3 The third experiment aims at evaluating the robustness of ourmethod to noise.
The mixtures were, first, generated in the same way as in Experiment 1, with N = 10,000.
A zero-mean Gaussian i.i.d noise was then added to the observed signals in order to obtain a
noisy setting. The SNR (Signal to Noise Ratio) values are varied from 60 dB down to 30 dB.
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Fig. 2 Comparison between estimated and actual synthetic sources, in the case of a noiseless artificial BL
mixture, using 3 different methods: B-SO-BSS (τi = 1) (top), B-SO-BSS (τi = 1, 2, 3, 4) (middle) and
NMF-Grd-LQ (bottom). Only a part of signals corresponding to n ∈ [200, 249] is shown here

Experiment 4 With the same strategy concerning noise effect adopted in Experiment 3, we
added a zero-mean Gaussian i.i.d. noise to the observed signals generated in Experiment 2.
As in Experiment 3, the SNR values are varied from 60 dB down to 30 dB.

4.3 Results

In order to separate the mixed sources and to estimate the mixing parameters, we applied the
steps described in Algorithm 1 and Sect. 3.6 in two different configurations: using only one
lag (τi = 1), and using 4 lags (τi = {1, 2, 3, 4}).

In the first two experiments, we performed 100 Monte Carlo simulations for our method
and NMF-Grd-LQ. At each simulation, we, randomly, modified the source signals and the
mixing parameters in the case of Experiment 1, and only the mixing parameters in the case of
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Fig. 3 Comparison between estimated and actual chemical sources, in the case of a noiseless artificial BL
mixture, using 3 different methods: B-SO-BSS (τi = 1) (top), B-SO-BSS (τi = 1, 2, 3, 4) (middle) and
NMF-Grd-LQ (bottom)

Experiment 2. The mean of SIR and NMSE of the sources and all the mixing parameters, and
the CPU time, 4 averaged over all 100 simulations realized in Experiment 1 and Experiment
2, are shown in Table 1.

As can be seen, our proposed method leads to the best results. In terms of run-time, the
proposed method is much faster than NMF-Grd-LQ.

Moreover, to evaluate the quality of the source estimation, comparisons are then provided
in Figs. 2 and 3 between the actual and estimated sources obtained by different methods.
Indeed, the actual sources used in Fig. 2 correspond to an example of Experiment 1 where
N = 1000 and the random mixing matrix AExp1 is given by

4 Computation has been performed with Matlab, on a computer with an intel core i7 processor, a frequency
of 2.7 GHz, and a RAM size of 16 GB.

123



Multidim Syst Sign Process (2018) 29:1153–1172 1167

Table 2 Simulation results
obtained by Experiment 3 using
B-SO-BSS with one and four lags
and NMF-Grd-LQ when
mixtures are corrupted by noise

Algorithms SNR (dB)

60 50 40 30

B-SO-BSS τi = 1

SI Rs (dB) 25.46 20.49 13.60 6.13

NMSEs 0.03 0.08 0.21 0.43

SI Ra (dB) 17.80 14.35 8.99 7.15

NMSEa 0.11 0.21 0.51 0.62

B-SO-BSS τi = 1, 2, 3, 4

SI Rs (dB) 25.22 20.48 13.66 6.47

NMSEs 0.03 0.08 0.21 0.42

SI Ra (dB) 18.17 14.52 9.21 7.29

NMSEa 0.10 0.21 0.51 0.61

NMF-Grd-LQ

SI Rs (dB) 14.82 14.61 13.93 12.77

NMSEs 0.06 0.06 0.06 0.07

SI Ra (dB) 11.00 10.98 10.62 10.60

NMSEa 0.18 0.19 0.19 0.20

Table 3 Simulation results
obtained by Experiment 4 using
B-SO-BSS with one and four lags
and NMF-Grd-LQ when
mixtures are corrupted by noise

Algorithms SNR (dB)

60 50 40 30

B-SO-BSS τi = 1

SI Rs (dB) 13.59 13.10 9.55 5.10

NMSEs 0.2881 0.33 0.45 0.61

SI Ra (dB) 20.69 19.83 17.93 14.87

NMSEa 0.38 0.51 0.70 0.80

B-SO-BSS τi = 1, 2, 3, 4

SI Rs (dB) 16.60 15.57 10.11 6.64

NMSEs 0.24 0.36 0.66 0.74

SI Ra (dB) 20.72 20.20 16.66 14.47

NMSEa 0.34 0.42 0.73 0.56

NMF-Grd-LQ

SI Rs (dB) 7.54 5.89 3.02 2.01

NMSEs 0.51 0.54 0.66 0.74

SI Ra (dB) 6.43 6.43 6.37 6.36

NMSEa 0.41 0.41 0.41 0.41

AExp1 =
⎛

⎝
0.0075 0.1461 0.3237
0.1221 0.4249 0.0723
0.4813 0.2845 0.5262

⎞

⎠ , (32)

while Fig. 3 shows an example of Experiment 2 where the random mixing matrix AExp2 is
as follows
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Fig. 4 SI Rs versus SNR in the case of Experiment 3

30 40 50 60
2

4

6

8

10

12

14
B−SO−BSS (τi=1)

SNR

SI
R

s

30 40 50 60
2

4

6

8

10

12

14

16

18
B−SO−BSS (τi=1,2,3,4)

SNR

SI
R

s

30 40 50 60
2

4

6

8

10

12

14

16

18
NMF−Grd−LQ

SNR

SI
R

s

Fig. 5 SI Rs versus SNR in the case of Experiment 4

AExp2 =
⎛

⎝
0.1549 0.1405 0.3916
0.5258 0.2041 0.9370
0.2047 0.5108 0.4310

⎞

⎠ . (33)

We notice in Fig. 2, which only shows 50 samples corresponding to n ∈ [200, 249] for
the sake of clarity, that both synthetic sources are much better estimated by our method than
by the NMF-Grd-LQ method. Figure 3 shows that both chemical sources are well estimated
by our method, while only one source is well estimated by the NMF-Grd-LQ method.

In the following, our goal is to evaluate the performance of the proposed method with only
one, then four lags, when the observed signals are corrupted by noise. Moreover, comparisons
with the NMF-Grd-LQ method are carried out.

In the last two experiments, we performed 100 Monte Carlo simulations and, at each
simulation, we modified the source signals and the mixing parameters in case of Experiment
3, and only the mixing parameters in case of Experiment 4.

The mean of the SIR and NMSE of the sources and of all the mixing parameters obtained
for these two experiments are presented inTables 2 and 3. For clarity, SI Rs representationwas
performed versus the SNRvalues as shown inFig. 4 (Experiment 3) andFig. 5 (Experiment 4).

Considering Experiment 3, it is noted that the SI Rs obtained by the B-SO-BSS method
are acceptable down to SNR equal to 40 dB. By comparing these results with those obtained
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by NMF-Grd-LQ, we notice that for high SNR values, B-SO-BSS gives the best results,
however for low ones, NMF-Grd-LQ seems more efficient. Indeed, it can be seen that the
SI Rs obtained by NMF-Grd-LQ remain acceptable down to SN R = 30 dB.

In the case of Experiment 4, the results obtained by the B-SO-BSSmethod are acceptable
down to SNR equal to 50 dB. On the contrary, for all considered SNR values, NMF-Grd-LQ
fails to yield accurate enough estimates.

In that regard, as expected, the presence of noise in the observed signals decreases the
separation performance of our method. Nevertheless, performance remains acceptable for
relatively high SNR values.

5 Conclusion

In this paper, we proposed a new and fast BSS method, called Bilinear Second-Order Blind
Source Separation (B-SO-BSS), which is an extension of linear SOS methods, to separate
sources mixed according to the bilinear model. First, we studied the statistical properties of
the different extended sources when the actual sources are zero-mean and when they are
not. Then, we presented the different steps performed in order to separate the actual centred
sources and to estimate the actual mixing parameters. Finally, we presented the experimental
results, obtained by our proposed method. As a first step, we evaluated the method separation
performance when applied to noiseless artificial mixtures of synthetic or chemical sources.
We, therefore, clearly noticed the effectiveness of our method as compared to the NMF-
Grd-LQ method. As a second step, we evaluated the method robustness to noise, and as
expected, we noticed that the presence of noise in the generated mixtures decreases the
effectiveness of our method. However, the performance remained acceptable for relatively
high SNR values.
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