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Abstract Methods for identifying a cover song typically involve comparing the similarity
of chroma features between the query song and another song in the data set. However,
considerable time is required for pairwise comparisons. In addition, to save disk space, most
songs stored in the data set are in a compressed format. Therefore, to eliminate some decoding
procedures, this study extracted music information directly from the modified discrete cosine
transform coefficients of advanced audio coding and then mapped these coefficients to 12-
dimensional chroma features. The chroma features were segmented to preserve the melodies.
Each chroma feature segmentwas trained and learned by a sparse autoencoder, a deep learning
architecture of artificial neural networks. The deep learning procedure was to transform
chroma features into an intermediate representation for dimension reduction. Experimental
results from a covers80 data set showed that the mean reciprocal rank increased to 0.5 and
the matching time was reduced by over 94% compared with traditional approaches.

Keywords Cover song ·Music retrieval · Sparse autoencoder ·Descriptor ·Advanced audio
coding

1 Introduction

A cover song is a new version of a previously recorded track. The cover version may be dif-
ferent from the original song in timbre, tempo, structure, key, or arrangement. Textual labels
entered into search engines cannot identify cover songs. Content-based music retrieval tech-
nology is thus applied for identification. However, finding a match between an original song
and its cover version is challenging for computers. Computers require rules or procedures to
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distinguish music characteristics for similarity measurement. In particular, a cover version
often adopts various interpretations of the original song. The matching scheme should be
robust to changes in tempo, key, timbre, and musical instruments (Ellis and Poliner 2007).
Tonality and harmony are generally considered major features to represent music for simi-
larity identification. The widely used feature is the pitch-class profile, also called “chroma,”
which represents the intensity of 12 semitones (Fujishima 1999).

Ellis and Poliner (2007) won the MIREX cover song identification competition in 2006.
They first tracked the beat to overcome variability in tempo and then collected 12-dimensional
chroma features to overcome variations in timbre. Finally, they used cross-correlation to
compute similarities between songs. Lee (2006) used hidden Markov models to transform
chroma features into chord sequences and applied dynamic timewarping (DTW) to determine
the minimum alignment cost. Sailer used a pitch line to align melody and measured the
melodic similarity (Sailer and Dressler 2006). A vector quantization method was applied to
chroma features for similarity calculation (Riley et al. 2008).

To save disk space, most songs stored in the data set are in a compressed format. It would
be a challenge in audio processing to design a single time–frequency representation for both
audio coding and indexing (Ravelli et al. 2010). The concept of transform-domain audio
indexing has been studied for different audio standards (Patel and Sethi 1996; Yapp and Zick
1997; Kiranyaz et al. 2006). Indexing audio signals in the compression domain can eliminate
some decoding procedures to reduce the computational complexity.

WorkingwithMP3s, Tsai andWang (2004) subtracted the scale-factor and subband coeffi-
cients through partial decoding from the inversemodified discrete cosine transform (MDCT).
Quantization-tree indexing and melody-line pitch tracking were further applied as retrieval
features (Tsai and Chang 2009). Advanced audio coding (AAC), finalized in 1997, is a widely
used audio coding standard (ISO/IEC 1997). It was designed to be the successor of the MP3
which was the audio standard of MPEG-2. Ravelli et al. (2010) developed an audio codec
based on MDCT from the transform-domain of AAC for beat tracking, chord recognition,
andmusical genre classification. Our previous work partially decoded theMDCT coefficients
from AAC to extract chroma features for similarity comparison between two songs. It also
showed that the segmentation of chroma features could improve the matching performance.
This is because the segmentation preserves the melody of a song (Chang et al. 2013).

In information retrieval, features are often selected according to experience and knowl-
edge. Manual feature selection is typically subjective and often time consuming. To reduce
the subjectivity and increase the efficiency, machine learning technology has been widely
used. Some machine learning algorithms can learn by using examples as inputs and building
a model that makes data-driven predictions or decisions.

Artificial neural networks (ANN) learn and acquire knowledge by connecting neural units
thatmimic the basic structure of systems of biological neurons.Many neural units can operate
in parallel within a single ANN. ANNs model the relations between inputs and outputs
nonlinearly, making ANNs more powerful than the principal component analysis (PCA)
method. The importance or weight of each feature of an ANN can be learned objectively.

Deep learning refers to a class ofmachine learning techniqueswithmany layers of informa-
tion processing for neural units learning. In 2006, Hinton and Salakhutdinov (2006) proposed
extension ofANNswith deep layers to produce deep belief networks (DBNs). DBNs are com-
posed of multiple logistic regressions and restricted Boltzmann machines (RBMs) (Hinton
et al. 2006). RBMs can be expressed using bipartite graphs with visible and hidden variables,
forming two layers of vertices, with no connections between units of the same layer (Smolen-
sky 1986). A greedy layerwise approach (Bengio et al. 2007), Gibb sampling (Casella and
George 1992), and contrastive divergence (Mnih and Hinton 2005) have been applied for
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layer-by-layer pretraining of DBNs, and thus RBMs can be stacked and trained to form
DBNs. Finally, the method of back-propagation fine-tunes the weighting of each neural unit.
DBNs have shown favorable performance in image retrieval and speech recognition (Nair
and Hinton 2009; Dahl et al. 2010; Hinton 2012).

An autoencoders (AE) refers to a class of deep learning, and its neural units can be trained
without supervision. The special character of an AE is that its output targets equal its input
values. The number of hidden variables can be constrained to be less than the number of
inputs (Al-Shareef et al. 2008). Some variants of AEs have been proposed, but the sparse
AE (SAE) has the advantage of over-completed representation, which means that the hidden
layer can be larger than the input layer, but only a few elements are not zero (Ranzato et al.
2007).

In this study, modified discrete cosine transform coefficients from AAC-encoded music
were directly extracted and mapped into chroma features. The chroma features were seg-
mented to preserve the melodies. To shorten the considerable time required for pairwise
comparisons, SAEs were employed to reduce the dimensions of the chroma features in each
segment.

The remainder of this paper is organized as follows. Section 2 describes related studies
on cover song identification and SAEs. The deep learning methods for the proposed chroma
feature transformation are described in Sect. 3. Experimental results are described in Sect. 4.
Finally, Sect. 5 provides a conclusion.

2 Related work

The conventionalmethods for cover song identification,AAC, anddeep learning are described
in this section. The cover song identification method includes chroma feature patching, the
optimal transpose index (OTI), a similarity matrix, and dynamic alignment method. The
description of AAC focuses on the physical meaning of MDCT coefficients, and the discus-
sion of deep learning focuses on SAE.

2.1 Traditional method for cover song identification

Cover songs typically preserve some aspects of the chords and harmony of the original song.
The widely used feature in music retrieval is the pitch-class profile, or chroma. Chromas
profile 12 semitones (C, C#, D, D#, E, F, F#, G, G#, A, A#, and B) that describe a 12-bin
octave-independent histogram of energy intensity (Shepard 1982).

Cover songs typically change the key of the original composition to adapt to a different
singer or instrument. Thus, transposing two songs into the same key is necessary for chroma
similarity measurement. OTI is a commonly used method. The OTI method entails summing
the individual intensity of each semitone from the first frame to the end frame. There are
12 semitones. Each summed semitone is then divided by the maximum value among these
12 semitones to normalize the semitone. These final 12 semitones, called global chroma
features, are used to adjust the key by using the OTI function, which is defined as (1) (Ellis
2006),

K = OTI(hd ,hq) = argmax
J

{hd · circshi f t (hq , J )} (1)

wherehq andhd correspond to the global chroma features for the query song and the reference
song, respectively, circshi f t (hq , J ) is a function that rotates the vector hq with J positions,
and J is an integer from 0 to 11. After estimation of the key difference distance according to
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Fig. 1 Similarity matrix for comparison of two songs

the OTI function, the chroma features of the query song can be transposed to the key of the
reference song.

A chroma similarity matrix is usually applied to score the similarity between two songs.
Global chroma features are normalized so that all entries in the chroma similarity matrix

are between 0 and 1. The closer the entry is to 1, the more similar the two clips are. Figure 1
shows the similarity matrix for an example of a query song and a reference song in a database.
The result shows that these two songs are similar.

To solve the problem of tempo variation, a dynamic alignment method was applied in the
chroma similarity matrix (Serra et al. 2008). This method was proposed by Waterman and
Smith (1978), and was similar to the DTW method. A matrix G with dimension (M + 1) ×
(E + 1) is created, where M and E are the numbers of clips in the query song and reference
song. Entries in matrix G can be calculated through a recursive formula as expressed by
(2) and (3) (Waterman and Smith 1978). The recursive procedure can identify the tempo
difference between two songs.

G(i, j) =
{
D f or i : 2, . . . , M + 1, j : 2, . . . , E + 1
0 otherwise

(2)

D = max

⎧⎨
⎩
G(i − 1, j − 1) + A(i − 1, j − 1)
G(i − 1, j − 2) + A(i − 1, j − 1)
G(i − 2, j − 1) + A(i − 1, j − 1)

(3)

2.2 Advanced audio coding

The description of AAC focuses on the physical meaning of MDCT coefficients. Figure 2
shows a partial decoding process for AAC. After decoding, MDCT coefficients are processed
using temporal noise shaping (TNS) and perceptual noise substitution (PNS). TNS uses a
prediction approach in the frequency domain that aims at shaping the quantization noise
in the time domain. PNS models the noise like components by using a parametric approach
(Ravelli et al. 2010). TheAACdecoder first recovers theMDCTcoefficients throughHuffman
decoding, inverse quantization, and scaling. The coefficients are then processed using TNS
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Fig. 2 Flowchart of partial
decoding for AAC

and PNS. Finally, without use of an inverse time-varying MDCT, MDCT coefficients are
directly extracted.

In theAAC encoding process, the time–frequency analysis tool isMDCT,which is defined
as follows (ISO/IEC 1997):

XMDCT(k) = 2
N−2∑
n=0

z(n) cos

(
2π

N

(
k + 1

2

) (
n + 1

2
+ N

4

)
, 0 ≤ k ≤ N

2
,

fk = k

N/2
× fs

2
(4)

where x is the windowed input sequence, n is the sample index, k is the spectral coefficient
index, and N is the length of the transform window. Although (4) is not equivalent to a
fast Fourier transform, each MDCT coefficient X (k) represents the energy magnitude of a
frequency band, and therefore the MDCT coefficients can be simply allotted to chroma bin
b as defined by (5):

Bin(b) = mod

(
round

(
12 log2

(
f

f0

))
, 12

)
+ 1 (5)

where f is the corresponding frequency of X (k), and f0 is 16.352Hz, represented by C0, the
lowest pitch frequency. Software records the chroma feature, which is the energy intensity
associated with each of the 12 semitones.

2.3 Autoencoder

An RBM model can be represented as the composition of a function that maps input data
to a hidden layer and a function that maps the hidden layer to an output representation. The
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question is how to set the latent variables in the hidden layer to classify each input as the
correct output.

Similar to the RBMmodel, the hidden layer of an AE encoder can be expressed as follows:

hi = sigmoid

⎛
⎝∑

j

wi, j x j + di

⎞
⎠ . (6)

The reconstructed output variable can be expressed as follows:

x ′
j = sigmoid

⎛
⎝∑

j

w′
i, j hi + bi

⎞
⎠

= sigmoid

⎛
⎝∑

j

w′
i, j

⎛
⎝sigmoid

⎛
⎝∑

j

wi, j x j + di

⎞
⎠

⎞
⎠ + bi

⎞
⎠ (7)

where w and w′ can be the same. The latent variables w and w′ can be determined by
minimizing the error function, which is the square of the difference between w and w′, and
bi and d j are the weights for the bias terms of the visible and hidden layers, respectively.

The dimensions of hidden layers are smaller than those of input layers. In other words,
fewer variables are used to represent input data. Equation (7) is similar to that of two-layered
networks, and thus the latent variables can be trained using the back-propagation algorithm,
with the same input and output, to modify the weights of hidden layers.

The major difference between DBNs and AEs is that the output representation in AEs is
the same as that of the input signals. The hidden layers can compress the input data, and the
mapping from a hidden layer to an output layer can decode the original input data. Another
difference between DBNs and AEs is that hidden variables in an AE must be continuous
values between 0 and 1, whereas hidden variables in DBNs are either 0 or 1, depending on
their probability. Because AEs use a deterministic model to obtain hidden layers, they cannot
form a deep generative model, but AE parameters are easier to train. Furthermore, AEs use
a nonlinear method and a sigmoid function, as shown in (6) and (7). By contrast, PCA uses
a linear method to calculate eigenvalues to compress the input signals (Bengio et al. 2013;
Bengio 2009).

A sparsity term can be added to an AE to create an SAE. The sparsity term can be written
as follows (Andrew 2011):

Jsparse(K ) = J (k) + β

s2∑
j=1

KL(ρ||ρ̂) (8)

where Jsparse(K ) = 1
2 ||eq(k)||2 is the cost function, β determines the sparsity, KL(ρ||ρ̂) is

the Kullback–Leibler (KL) divergence, s2 is the number of neurons in the hidden layer, and
the index j represents a sum over the hidden units. The KL divergence can be written as
follows:

K L(ρ||ρ̂) = ρ log
ρ

ρ̂
+ (1 − ρ) log

1 − ρ

1 − ρ̂
(9)

where ρ̂ is the average weight of the neuron, and ρ is the expected value. Sparsity is achieved
by letting the average weight, ρ̂, be constrained to the expected weight, ρ, as in (8), which
constrains sparsity.

Deep learning technology is very powerful machine learning. However, large network
structures cause overfitting problems for deep learning systems. The dropout method, which
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entails randomly dropping units along with their connections, is to prevent complex co-
adaptations to the training data (Hinton et al. 2012; Srivastava et al. 2014).

3 Proposed method for cover song dentification

In addition to the traditional method for cover song identification, the added procedures of the
proposed method can be classified into three steps: the preprocessing procedure, the training
procedure, and the test procedure. A block diagram of the proposed method is shown in
Fig. 3.

The preprocessing procedure includes partial decoding, chroma feature extraction, and
segmentation, which are described in Sect. 2.2. To avoid mapping a harmonic into the incor-
rect bin, the frequency bandwidth was truncated between 130 and 1000Hz (Muller et al.
2011).

Audio signals are continuous over time, and frames, units for DFT, are highly correlated.
An average 3.5-min song, sampled at a sampling rate of 16kHz, has approximately 3000
frames. To preserve melodies for similarity comparison, we can merge several frames into
a segment and some frames can overlap between two consecutive segments (Chang et al.
2013). The segment length and the overlap ratio were tested in the experiment.

As shown in Fig. 3, each song in the training data set was preprocessed; the chroma
features were extracted from the MDCT coefficients of AAC. The chroma bin energy was
then normalized to enhance the energy difference. The bin energy normalization is written
as (10),

E∗(bi ,m) = E(bi ,m)∑12
i=1 E(bi ,m)

(10)

where E(bi ,m) is chroma bin energy in the i th bin at the m th segment. An example of
chroma bin normalization is illustrated in Fig. 4.

Fig. 3 Block diagram of the proposed method (Color figure online)
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Fig. 4 Bin energy normalization: a before normalization, and b after normalization
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Fig. 5 An example illustrating the transformation of chroma features by an SAE

In Fig. 3, the training procedure, marked by the blue dashed lines, is to determine the
parameters in the SAE. A three-layered SAE was applied in this study to reduce the dimen-
sions of chroma features. Thedimensionof thefirst hidden layer of theSAEwas the dimension
of the chroma features, and the dimension of the final hidden layer of the SAEwas the dimen-
sion of the output descriptor. The dimension and weights of each of the hidden layers were
determined through the experiment. Figure 5 illustrates how the SAE transforms chroma
features into intermediate representation of descriptors. The input data for each patch have
12 bins and 40 segments for each bin; thus, each input has a dimensionality of 480. This
dimension is equal to the dimension of the first hidden layer, as shown in the bottom left
portion of Fig. 5. Weights in the final hidden layer are descriptors whose dimensions are
1 × 40. In other words, the compression rate is 1/12. The reconstruction data are plotted on
the right side, and each patch has a dimensionality of 12 × 40, which is the same as that of
the input data. In this example, the compression rate reaches 1/12. To achieve this result, the
SAEs were configured with sparsity set to 0.1 in our deep learning configuration. That is,
10% nodes in the network have non-zero connections.

The final step is the testing procedure, marked by the red dashed lines as shown in Fig. 3.
After preprocessing and bin normalization, OTI was applied for normalizing the tempo
variation. The test procedure included chroma feature reduction and similarity matching.
Chroma features were patched, and the SAE then used a learning process to reduce the
dimensions to match the descriptors. Descriptors in the query song were compared with
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descriptors of songs in the data set. The matching procedure for the cover song required
pairwise comparison with each song in the data set: each cover song was compared with all
of the descriptors in a song, and this matching procedure was iteratively repeated until all
songs in the data set had been compared.

The dynamic alignment method (Waterman and Smith 1978) was applied for similarity
scoring, which accumulated the score of all of the descriptors in a song. However, each song
had a distinct duration. Songs of different lengths may have different numbers of patches
when subjected to the dynamic alignment method, and that might distort similarity scores.
Hence, a postprocessing procedure was added to regulate the length of each song. In other
words, the raw similarity score was divided by the length of the reference song, which yielded
the refined score given by (11):

DA(Q, D)∗ = DA(Q, D)

length(D)
(11)

where DA is the original score by the dynamic alignment method, Q represents the query
song, and D represents the reference song.

In addition, a method called mean reciprocal rank (MRR) was used to evaluate the per-
formance of the music retrieval software (Voorhees 1999). For MRR, the reference songs in
the database are classified into different ranks, or top N lists. Songs with different ranks are
then assigned different scores. The score is the reciprocal value of its rank. For example, if
a reference song is recorded in rank n, the correct retrieval for this song is given a 1/n score.
The MRR score is obtained using (12):

MRR = 1

Q

Q∑
q=1

1

rank(Queryq)
(12)

where Q is the retrieval number and rank(queryq) is the rank list of the qth retrieved song.

4 Experimental results

Experiments were conducted to evaluate the performance of the proposed method. System
parameters were determined, and the system performance levels were compared with those
of other methods. The database we used calls covers80 which contains 80 pop songs and 80
cover songs (http://labrosa.ee.columbia.edu/projects/coversongs/covers80/).

The experimental environment is described as follows. We used a personal computer
with an Intel Core i7-3770 CPU operating at 3.4Hz. The software was Matlab2013a,
and the deep learning tools (http://www.mathworks.com/matlabcentral/fileexchange/38310-
deep-learning-toolbox) were applied. Table 1 lists parameters for deep learning. Param-

Table 1 Parameters for deep
learning Hidden layer dimensionality 480-480-20

Learning rate 1
Epoch 100
Momentum 0.4
Sparsity 0.1
Dropout 0.5
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Fig. 6 Performance comparison with other systems

eters for deep learning can refer to http://www.cs.toronto.edu/~rsalakhu/talks/NLDR_
NIPS06workshop.pdf and Salakhutdinov (2009).

Experiments were conducted to determine system parameters and performance. Because
no training songs were available in covers80, 700 pop songs that were not part of covers80
were used in this study as training data. Table 2 lists the preliminary performance of MRR
and matching time.

To improve the performance, methods of segmentation overlap was considered. After
testing three kinds of overlaps, 25, 50, and 75, 50% segment of overlap was selected. Table 3
lists the MRR and matching time values. The optimum descriptor length was 20, and the
optimum frame segment number for both the training and test data was 20. Weights in the
final hidden layer were descriptors whose dimensions were 1 × 20. The highest MRR was
0.50, and its corresponding matching time was 11.2 s.

For comparison purpose, the PCA method was simulated, and its highest MRR perfor-
mance was selected based on the same procedure as the proposed method. The performance
of PCA method is listed in Table 4. The proposed method yielded higher MRR in most cases
as well as longer matching time.

The performance of the proposedmethodwas comparedwith that of other systems, namely
LabROSA’06 (Tempos 120 and 60), the PCAmethod, and themethod proposed inChang et al.
(2013). All systemswere tested using the covers80 data set. In our previouswork (Chang et al.
2013), our method extracted chroma features fromAAC-encodedmusic, but chroma features
did not benefit from the application of deep learning. Figure 6 shows the performance levels of
MRR and similarity matching time. The proposed method improved the MRR performance,
but used approximately 5% of thematching time required by LabROSA’06 (Tempo 120). The
MRR performance of the method in Chang et al. (2013) was the highest among the methods,
but it required an excessive length of time. PCA required the least time, but its performance
was lower than that of the proposed method. PCA’s lackluster performance can be ascribed to
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the linear transformation it uses to reduce the chroma feature dimensionality; deep learning
performs higher than linear transformation for fast chroma feature retrieval.

Compared with traditional methods for cover song identification, the method of chroma
features segmentation can improve the mating performance, but it increases the matching
time. With the aid of deep learning, the matching time can be saved with little decrement of
matching performance.

5 Conclusion

In this work, the intermediate representation with lower dimensional features was applied to
reduce the computation of pairwise comparisons between songs and cover songs. Chroma
features were first extracted from the AAC compression domain to eliminate some decoding
computations. Chroma features were segmented to preserve melodies. Finally, each chroma
feature segment was used to train and learn from a deep learning procedure for intermediate
representation with lower dimensions. Dimensionality was reduced using a sparse autoen-
coder. Experimental results showed that the proposed method increased theMRR to 0.50 and
reduced matching time by more than 94% compared with traditional approaches. Chroma
feature learning from chroma representations performs favorably for cover song identifica-
tion.
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