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Abstract Image inpainting in the wavelet domain refers to the recovery of an image from
incomplete wavelet coefficients. In this paper, we propose a wavelet inpainting model by
using fractional order total variation regularization approach. Moreover, we use a simple
but very efficient primal–dual algorithm to calculate the optimal solution. In the light of
saddle-point theory, the convergence of new algorithm is guaranteed. Experimental results
are presented to show performance of the proposed algorithm.
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1 Introduction

Image inpainting, also known as image completion or disocclusion, is an active research
area in image processing. It refers to the problem of filling in missing or damaged regions in
image, either in the pixel domain or in a transformed domain.

Inpainting in the image domain, which uses the values of the available pixels to fill the
missing pixels, has been widely investigated in the last two decades. Bertalmo et al. (2000)
introduced the partial differential equations (PDEs) to smoothly propagate the information
from the neighboring pixels into the areas contain the unknown pixels. Chan and Shen
(2001a) considered a total variational (TV) inpainting model. The TV inpainting model fills
in the missing regions such that the TV is minimized, and its use is motivated by the wide
applications of TV in image restoration. Further, higher order methods such as the curvature-
driven diffusion (CDD) (Chan and Shen 2001b) and Euler’s elastic based variational model
(Chan and Shen 2002) were also applied to the inpainting problem in order to overcome the
block effects caused by the TV model. These edge-preserved methods are unable to recover
the texture regions efficiently. Therefore, the exemplar-based texture synthesis techniques
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Fig. 1 3-scale wavelet decomposition

(Criminisi et al. 2004; Aujol et al. 2011) were developed for recovering the textured images.
Other techniques such as morphological component analysis is also applied on simultaneous
cartoon and texture image inpainting by Elad et al. (2005). In Gilboa and Osher (2008), Chen
and Cheng (2010), Peyre et al. (2011), non-local total variation was further investigated and
applied in various image restoration problem including the inpainting task. These non-local
techniques are more suitable for recovering the texture and fine details of images than the
previous local methods. In Jin and Ye (2015), a patch-based image inpainting method using
a low-rank Hankel structured matrix completion approach was further investigated. All these
works concentrate on image inpainting in the pixel domain.

Inpainting in transformed domains is totally different because each single corruption of
data can, in general, affect the whole image, and thus an inpainting region in the pixel
domain is not well defined. Transformed domain inpainting arises in practical applications
because images are usually formatted, transmitted and stored in a transformeddomain. In such
situations, the transform is either a discrete cosine transform (DCT) or a discrete wavelet
transform (DWT). In Fig. 1, we show the layout of 3-scale wavelet decomposition. The
higher frequency subbands, such as”HH_1, HH_2, LH_1, HL_1, LH_2,HL_2” in Fig. 1,
do not greatly affect visual quality, while the loss of other high frequencies in the coarsest
subband (”HL_3,LH_3” in Fig. 1) create Gibbs artifacts or other blur effects. During storage
and transmission, certain coefficients may be lost or corrupted, which naturally leads to the
transformed domain inpainting problem. In Cai et al. (2008) used tight-frame approach for
inpainting and showed that it was equivalent to using an l1 regularization on the tight-frame
coefficients. In He and Wang (2014), a weighted sparse restoration model based on the
wavelet frame are proposed. This new algorithm can be considered as the incorporation of
prior structural information of the wavelet frame coefficients into the traditional l1 model.

An alternative class of approaches is to use a hybrid method to control both image and
wavelet domains. We start with a standard image model

f = u + η
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In the following, images are transformed from the pixel domain to a wavelet domain through
a wavelet transform. The wavelet coefficients of the noisy image f under an orthogonal
wavelet transform W are given by f̂ = W f . The observed wavelet coefficients f̂ are given
by f̂ but with the missing ones set to zero, i.e.

f̂i =
{
f̂i , i ∈ I
0, i ∈ �\I

Here, � is the complete index set in the wavelet domain, and I ⊂ � is the set of available
wavelet coefficients. Then, an observed image f is obtained by the inverse wavelet transform
f = WT f̂ .
Durand and Froment (2003) considered to reconstruct the wavelet coefficients using the

total variation norm. To fill in the corrupted coefficients in the wavelet domain in such a
way that sharp edges in the image domain are preserved, Chan et al. (2006) proposed the
following to minimize the objective function:

J (u) = ‖u‖T V + λ

2

∑
i∈I

( f̂i − ûi )
2 (1)

where

‖u‖T V =
∑

(r,s)∈�

(∣∣(Dxu)r,s
∣∣2 + ∣∣(Dyu)r,s

∣∣2)

is the TV norm. Dz is the forward difference operator in the z-direction for z ∈ {x, y}, λ is
a regularization parameter I ⊂ � be the uncorrupted known index set. By using the dual
formulation of the TV norm, the minimization of (1) becomes the minimax problem

min
u

max
p

uT divp + λ

2

∑
i∈I

( f̂i − ûi )
2

(2)

where the discrete divergence of pis a vector defined as

(divp)r,s ≡ pxr,s − pxr−1,s + pyr,s − pyr,s−1

with px0,s = pyr,0 = 0 for r, s = 1, . . . , n. It is a method that combines coefficients in the
wavelet domain and regularization in the image domain.

Although the classical total variation is surprisingly efficient for recovering some lost
wavelet coefficients as presented in Chan et al. (2006), it is well known that the total vari-
ation regularization is not suitable for images with fine structures, details and textures. In
Zhang and Chan (2010), Zhang et al. (2010), extended the TV wavelet inpainting model
to the corresponding non-local (NL) form, and proposed an efficient iterative algorithm
called Bregmanized operator splitting (BOS) to solve the NLTV wavelet inpainting models
(NLTV-BOS). In fact, these models discussed above are all established as special cases of
variational image restoration problem. However, these time-consuming non-local methods
cannot eliminate the staircase effect and even cause extra blocky artifacts. For the staircase
effect elimination, high-order derivative based models perform well, but they often cause
blurring of the edges. As a compromise between the first-order TV regularized models and
the high-order derivative based models, some fractional-order derivative based models have
been introduced in Liu and Chang (1997), Chen et al. (1990, 2011), Pu et al. (2010), Idczak
and Kamocki (2015), Bai and Feng (2007) for additive noise removal and image restoration.
They can ease the conflict between staircase elimination and edge preservation by choos-
ing the order of derivative properly. Moreover, the fractional-order derivative operator has
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a “non-local” behavior because the fractional-order derivative at a point depends upon the
characteristics of the entire function and not just the values in the vicinity of the point, which
is beneficial to improve the performance of texture preservation. The numerical results in lit-
eratures (Chen et al. 2013; Zhang et al. 2012; Zhang and Chen 2015) have demonstrated that
the fractional-order derivative performs well for eliminating staircase effect and preserving
textures.

In this paper,motivated by theseworks, in order to recover textures andgeometry structures
simultaneously regularization for different loss cases, we extend the total variation based
wavelet inpainting to the fractional order total variation based wavelet inpainting. Moreover,
for new model, we also propose a fast iterative algorithm based on the primal–dual method.
The primal–dual algorithm was first presented by Arrow et al. (1958) and named as the
primal–dual hybrid gradient (PDHG) method in Zhu and Chan (2008). In this method, each
iteration updates both a primal and a dual variable. It is thus able to avoid some of the
difficulties that arise when working only on the primal or dual side (Chambolle 2004; Esser
et al. 2010). The convergence of the primal–dual algorithm has been studied in He and
Yuan (2012), Bonettini and Ruggiero (2012). In our paper, the primal–dual algorithm is
used to solve the fractional-order total variation inpainting model. The efficiency of this
simple model for natural images is validated by a large amount of numerical simulations.
Our experiments show that even with substantial loss of wavelet coefficients (up to 50%,
including low frequencies), our model may also reconstruct the original image remarkably
well, especially in retaining geometric structures. The challenges for fractional regularization
in practice include choosing an appropriate order, and finding a stable and efficient algorithm.

The remainder of this paper is organized as follows: Sect. 2 describes the notations for
discrete fractional-order derivative. In Sect. 3, we propose a fractional order primal–dual
model for image inpainting and detail the proposed algorithm with a convergence analysis.
Section 4 reports our simulation results with comparisons, and Sect. 5 concludes this work.

2 Fractional-order derivative

To simplify, our images will be 2-dimensional matrices of size N × N . We denote by X the
Euclidean space R

N×N . For any u = (ui, j )Ni, j=1 ∈ X , we denote ui, j = 0 for i, j < 1 or
i, j > N .

From Grünwald–Letnikov fractional derivative definition (Zhang et al. 2012), the discrete
fractional- order gradient ∇αu is a vector in Y = X × X given by

∇αu := [
(∇αu)i, j

]N
i, j=1 =

([(
�α

1u
)
i, j

]N
i, j=1

,
[(

�α
2u

)
i, j

]N
i, j=1

)
(3)

with

(�α
1u)i, j =

K−1∑
k=0

(−1)kCα
k ui−k, j ,

(�α
2u)i, j =

K−1∑
k=0

(−1)kCα
k ui, j−k, i, j = 1, . . . , N

where Cα
k = �(α+1)

�(k+1)�(α−k+1) and �(x) is the Gamma function. In additional, the coefficients

C (α) can also be obtained recursively from
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C (α)
0 = 1, C (α)

k =
(
1 − α + 1

k

)
C (α)
k−1, k = 1, 2, . . .

When α = 1, C1
k = 0 for k > 1.

For any p = (p1, p2) ∈ Y the discrete fractional-order divergence is defined as

(divα p)i, j = (−1)α
K−1∑
k=0

(−1)kCα
k p

1
i+k, j

+ (−1)α
K−1∑
k=0

(−1)kCα
k p

2
i, j+k (4)

One can check easily that (3) and (4) satisfy the property as follows:

〈
p,∇αu

〉
Y =

〈
(−1)αdivα p, u

〉
X

,∀u ∈ X, p ∈ Y

where 〈u, v〉X = ∑N
i, j=1 ui, jvi, j ,∀u, v ∈ X and 〈p, q〉Y = ∑N

i, j=1 (p1i, j q
1
i, j + p2i, j q

2
i, j ),∀p

= (p1, p2), q = (q1, q2) ∈ Y , are the inner products of X and Y , respectively.
Let J (u) = ‖∇αu‖1. Then, its conjugate function J ∗

P (p) satisfies the following property:

J ∗
P (p) =

{
0,
+∞,

p ∈ P
p /∈ P

where P = {
p ∈ Y : ‖p‖∞ ≤ 1

}
and ‖p‖∞ denotes the discrete maximum norm defined

as

‖p‖∞ = max
∣∣pi, j ∣∣
i, j

,
∣∣pi, j ∣∣ =

√(
p1i, j

)2 +
(
p2i, j

)2
.

3 Proposed algorithm

Based on the model (2), we propose a wavelet inpainting model by fractional-order total
variation as follows:

min
u

max
p

〈∇αu, p
〉 + λ

2

∑
i∈I

( f̂i − ûi )
2 − J ∗

P (p) (5)

There are many numerical algorithms for solving the variation problem related to image
inpainting. However, they suffer from slow running or high computational complexity or
lack of knowledge on the selection of the regularization parameter. In this paper, by referring
the primal–dual algorithm for solving saddle-point problems, we propose a primal–dual
formulation to solve the fractional-order wavelet inpainting model (5).

3.1 Primal–dual method for solving saddle-point problems

For clear description, we give some preliminaries on the first-order primal–dual method
summarized in Chambolle and Pock (2010). We consider the saddle-point problem

min
x∈X max

y∈Y 〈Ax, y〉 + G(x) − F∗(y) (6)
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where G : X → [0,+∞) and F∗ : Y → [0,+∞) are proper convex, lower-semicontinuous
(l.s.c.) functions, F∗ being itself the convex conjugate of a convex l.s.c. function F .

This saddle-point problem is a primal–dual formulation of the following nonlinear primal
problem

min
x∈X F(Kx) + G(x)

Or of the corresponding dual problem
max
y∈Y −(G∗(−A∗y) + F∗(y))

To solve the saddle-point problem (6), Chambolle and Pock (2010) proposed a primal–dual
algorithm. Let the primal variable x be fixed. Taking the derivative of the dual variable y,
we have

y = (I + ∂F∗)−1(y + Ax)

Similarly, by taking the derivative of the primal variable x with the fixed dual variable y, we
have

x = (I + ∂G)−1(x − A∗y)

where ∂F∗ and ∂G are the subgradients of functions F∗ and G.
In the sense that their resolvent operator through

x = (I + τ∂G)−1(y)

= argmin
x

{
‖x − y‖2

2τ
+ G(x)

}

has a closed-form representation.
As analyzed in He and Yuan (2012), Bonettini and Ruggiero (2012), Chambolle and Pock

(2010), the saddle-point problem (6) can be regarded as the primal–dual formulation of a
nonlinear programming problem, and this fact has inspired some primal–dual algorithms for
TV image restoration problems. We refer to, e.g., Zhang et al. (2011) for their numerical
efficiency.

3.2 New algorithm

Let χ be a diagonal matrix with χi, j = 1 if (i, j) ∈ I and χi, j = 0 if (i, j) ∈ �\I . The
minimization problem in (5) can be rewritten as

min
u

max
p

〈∇αu, p
〉 + λ

2

∥∥∥χ(û − f̂ )
∥∥∥2
2
− J ∗

P (p) (7)

For convenience, we assume that two variables u and û can be transformed into each other
by û = Wu and u = WT û. Therefore, the minimization problem (7) becomes

min
u

max
p

〈∇αu, p
〉 + λ

2
‖χW (u − f )‖22 − J ∗

P (p) (8)

In the form of the general saddle-point problem (6), we see that A = ∇α,G(u) =
λ
2 ‖χW (u − f )‖22 , F∗(p) = J ∗

P (p). The minimization problem of (8) can be solved exactly
as

u = f − AT p

λχWTW
(9)

Substituting (9) into (8) yields the following dual problem:
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max
p

−
(∥∥∥AT p − λχWTWu

∥∥∥2
2
+ F∗(p)

)

where −AT is the corresponding discretization of the fractional-order divergence.
Since F∗ is the indicator function of a convex set, the resolvent operator reduces to

pointwise Euclidean projectors onto L2 balls

p = (I + σ∂F∗)−1( p̃) ⇔ pi, j

= p̃i, j
max{1, ∣∣ p̃i, j ∣∣} , where p̃ = p + σ∇αu (10)

The resolvent operator with respect to G poses simple pointwise quadratic problems. The
solution is trivially given by

u = (I + τ∂G)−1(ũ) ⇔ ui, j = ũi, j + χτλWTW fi, j
1 + χτλWTW

=
{

ũi, j+τλWTW fi, j
1+τλWTW

, ( j, k) ∈ I
ũi, j , ( j, k) ∈ �\I (11)

where ũ = u − τ∇α∗ p. When wavelet transform matrix W is orthogonal, WTW = I .
This method can also be generalized to non-orthogonal wavelet transforms, for example, bi-
orthogonal wavelet transforms (Cohen et al. 1992), redundant transforms (Kingsbury 2001)
and tight frames (Ron and Shen 1997). In these cases, W is not orthogonal, but still has full
rank, and hence WTW is invertible.

Unifying all the schemes together, we obtain the following algorithm:
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The parameters τ n, σ n play a crucial role for the efficiency of the algorithm. Thus, it is
important to prove the convergence of the algorithm under conditions as flexible as possible
(Bonettini and Ruggiero 2012). Next we discuss the convergence of the proposed algorithm.
In order to guarantee the convergence, suppose a parameter L = ‖∇α‖. It has been proven in

Fig. 2 Original images: a Barbara image, b Lena image, c Peppers image, d Baboon image, e Boat image, f
Goldhill image
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Bonettini and Ruggiero (2012) that the primal–dual algorithm converges to the saddle-point
subject to a constraint of the parameter L .

Let wi = (−1)iCα
i . Then, we have

∥∥∥(−1)αdivα p
∥∥∥2 =

∑
i, j

(
w0 p

1
i, j + w1 p

1
i+1, j + · · · + wK−1 p

1
i+K−1, j

+w0 p
2
i, j + w1 p

2
i, j+1 + · · · + wK−1 p

2
i, j+K−1

)2

≤ 2K ×
∑
i, j

[
(w0 p

1
i, j )

2 + (w0 p
2
i, j )

2 + (w1 p
1
i+1, j )

2

+ (w1 p
2
i, j+1)

2 + · · · + (wK−1 p
1
i+K−1, j )

2

+ (wK−1 p
2
i, j+K−1)

2
]

≤ 2K × (
w2
0 + w2

1 + · · · + w2
K−1

) ‖p‖2

Fig. 3 The Barbara image with 10% of wavelet coefficients lost: a received image, b restored image with
α = 0.8 (PSNR = 29.37dB), c restored image with α = 1.2 (PSNR = 34.55dB), d restored image with
α = 1.4 (PSNR =34.50dB)
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Therefore

L = ∥∥∇α
∥∥ = max

∥∥∥(−1)αdivα p
∥∥∥ ≤

√
2K

∑K−1

i=0
w2
i

which guarantees the convergence of new algorithm.
For primal–dual pair (u, p), the partial primal–dual gap G(u, p) is defined by

G(u, p) =
{
max
p′

〈
p′, Au

〉 + λ

2
‖χW (u − f )‖22 − F∗(p′)

}

−
{
min
u′

〈
p, Au′〉 + λ

2

∥∥χW (u′ − f )
∥∥2
2 − F∗(p)

}

The primal–dual gap G(u, p) is a measure of closeness of the primal–dual (u, p) to the
primal–dual solution, and we use it to design the stopping criterion for our numerical algo-
rithm in this paper.

Fig. 4 The Lena imagewith 10%ofwavelet coefficients lost: a received image, b restored imagewith α = 0.8
(PSNR = 32.28dB), c restored image with α = 1.2 (PSNR = 33.45dB), d restored image with α = 1.4
(PSNR = 34.86dB)
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4 Experimental results

In this section, we evaluate the performance of the proposed algorithm-FOTV-PD and com-
pare it with TV-PD (Chan et al. 2006) and NLTV-BOS (Zhang and Chan 2010) in wavelet
inpainting by PSNR value and subjective image quality. Six images (size of 256 × 256):
Barbara, Lena, Peppers, Baboon, Boat and Goldhill are used for our tests in Fig. 2. The
reconstruction results are shown in this section and also quantitatively evaluated by the peak
signal to noise ratio (PSNR) defined by

PSN R := 10 log10

⎡
⎣ max
1≤i, j≤N

∣∣(u0)i, j ∣∣2 /
1

N 2

N∑
i=1

N∑
j=1

[(u0)i, j − ui, j ]2
⎤
⎦

where u0 is the original image without noise and u is the inpainted image. In all the following
experiments, we apply the Daubechies 7–9 biorthogonal wavelets with symmetric extension
for three algorithms. We use the WaveLab to implement the forward and the backward
biorthogonal wavelet transforms. 3-scale wavelet decomposition is used for the images in
the test.

Fig. 5 The peppers image with 50% of wavelet coefficients lost: a receirved image, b restored image with
α = 0.8 (PSNR = 20.19dB), c restored image with α = 1.2 (PSNR = 20.25dB), d restored image with
α = 1.4 (PSNR = 21.60dB)
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For the FOTV-PD algorithm, the proper selection of the fraction depends on the image
to inpaint. We illustrate the inpainted images with α = 0.8, 1.2, 1.4 respectively. As
represented, the smaller α leads to the blocky (staircase) effects and the larger α will make
restored image too smooth. α = 1.4 is appropriate for nonsmooth problems because the
diffusion coefficients are close to zero in regions representing large gradients of the fields,
allowing discontinuities at those regions.

The steplength σ n and τ n are chosen for the convergence (He and Yuan 2012). Indeed,
the proposed steplength choices are

σ n = 0.2 + 0.08n

τ n = λn

1 − λn
, with λn =

(
0.5 − 5

15 + n

)
σ n .

For the weight functionw(x, y) in the NLTV-BOS regularization, we use the same setting
as that adopted in Zhang and Chan (2010), i.e., the patch size and the searching window for
the semi-local weight are fixed at 5 and 15. The 10 best neighbors and 4 nearest neighbors
are chosen for the weight computation of each pixel.

Fig. 6 The Baboon image with 50% of wavelet coefficients lost: a received image, b restored image with
α = 0.8 (PSNR = 21.15dB), c restored image with α = 1.2 (PSNR = 21.72dB), d restored image with
α = 1.4 (PSNR = 22.01dB)
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Fig. 7 The Barbara image with additive noise for 10% of wavelet coefficients lost (σ = 10): a observed
image, b restored image with α = 0.8 by FOTV-PD (PSNR = 23.74dB), c restored image with α = 1.2
by FOTV- PD (PSNR = 24.28dB), d restored image α = 1.4 by FOTV-PD (PSNR = 24.65dB), e restored
image by TV-PD (PSNR = 22.61dB), f restored image by NLTV-BOS(PSNR = 23.59dB), g Zoom of (d),
h Zoom of (e), i Zoom of (f)
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Fig. 8 The Lena image with additive noise for 10% of wavelet coefficients lost (σ = 10): a observed image,
b restored image with α = 0.8 by FOTV-PD (PSNR= 24.92dB), c restored image with α = 1.2 by FOTV-PD
(PSNR = 25.03dB), d restored image with α = 1.4 by FOTV-PD (PSNR = 25.46dB), e restored image by
TV-PD(PSNR = 22.97dB), f restored image by NLTV-BOS (PSNR = 23.52dB), g Zoom of (d), h Zoom of
(e), i Zoom of (f)
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Fig. 9 Peppers image with additive noise for 50% wavelet coefficients randomly lost (σ = 10). a Received
image, b restored image with α = 0.8 by FOTV-PD (PSNR = 17.99dB), c restored image with α = 1.2 by
FOTV-PD (PSNR = 20.18dB), d restored image with α = 1.4 by FOTV-PD (PSNR = 20.68dB), e restored
image by TV-PD (PSNR = 17.18dB), f restored image by NLTV-BOS (PSNR = 19.65dB), g Zoom of (d),
h Zoom of (e), i Zoom of (f)
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Fig. 10 Baboon image with additive noise for 50% wavelet coefficients randomly lost. a Received image, b
restored image with α = 0.8 by FOTV-PD (PSNR = 20.56dB), c restored image with α = 1.2 by FOTV-PD
(PSNR = 20.31dB), d restored image with α = 1.4 by FOTV-PD (PSNR = 21.06dB), e restored image by
TV-PD (PSNR = 18.23dB), f restored image by NLTV-BOS (PSNR = 19.37dB), g Zoom of (d), h Zoom of
(e), i Zoom of (f)
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Experiment 1 Barbara and Lena noiseless with 10% wavelet coefficients lost:

Figures 3 and 4 show the Barbara and Lena images with 10% wavelet coefficients lost
randomly and its restored image. We illustrate the inpainted images with α = 0.8, 1.2, 1.4
respectively. In Fig. 3b, PSNR of the inpainted images with α = 0.8 is 29.37 dB. Fig. 3c is
obtained by α = 1.2 with PSNR = 34.55dB and Fig. 3d with PSNR = 34.50dB is obtained
by α = 1.4. In Fig. 4b, PSNR of the inpainted images with α = 0.8 is 32.28 dB. Figure 4c is
obtained by α = 1.2 with PSNR = 33.45dB and Fig. 4d with PSNR = 34.86dB is obtained
by α = 1.4.

Experiment 2 Peppers and Baboon noiseless with 50% wavelet coefficients lost:

In Fig. 5 shows the Peppers image with 50% wavelet coefficients lost randomly and its
restored image. We illustrate the inpainted images with α = 0.8, 1.2, 1.4 respectively. In
Fig. 5b, PSNR of the inpainted images with α = 0.8 is 20.19 dB. Figure. 5c is obtained by
α = 1.2 with PSNR = 20.25dB and Fig. 5d with PSNR = 21.60dB is obtained by α = 1.4.
In Fig. 6b, PSNR of the inpainted images with α = 0.8 is 21.15dB. Figure 6c is obtained by
α = 1.2 with PSNR = 21.72dB and Fig. 6d with PSNR = 22.01dB is obtained by α = 1.4.

Fig. 11 Whole LH subband (32 × 32) loss a received image, b the result by FOTV-PD (α = 1.2, PSNR
= 33.36dB, CPU time = 15.46s), c restored image by TV-PD(PSNR = 30.92dB, CPU time = 13.39s), d
restored image by NLTV-BOS (PSNR = 31.33dB, CPU time = 500.23s)
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Experiment 3 Barbara and Lena with additive noise for 10% wavelet coefficients lost:

In order to show that the proposed algorithm is capable of denoising as a by-product of
the inpainting, we added a zero mean white Gaussian noise (σ = 10) to the images Barbara
and Lena with 10% of wavelet coefficients lost randomly and then applied the FOTV-PD
algorithm. Figures 7 and 8 show the inpainting result. We illustrate the inpainted images
with α= 0.8, 1.2, 1.4 by FOTV-PD respectively. It is observed that FOTV-PD outperforms
TV-PD and NLTV-BOS regularization in terms of PSNR and visual image quality, especially
for the repeating cloth pattern.

Experiment 4 Peppers and Baboon with additive noise for 50% wavelet coefficients lost:

In Figs. 9 and 10, We add the white Gaussian noise with (σ = 10) to Peppers and Baboon
images with 50% of wavelet coefficients lost randomly. The images and their zoomed show
that FOTV-PD can remove almost all the staircase effects and recover cleaner edges than
TV-PD and NLTV-BOS.

Experiment 5 Lena and peppers with the two cases of wavelet coefficients missing:

Fig. 12 Whole HL subband (32 × 32) loss: a received image, b the result by FOTV-PD (α = 1.2 PSNR
= 29.02dB, CPU time = 14.29s), c restored image by TV-PD (PSNR = 28.08dB, CPU time = 11.27s), d
the result by NLTV-BOS (PSNR = 30.09dB, CPU time = 450.71s)
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Fig. 13 The Boat image with additive noise for whole LH subband loss(σ = 15). a Received image, b the
result by FOTV-PD (α = 1.2, PSNR = 26.75dB, CPU time = 12.19s), c restored image by TV-PD(PSNR
= 24.32dB, CPU time = 22.36s), d the result by NLTV-BOS (PSNR = 25.48dB, CPU time = 535.23s)

In Figs. 11 and 12, the Lena and Peppers images are used to test three algorithms. The
two cases of wavelet coefficients missing: the whole LH and HL loss are considered. The
corresponding PSNR values and CPU time are also shown. The images and their zoomed in
views show that these algorithms can remove small oscillations created by lost coefficients,
while the PSNR of NLTV-BOS and FOTV-PD give about 2db higher than TV-PD. The CPU
time of FOTV-PD is less than NLTV-BOS.

Experiment 6 Boat andGoldhill with additive noise for the two cases of wavelet coefficients
missing:

In Figs. 13 and 14, we add the white Gaussian noise with (σ = 15) to Boat and Goldhill
images for testing three algorithms. The two cases of wavelet coefficients missing: the whole
LH and HL loss are considered. The FOTV-PD regularization gives a higher PSNR than
TV-PD and NLTV-BOS. The CPU time of FOTV-PD is less than NLTV-BOS.

Tables 1, 2 and 3 give the results of our experiments. In summary, in Figs. 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13 and 14, the results show that the larger the parameter α is, the
better the textures are preserved. The resultant images show that our method can remove the
noise and keep more details of the image. It is observed that our method (FOTV-PD) is more
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Fig. 14 The Goldhill image with additive noise for whole HL subband loss (σ = 15). a Received image, b the
result by FOTV-PD (α = 1.2, PSNR = 25.12dB, CPU time = 20.92 s), c restored image by TV-PD (PSNR =
22.19dB, CPU time = 35.47. d the result by NLTV-BOS (PSNR = 24.48dB, CPU time = 524.59s)

Table 1 Comparison of noise
free cases (PSNR:dB)

Image Missing coef (%) α = 0.8 α = 1.2 α = 1.4

Barbara 10 29.37 34.55 34.50

Lena 10 32.28 33.45 34.86

Peppers 50 20.19 20.25 21.60

Baboon 50 21.15 21.72 22.01

efficient than the NLTV-BOS algorithm in the CPU time though the PSNR values are more
or less the same. The FOTV-PD regularization gives a higher PSNR and less staircase effect
than TV-PD.

5 Conclusion

In this paper we have presented a FOTV model for wavelet inpainting problem. We applied
the primal–dual algorithm to optimize the model. We discussed different loss cases in the
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Table 2 Comparison of noise cases (σ = 10, PSNR:dB)

Image Missing coef (%) α = 0.8 α = 1.4 α = 1.2 TV-PD NLTV-BOS

Barbara 10 23.74 24.28 24.65 22.61 23.59

Lena 10 24.92 25.03 25.46 22.97 23.52

Peppers 50 17.99 20.18 20.68 17.18 19.65

Baboon 50 20.56 20.31 21.06 18.23 19.37

Table 3 PSNR and CPU time for different methods (different σ , PSNR:dB, CPU:s)

Image Missing coef α = 1.2 TV-PD NLTV-BOS

PSNR CPU PSNR CPU PSNR CPU

Lena LH loss (σ = 0) 33.36 15.46 30.92 13.93 31.33 500.23

Peppers HL loss (σ = 0) 29.02 14.29 28.08 11.27 30.09 450.71

Boat LH loss (σ = 15) 26.75 12.19 24.32 22.36 25.48 535.23

Goldhill HL loss (σ = 15) 25.12 20.92 22.19 35.47 24.48 524.59

wavelet domain, with and without noise. The numerical examples have shown that the new
algorithm is very effective not only for restoring geometric features but also for filling in some
image patterns. In future, on one hand, further theoretical work should attempt to document
the performance of the method in filling in missing samples when the object truly has a sparse
representation. On the other hand, in new algorithms, the selection of parameters is crucial
for restoration quality. In our future work, we will discuss the adaptive parameter selection
methods for the fractional-order total variation models.
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