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Abstract This paper proposes two analytical design methods in the frequency domain for
directional Gaussian 2D FIR filters, with a straight directional or an elliptically-shaped fre-
quency response and with a specified selectivity and orientation in the frequency plane.
One method relies on the substitution of a frequency mapping into the factored polynomial
approximation of the Gaussian, while the other one is based on decomposing the frequency
response into Gaussian components along three properly chosen directions in the frequency
plane. The frequency response of the 2D directional filter results directly in a factored form,
which is a major advantage in implementation. The filters are accurate, efficient and they
eliminate the necessity of interpolation. With the mapping substitution method, they result
also adjustable in orientation and aspect ratio. Several design examples are given for various
specifications, and simulation results of directional filtering on test images are provided, to
prove their applicability in image processing.

Keywords 2D FIR filters · Analytical design methods · Approximations · Frequency
transformations

1 Introduction

The field of two-dimensional filters has known a steady development, and their design meth-
ods are well founded Najim (2006). Various aspects of two-dimensional IIR or FIR filter
design have been approached by many authors. Most of the analytical design methods rely
on 1D prototype low-pass filters and spectral transformations from s to z plane via bilinear
approximation, in order to obtain 2D filters with desired frequency response, as approached
in early papers like Harn and Shenoi (1986). A convenient tool for 2D FIR filter design is also
the McClellan transform Chen and Lee (1994), Yeung and Chan (2002). Many authors have
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approached design methods based on numerical optimization techniques like least squares
Zhu et al. (1999) and also genetic algorithms Tzeng (2004).

Gaussian filters have beenwidely used in image processing and computer vision for image
smoothing and noise reduction. They are especially useful in tasks like image segmentation
and edge detection. In particular, anisotropic filters performing directional blurring are com-
monly used in various image processing tasks.

In Nguyen and Swamy (1986) an approximation technique is developed for computing
the McClellan transform for elliptically-shaped filters with arbitrary orientation. A reference
paper for IIR Gaussian filter implementation is Young and Vliet (1995). In papers like Geuse-
broek et al. (2003), Lam and Shi (2007), Lampert and Wirjadi (2006), Lampert and Wirjadi
(2006), efficient designs for anisotropic Gaussian filters are approached, some using direc-
tional decomposition along frequency axes. Gaussian 2D filters are useful as well in edge
detection from noisy images Hsiao et al. (2006), remote sensing applications like directional
smoothing ofweather images Lakshmanan (2004), or phase noise reduction in synthetic aper-
ture radar interferometry Wang et al. (2006). Some efficient designs and implementation of
directional Gaussian smoothing filters are proposed in Charalampidis (2009) and Joginipelly
et al. (2012).

An interesting application of such filters in stereoscopic image generation is developed in
Horng andTseng (2010), while a bilateral filterwith a locally-controlled kernel for directional
edge-preserving smoothing is approached in Venkatesh and Seelamantula (2015).

As proven in some papers, any 2DGaussian filter can be decomposed into a cascade of 1D
Gaussian filters along orthogonal axes. Next, each 1D Gaussian can be implemented using
efficient recursive approximations Geusebroek et al. (2003).

As highlighted in Lam and Shi (2007), anisotropic Gaussians oriented along the x or
y axes are x − y separable. For anisotropic Gaussians with arbitrary orientation, the two
orthogonal axes are not alignedwith the image gridLamandShi (2007). In order to implement
1D Gaussians along these axes, interpolation is required, which increases the amount of
computation and may cause the convolution kernels to be spatially non-uniform Lam and
Shi (2007). A solution which partially avoids interpolation was given in Geusebroek et al.
(2003). The necessity for interpolation is completely eliminated in Lam and Shi (2007) by
decomposing the 2D Gaussian into a cascade of three one-dimensional Gaussians.

InMatei (2013), the author proposed an analytical designmethod in the frequency domain
for directional Gaussian IIR filters, using a frequency response decomposition along the two
frequency axes and the diagonal axis. The designed 2D filters are adjustable, as their transfer
functions depend explicitly on the parameters specifying the orientation and bandwidth, so the
design does not have to be repeated every time again from the start for various specifications.
In Matei and Ungureanu (2009), 2D zero-phase maximally-flat IIR filters with elliptically-
shaped support were designed in the frequency domain.

In this work, two analytical design methods are proposed for 2D Gaussian directional
FIR (non-recursive) filters. They are based on specific frequency transformations applied
to a Gaussian prototype filter with imposed selectivity, in order to obtain a 2D Gaussian
oriented filter. The design is achieved in the frequency domain, yielding the desired frequency
response which can be factored, and the filter large size kernel results as a convolution of
smaller matrices.

The paper is organized as follows. In Sect. 2, the 1D Gaussian prototype filter used in
design is presented, and its accurate polynomial approximation is found using the Chebyshev
series. Section 3 introduces the frequency transformations applied in the design of two types of
Gaussian orientation-selective filters, namely straight directional and elliptically-shaped. The
two methods are presented in Sect. 4, where several design examples are provided. Section
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4 also includes a distortion analysis of the designed filters and a comparative discussion
regarding their advantages. In Sect. 5, simulation results are given for directional filtering of
test images.

2 1D Gaussian prototype filters

Zero-phase filters (both FIR and IIR), in particular Gaussian filters are frequently used in
image processing because they do not introduce any phase distortions in the filtered image.
Furthermore, the 2D Gaussian is separable, so it can be implemented as a cascade of 1D
filters. The Gaussian function in spatial frequency ω has the following expression:

HG (ω) = exp
(−σ 2ω2/2

)
(1)

which is the Fourier transform of the Gaussian function in the continuous spatial variable x :

g(x) =
(
1/

√
2πσ

)
· exp (−x2/2σ 2) (2)

where σ represents the standard deviation. We look for a series expansion of the function
HG(ω) which has to be an approximation as accurate as possible on the frequency range
[−π, π]. The most convenient for our purpose is the Chebyshev series expansion, because it
yields an efficient and uniform approximation of a function on a desired interval. The Cheby-
shev series can be easily calculated using a symbolic computation software like MAPLE.
Generally, a 1D function HP (ω) can be approximated to a specified precision on a given
frequency interval by a polynomial function Ha(ω) of order N :

HP (ω) ∼= Ha(ω) =
N∑

j=0

a j · ω j (3)

The order N of polynomial Ha(ω) depends on the filter selectivity, the imposed precision
of approximation and the length of frequency interval. For simplicity, instead of (1), we use
the expression HP (ω) = exp(−kω2) for a Gaussian, with k = σ 2/2, where k has the role
of a selectivity parameter; the larger the value of k, the narrower is the Gaussian function.
Generally, the polynomial HP (ω) will be factored as follows:

HP (ω) = α ·
N1∏

i=1

(ω2 − ai ) ·
N2∏

j=1

(ω4 − b j · ω2 + c j ) (4)

where 2N1 + 4N2 = N is the order of polynomial approximation and α is a constant.

Example 2.1 The Gaussian function HP1(ω) = exp(−ω2) is approximated by the following
factored polynomial:

HP1(ω) ∼= α · (
ω2 − 5.79682

) (
ω2 − 6.59157

) (
ω2 − 8.74311

) (
ω2 − 9.72355

)

(
ω4 − 5.510944 · ω2 + 13.360031

) = HG1(ω) (5)

where the constant is α = 0.229375 · 10−4. The polynomial HG1(ω) is an accurate approx-
imation of the Gaussian HP (ω) = exp(−ω2) on the frequency range [−π, π], although it
diverges outside this interval.
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Fig. 1 The Gaussian function and its polynomial approximation on the frequency interval [−π, π ] for the
functions: a HP1(ω) = exp(−ω2); b HP2(ω) = exp(−4ω2)

Example 2.2 The Gaussian HP2(ω) = exp(−4ω2) is approximated by the factored polyno-
mial HG2(ω):

HP2(ω) ∼= β · (
ω2 − 2.0516

) (
ω2 − 3.28931

) (
ω2 − 4.68917

) (
ω2 − 6.11946

)

(
ω2 − 7.45535

) · (
ω2 − 8.5736

) (
ω2 − 9.38604

) (
ω2 − 9.8045

)

(
ω4 − 1.89305 · ω2 + 1.00547

) = HG2(ω) (6)

where the constant is β = 0.85705·10−6. TheGaussians HP1(ω), HP2(ω) and their accurate
approximations HG1(ω), HG2(ω) are plotted in Fig.1a, b. The functions HG1(ω), HG2(ω)

have a small amplitude ripple, depending on the approximation order.

3 Frequency mappings for 2D orientation-selective filters

In this work two types of orientation-selective 2D filters are approached. They result from
a given 1D prototype by applying two different 1D to 2D frequency transformations. Both
types of oriented filters discussed here have a Gaussian shape in vertical section along their
longitudinal axis. However, in horizontal section, as the contour plots will show, one type
of filter has a straight, directional shape, while the other has an elliptical shape. Both types
of anisotropic filters can find useful applications in image processing. Next the two types of
2D oriented filters and the corresponding frequency mappings for obtaining the desired filter
shape will be defined.

3.1 Straight directional filter

From a 1D prototype HP (ω), a 2D oriented filter may be obtained by rotating the axes of
the frequency plane (ω1, ω2) with an angle ϕ. The rotation is also defined by the following
linear transformation, where ω1, ω2 are the original frequency variables and ω̄1, ω̄2 the new
ones: [

ω̄1

ω̄2

]
=

[
cosϕ sin ϕ

− sin ϕ cosϕ

]
·
[

ω1

ω2

]
(7)
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The rotation by an angle ϕ about ω1 axis is defined by the following 1D to 2D frequency
mapping:

ω → ω1 cosϕ + ω2 sin ϕ (8)

Applying this frequency transformation by simple substitution to the Gaussian prototype
HP (ω) = exp(−kω2), the following 2D frequency response HD(ω1, ω2) results, where the
subscript D stands for directional:

HD(ω1, ω2) = exp
(−k(ω1 cosϕ + ω2 sin ϕ)2

)
(9)

3.2 Elliptically-shaped orientation-selective filter

The other type of orientation-selective 2D filters approached here are filters with elliptically-
shaped support in the frequency plane. They are specified by the values of the semi-axes
of the ellipse, while the orientation is given by the angle of the major axis with respect to
ω1 axis. Starting from the same Gaussian prototype HP (ω), a 2D orientation-selective filter
with elliptically-shaped support results by applying the frequency transformation:

ω2 → �(ω1, ω2) = ω2
1

(
cos2 ϕ

E2 + sin2 ϕ

F2

)
+ ω2

2

(
sin2 ϕ

E2 + cos2 ϕ

F2

)

+ω1ω2 sin(2ϕ)

(
1

F2 − 1

E2

)

= p1 · ω2
1 + p2 · ω2

2 + p12 · ω1ω2 (10)

where p1, p2 and p12 result by identification. In (10), E and F are the values of major and
minor semi-axes of the ellipse. The elliptically-shaped filter derives from a circular filter
through the linear transformation:

[
ω̄1

ω̄2

]
=

[
E 0
0 F

]
·
[
cosϕ − sin ϕ

sin ϕ cosϕ

]
·
[

ω1

ω2

]
(11)

where ω̄1, ω̄2 are the current variables andω1, ω2 are the former variables. Geometrically, the
unit circle is stretched along the axesω1 andω2 with factors E and F , then counter-clockwise
rotated with an angle ϕ, becoming an oriented ellipse. Thus, starting from the 1D Gaussian
filter (1), we obtain a 2D filter with an elliptical support, specified by parameters E, F and
ϕ which impose the shape and orientation through substitution (10).

Applying the mapping (10) to the prototype HP (ω) = exp(−kω2), with k = 1, the 2D
frequency response results:

HE (ω1, ω2) = exp
(− (

p1ω
2
1 + p2ω

2
2 + p12ω1ω2

))
(12)

where p1, p2 and p12 are determined from (10) and the subscript E comes from elliptical.
The mappings (8) and (10) can be generally applied to any prototype of a desired shape,

not only Gaussian. For instance, using a maximally-flat prototype, 2D oriented filters with
flat characteristics can be obtained. As a rule, the 2D filter will inherit the properties of its
prototype (selectivity, flatness, sharpness etc.) and its cross section will have the shape of its
prototype. Next the above mappings will be applied to a Gaussian prototype with imposed
selectivity.
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3.3 Examples of ideal Gaussian oriented filters

Before approaching the actual design method, two examples of ideal 2D oriented filters are
given.

Example 3.1 Let us consider a straight directional filter with orientation angle ϕ = π/6,
based on the Gaussian prototype HP2(ω) = exp(−4ω2). Using (9), the following 2D fre-
quency response results:

HDI (ω1, ω2) = exp
(−(1.73205 · ω1 + ω2)

2) (13)

This ideal frequency response HDI (ω1, ω2) is displayed in Fig. 2a and its corresponding
contour plot in Fig. 2b. The 2D oriented filter HDI (ω1, ω2) has the cross section along the
line ω1 cosϕ + ω2 sin ϕ = 0 identical with the prototype HP2(ω), and is constant along the
line ω1 sin ϕ − ω2 cosϕ = 0, which is the filter longitudinal axis.

Example 3.2 Let us consider the orientation angle ϕ = π/6 and the ellipse semi-axes E =
4, F = 1.4. Based on (12), the following elliptically-shaped frequency response results:

HEI (ω1, ω2) = exp
(− (

0.174426 · ω2
1 + 0.398278 · ω2

2 + 0.387723 · ω1ω2
))

(14)

The 2D ideal oriented filter frequency response HEI (ω1, ω2) is displayed in Fig. 2c and its
contour plot in Fig. 2d.

3.4 Orientation selective filter design using Gaussian separability

For the Gaussian prototype introduced in Sect. 2, we obtain the ideal frequency responses of
the oriented filters given by (9) and (12). Next we will exploit the useful property of the 2D
Gaussian function to be separable into two or three Gaussians, along particular directions in
the frequency plane.

In this design approach the 2D Gaussian filter will be decomposed into three 1D Gaussian
filters. Let us first use the directions ω1, ω2 and ω1 + ω2 (the two frequency axes and one
diagonal of the frequency plane). Generally, a two-variable function F(ω1, ω2) is said to be
separable if it can be written as a product of functions of each variable:

F(ω1, ω2) = F1(ω1) · F2(ω2) (15)

By extension, such a function may be named partially separable if it can be written, for
instance:

F(ω1, ω2) = F1(ω1) · F2(ω2) · F12(ω1 + ω2) (16)

as a product of functions in variables ω1, ω2 and ω1 + ω2 or even other linear combinations,
as shown in Sect. 4. Let us consider now the decomposition given by (16). Denoting by
�(ω1, ω2) the unsigned exponent of the 2D oriented Gaussian function, either (9) or (12), it
can be written:

�(ω1, ω2) = �1(ω1) + �2(ω2) + �12(ω1 + ω2) = aω2
1 + bω2

2 + c (ω1 + ω2)
2 (17)

The coefficientsa, b and c are determined separately for the two types of filters. Expanding the
expression (9) and using the identityω1ω2 = 0.5 ·((ω1 + ω2)

2 − ω2
1 − ω2

2

)
, then identifying
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Fig. 2 Ideal frequency response (a) and contour plot (b) for a straight oriented filter with ϕ = π/6; ideal
frequency response (c) and contour plot (d) for a Gaussian elliptically-shaped oriented filter with ϕ = π/6

coefficients from (17), the following set results:

a = 0.5k(1 + cos 2ϕ − sin 2ϕ)

b = 0.5k(1 − cos 2ϕ − sin 2ϕ)

c = 0.5k sin 2ϕ (18)

For the straight directional filter, as results from (18), the coefficients dependon the orientation
angle ϕ and the selectivity factor k. Likewise, in the case of a filter with elliptically-shaped
support, comparing (10) and (17), we get:

a = 0.5 (p + q) + 0.5 · (p − q) (sin 2ϕ + cos 2ϕ)

b = 0.5 (p + q) + 0.5 · (p − q) (sin 2ϕ − cos 2ϕ)

c = 0.5 · (q − p) sin(2ϕ) (19)

where for simplicity we denoted p = 1/E2 and q = 1/F2. So for the elliptically-shaped
filter the coefficients depend on the orientation angle ϕ and the ellipse parameters E and F .
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4 Analytical design methods for 2D orientation-selective filters

In this work two analytical design methods are proposed for 2D FIR filters with orientation-
selective frequency response. The first uses the factored polynomial approximation of a
Gaussian with specified selectivity, in which each factor is substituted with its corresponding
counterpart given by a specific mapping. The second version consists in decomposing the 2D
Gaussian along three axes, properly selected to obtain efficient oriented filters (of minimum
order). The design is entirely achieved in the frequency domain and both methods lead to a
frequency response of a 2D zero-phase filter of the general form:

HG(ω1, ω2) =
N1∑

m=0

N2∑

n=0

a(m, n)· cos (mω1 + nω2) (20)

which is the two-variable Discrete Fourier Transform (2D DFT) of the filter convolution
kernel. Since the 2D filters discussed here are zero-phase, their frequency responses are
real and symmetric about the origin in the frequency plane (as shown in Fig. 2) and their
convolution kernels will be centrally-symmetric square matrices.

4.1 Method based on mapping substitution into the factored prototype

The zero-phase 1D prototype filter function, in our case a Gaussian HP (ω) is approximated
by a polynomial on the range of interest, namelyω ∈ [−π, π], as shown in Sect. 2. This can be
done either using a Taylor series expansion around zero, or a Chebyshev series approximation
for ω ∈ [−π, π]. While the Taylor series gives a better approximation around the expansion
point, the Chebyshev series yields a uniform approximation over the entire specified range.

Example 4.1 The Gaussian HP2(ω) = exp(−4ω2) is approximated by a polynomial as
shown in Sect. 2, with the factored expression (6). In order to obtain a 2D straight directional
filter, the frequency transformation (8) is applied. The following substitution will be made,
for k = 4, where a, b and c are given by (18):

ω2 → ω2
1(cosϕ)2 + ω2

2(sin ϕ)2 + ω1ω2 sin 2ϕ = a · ω2
1 + b · ω2

2 + c · (ω1 + ω2)
2 (21)

The next step is to find a convenient approximation of ω2, as a cosine series. While the
Chebyshev series expansion is generally more convenient, in this case we do not need a
precise approximation of ω2 on the entire range [−π, π], but rather around zero. In order to
achieve this, the change of variable ω = arccos x ↔ x = cosω is used. We find a suitable
expansion of (arccos x)2 as a Taylor series around x = 1, truncated to the second-order term
as (arccos x)2 ∼= −2(x − 1) + (1/3) · (x − 1)2 = 7/3− (8/3) · x + (1/3) · x2. Substituting
back x = cosω and using trigonometric identities, the following simple approximation is
found:

ω2 ∼= 2.5 − 2.66667 · cosω + 0.166667 · cos 2ω (22)

This approximation (curve 2 in Fig. 3a) is very accurate around zero but diverges towards
the limits of the range [−π, π] with a large error compared to the function ω2 (curve 1).
However, by substituting back expression (22) into each factor of HG2(ω) given by (6), these
marginal errors cancel out and the overall approximation is quite accurate, as shown in Fig. 3b
where HP2(ω) and its approximation are practically superposed. Therefore, the resulted 2D
oriented filter will also be very close to its ideal version. Thus a uniform approximation on
[−π, π] is not necessary. The advantage is the low order of approximation, which finally
leads to a more efficient, low-order 2D filter, convenient for implementation. Replacing in
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Fig. 3 aThe functionω2 and its approximation usingTaylor series;b prototype HP2(ω) and its approximation

(22) the variable ω by ω1, ω2 and ω1 + ω2, the following relations along three frequency
axes are derived:

ω2
1

∼= 2.5 − 2.66667 · cosω1 + 0.166667 · cos 2ω1 (23)

ω2
2

∼= 2.5 − 2.66667 · cosω2 + 0.166667 · cos 2ω2 (24)

(ω1 + ω2)
2 ∼= 2.5 − 2.66667 · cos(ω1 + ω2) + 0.166667 · cos(2ω1 + 2ω2) (25)

Next, substituting the expressions (23)–(25) into (21) and replacing cosω1, cosω2 and
cos(ω1+ω2) by (z1 + z−1

1 )/2, (z2 + z−1
2 )/2 and (z1z2 + z−1

1 z−1
2 )/2 respectively, we finally

obtain the following mapping expressed in matrix form:

ω2 → F(z1, z2) = z1 × Mϕ × zT2 (26)

Here the vectors are z1 = [
z−2
1 z−1

1 1 z1 z21
]
and z2 = [

z−2
2 z−1

2 1 z2 z22
]
, where z1 =

exp( jω1) and z2 = exp( jω2) are the complex frequency variables in 2D Z -transform and
Mϕ is a 5 × 5 matrix whose elements depend on the orientation angle ϕ according to (18):

Mϕ =

⎡

⎢⎢⎢⎢
⎣

0.083334c 0 0.083334a 0 0
0 −1.3334c −1.3334a 0 0

0.083334b −1.3334b 2.5 (a + b + c) −1.3334b 0.083334b
0 0 −1.3334a −1.3334c 0
0 0 0.083334a 0 0.083334c

⎤

⎥⎥⎥⎥
⎦

(27)

Example 4.2 For an orientation angle ϕ = π/6, we obtain from (18) the coefficients a =
0.316987, b = −0.183013, c = 0.433013 and the matrix Mϕ will be:

Mϕ =

⎡

⎢⎢⎢⎢
⎣

0.03608 0 0.026416 0 0
0 −0.57738 −0.42267 0 0

−0.01525 0.24403 1.417468 0.24403 −0.01525
0 0 −0.42267 −0.57738 0
0 0 0.026416 0 0.03608

⎤

⎥⎥⎥⎥
⎦

(28)

The last design step is to substitute the mapping (26) into each factor of the prototype approx-
imation given by (4). According to (26), each second order factor of the form HP1i (ω) =
(ω2 − ai ) from (4) will correspond to a convolution kernel given by Ai = Mϕ − ai · P0,
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where by P0 we denote a matrix of size 5 × 5 with all elements equal to zero, except the
central element which is 1. The fourth order factor of the general form:

HP2 j (ω) = (ω4 − b j · ω2 + c j ) (29)

corresponds to a convolution kernel of size 9 × 9 given by the expression:

B j = Mϕ∗Mϕ − b j · P1 + c j · P2 (30)

where the symbol ∗ stands for matrix convolution and the matrix P1 is a 9 × 9 matrix
obtained by padding matrix Mϕ (of size 5 × 5) with zeros up to size 9 × 9, such that
P1(3 : 7, 3 : 7) = Mϕ . The matrix P2 is a matrix of size 9 × 9 with all elements equal to
zero, except the central element which is equal to 1.

The component matrices Ai ,B j with i = 1 . . . N1, j = 1 . . . N2 obtained as above,
corresponding to the factors of polynomial (4), can be considered elementary convolution
kernels of size 5 × 5 and 9 × 9. The overall convolution kernel of the designed 2D oriented
filter, which is a square matrix G of size L × L , with L = 5N1 + 9N2 − 1, results as the
convolution of these elementary kernels:

G = α · A1∗A2∗ . . . ∗AN1∗B1∗ . . . ∗BN2 (31)

For the 2D filter previously discussed, based on factored prototype (6), we obtain N1 = 8
kernels of size 5× 5 and only one kernel of size 9× 9. Therefore, using this first method, the
large kernel of the designed 2D filter results directly decomposed into smaller size kernels;
thus, the 2D filter will be implemented as a cascade of its component filters, which is an
important advantage. As can be noticed in Fig. 4a, the frequency response of the straight
directional filter with parameters specified above has a very good linearity along the longitu-
dinal axis, there is practically no visible shape distortion. The pass region along the filter axis
is wide enough, compared to the ideal filter in Fig. 2a, b. The characteristic in longitudinal
view is remarkably flat, due to the accurate approximation of the Gaussian around zero. Also
the contour plot in Fig. 4b shows a good linearity of its shape in the frequency plane.

In the case of a 2D Gaussian elliptically-shaped filter, the same frequency mapping (26)
is used, and the 5 × 5 matrix Mϕ has the same general form (27), only the parameters a, b
and c are different, having the expressions (19).

Example 4.3 For the same orientationϕ = π/6 and semi-axes E = 4, F = 1.5 the following
values result from (19):a = 0.183571, b = −0.0074, c = 0.165386; substituting them into
(27), we obtain the matrix Mϕ in this case. The frequency response and contour plot of the
Gaussian elliptically-shaped filter are shown in Fig. 4c, d. Their shapes look very similar to
the ones of the ideal filter, given in Fig. 2c, d.

4.2 Method based on three-axis decomposition of oriented Gaussian

The second design method uses the idea to decompose the two types of 2D oriented Gaussian
filters - the straight directional filter (9) and the elliptically-shaped filter (12), into three 1D
Gaussian filters oriented along various directions in the frequency plane. Thus the frequency
response HG(ω1, ω2) results as a product of three Gaussians:

HG(ω1, ω2) = HG1(ω1, ω2) · HG2(ω1, ω2) · HG3(ω1, ω2) (32)

In the proposed design method, for simplicity, we actually design oriented filters with ori-
entation angles between 0 and π/4, comprised in the gray-shaded region delimited by the

123



Multidim Syst Sign Process (2018) 29:185–211 195

Fig. 4 Frequency response (a) and contour plot (b) for a straight oriented filter with ϕ = π/6; frequency
response (c) and contour plot (d) for a Gaussian elliptically-shaped oriented filter with ϕ = π/6

triangle AOB, in Fig. 5a. Any other filter with an arbitrary orientation angle ϕ can be reduced
to this sector through symmetries. A generic orientation angle ≺ AOP = ϕ ∈ [0, π/4] is
formed by the filter longitudinal axis PP1 with the axis AA1 (frequency axis ω1).

Other possible angles marked on the diagram are: ≺ AOQ ∈ [π/4,π/2],≺ AOR ∈
[π/2,3π/4],≺ AOS ∈ [3π/4,π ]. Due to the symmetry of an oriented filter with respect to
the frequency plane origin, a filter with ϕ > π is identical to the same filter oriented at ϕ−π .
For filters with ϕ ∈ [π/4, π ], we simply design a filter with ϕ ∈ [0, π/4] and then through
a mirroring about frequency axes and a rotation, we find the desired frequency response, as
detailed below.

For a desired angle ϕ1 ∈ [π/4,π/2] (for instance ≺ AOQ in Fig. 5a), we design the filter
with ϕ = π/2 − ϕ1, obtaining its transfer function Hϕ(z1, z2). Then we make a mirroring
(left-right flip) about axis AA1 followed by a rotation to the right by π/2; these operations
imply the frequency variable change: ω1 → ω2, ω2 → ω1, which in Z-transform are written
z1 → z2, z2 → z1. Therefore, the filter transfer function will be Hϕ1(z1, z2) = Hϕ(z2, z1),
so the complex frequency variables are interchanged. For the other two cases (orientation
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Fig. 5 a Various orientation angles in the frequency plane; three-axis decomposition in the frequency plane,
along the directions: b ω1, 2ω1 + ω2 and ω1 + ω2; c ω1 + ω2, 2ω1 + ω2 and ω1 + 2ω2; d ω1, 2ω1 − ω2 and
2ω1 − ω2

angles ≺ AOR,≺ AOS) we get similar results. All these equivalences using symmetry are
summarized in Table 1.

The method described in this subsection will be applied on the two types of Gaussian
oriented filters and several design examples will be further presented.

4.2.1 Gaussian oriented filters with straight section

The simplest three-axis decomposition, which leads to an efficient 2D Gaussian oriented
filter, is achieved along the frequency axes ω1, ω2 and ω1 + ω2 and was already briefly
discussed in Sect. 3. The coefficients a, b and c are obtained, with expressions (18). Their
variation on the angular range ϕ ∈ [0, π/4] is represented in Fig. 6a. It can be noticed that
while a and c are positive within the given range, the parameter b is negative.

Example 4.4 For the orientation angle ϕ = π/6 and k = 4, using (18), the following factored
2D frequency response is obtained for HP2(ω) = exp(−4ω2):

HG(ω1, ω2) = HG1(ω1) · HG2(ω2) · H12(ω1 + ω2)

= exp
(−1.2679 · ω2

1

) · exp (
0.73205 · ω2

2

) · exp (−1.73205 · (ω1 + ω2)
2)

(33)

The second exponential in (33) results with a positive exponent. Since in the expression of
HG(ω1, ω2) the parameter k gives the directional selectivity, we may have to approximate
a function HP (ω) = exp(kω2) with positive values of k. This can be conveniently done for
smaller values of k(usually k < 1), while for larger values of k the function diverges toomuch
from its polynomial approximation. In order to obtain a more convenient implementation,
we will consider a decomposition along other directions of the frequency plane. Other two
possible axes from the first quadrant (ϕ ∈ [0, π/2]) are 2ω1 + ω2 and ω1 + 2ω2. Depending
on the angle ϕ, we can choose three possible axes closer to the given direction. As the filter
characteristics will show, if a 2D Gaussian is decomposed along three close directions, the
resulted 2D filter has a larger longitudinal bandwidth and higher directional selectivity.

For angle values in the sector ϕ ∈ [0, π/4], a convenient decomposition would be along
the axes ω1, ω1 + ω2 and 2ω1 + ω2; these directions are shown in Fig. 5b. We look for a
decomposition of the form:

ω2 → a · ω2
1 + b · (ω1 + ω2)

2 + c · (2ω1 + ω2)
2 (34)
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Fig. 6 Variation of coefficients a, b, c given by equations: a (18); b (35); c (37) with the orientation angle ϕ

and the coefficients a, b, c are identified by comparing relations (34) and (9):

a = 0.5k (3 − cos(2ϕ) − 3 sin(2ϕ))

b = 0.5k (2 − 2 cos(2ϕ) − sin(2ϕ))

c = 0.5k (−1 + cos(2ϕ) + sin(2ϕ)) (35)

The variation of the coefficients a, b, c given by (35) is plotted in Fig. 6b, for k = 1. For
orientation angles in the range ϕ ∈ [0, π/6], the following three-axis decomposition would
be convenient:

ω2 → a · (ω1 + ω2)
2 + b · (2ω1 + ω2)

2 + c · (ω1 + 2ω2)
2 (36)

and we identify coefficients a, b, c by comparing mapping (36) with (9):

a = k(−4 + 5 sin(2ϕ))/2

b = k(3 + cos(2ϕ) − 3 sin(2ϕ))/6

c = k(3 − cos(2ϕ) − 3 sin(2ϕ))/6 (37)

The variation of coefficientsa, b, c in this case is plotted in Fig. 6c. The axesω1+ω2, 2ω1+ω2

and ω1 + 2ω2 are shown in Fig. 5 (c). For the same values as before (ϕ = π/6, k = 4) the
following decomposition results:

HG(ω1, ω2) = HG1(ω1, ω2) · HG2(ω1, ω2) · HG3(ω1, ω2)

= exp
(−0.66025 · (ω1 + ω2)

2) · exp (−0.60128 · (2ω1 + ω2)
2)

· exp (
0.06538 · (ω1 + 2ω2)

2) (38)

Obviously all exponents are smaller in absolute value than in decomposition (33), especially
the positive one (with c = 0.06538). This allows for a convenient, low-order approximation.

The next design step is to find a trigonometric series approximation of each Gaussian in
(38) and we use again the Chebyshev series. However, we will finally need a trigonometric
expansion of each Gaussian HG(ω) = exp(−kω2) in the variable cos(nω), rather than
a polynomial in powers of the frequency ω. Therefore, before calculating the Chebyshev
series of a Gaussian HG(ω) = exp(−kω2), with a specified k, the following variable change
will be used:

ω = arccos (x/π) ↔ x = π cos(ω) (39)
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Fig. 7 Order of Chebyshev series approximation vs. Gaussian selectivity parameter k for two imposed accu-
racy values: a ε = 0.01; b ε = 0.04

We get first the polynomial Chebyshev series expansion of HG(arccos(x)) in variable x , for
x ∈ [−π, π]:

HG(arccos(x/π)) = exp
(−k · (arccos(x/π))2

) ∼=
N∑

n=0

cn · xn

= c0 + c1x + c2x
2 + c3x

3 + . . . + cN x
N (40)

where the number of terms N is chosen large enough to ensure the desired precision, specified
by the maximum error. Substituting back x = π cos(ω) in the polynomial expression (40), a
trigonometric series results:

HG(ω) = exp(−kω2) ∼= HP (ω) =
N∑

n=0

bn · cosn(ω) = b0 + b1 cosω + b2 cos
2 ω

+b3 cos
3 ω + . . . + bN cosN ω (41)

with b0 = c0, bk = ck · πk . This trigonometric approximation of the Gaussian HG(ω) was
denoted HP (ω). According to the fundamental theorem of algebra, the polynomial (41) can
be factored into first and second order polynomials in cosω, as follows (where n+ 2m = N ,
the filter order):

HP (ω) = γ ·
n∏

i=1

(cosω + ai ) ·
m∏

j=1

(cos2 ω + a1 j cosω + a2 j ) (42)

where γ is a constant. Of course, for a more selective Gaussian (for a larger value of the
selectivity parameter k), a larger number N of terms have to be taken into account in the
Chebyshev series. In Fig. 7 the order N of Chebyshev series approximation vs. Gaussian
selectivity parameter k is plotted for two imposed accuracy values, ε = 0.01 and ε = 0.04,
respectively. In this paper we have used the accuracy value ε = 0.04, sufficient for a good
approximation. From both plots we notice that the most efficient approximation (i.e. fewer
terms) results for k around 0.5.

Therefore, a certain decomposition along three axes is most efficient if the parameters
of the three Gaussian components result less than 1, or as small as possible, especially for
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selective Gaussians. Using thismethod for theGaussian factors in (38) and also trigonometric
identities, the following factored approximations result:

HG1(ω) ∼= HP1(ω) = 0.3469 + 0.4755 · cosω + 0.1524 · cos(2ω) + 0.023122 · cos(3ω)

= 0.04624 · (cosω+1.0103) (cos(2ω)+4.57063 · cosω+5.1643) (43)

HG2(ω) ∼= HP2(ω) = 0.3635 + 0.4803 · cosω + 0.1375 · cos(2ω) + 0.017512 · cos(3ω)

= 0.03502 · (cosω + 1.037) (cos(2ω) + 5.7765cosω + 7.223) (44)

HG3(ω) ∼= HP3(ω) = 1.264 − 0.340425 · cosω + 0.11023 · cos(2ω) − 0.05233 · cos(3ω)

+ 0.03026 · cos(4ω)

− 0.0197 · cos(5ω) = −0.0788 · (cosω − 1.541) (cos(2ω)

+ 4.0405cosω + 4.2513) (cos(2ω) − 2.49458cosω + 3.9986) (45)

and therefore the three Gaussian components from (38) along the axes ω1 + ω2, 2ω1 +
ω2 and ω1 + 2ω2 result as: HG1(ω1, ω2) ∼= HP1(ω1 + ω2), HG2(ω1, ω2) ∼= HP2(2ω1 +
ω2), HG3(ω1, ω2) ∼= HP3(ω1 +2ω2). For example, using (43), the Gaussian along direction
ω1 + ω2 (the frequency plane diagonal) is written in the form:

HG1(ω1, ω2) ∼= HP1(ω1 + ω2) = 0.34696 + 0.47548 · cos(ω1 + ω2)

+ 0.1524 · cos(2ω1 + 2ω2) + 0.02312 · cos(3ω1 + 3ω2) (46)

The frequency response and contour plot for the filter designed above are given in Fig. 8a,
b. Also the filter components along the axes ω1 + ω2, 2ω1 + ω2, ω1 + 2ω2 are displayed in
Fig. 8c, (d), (e).

Example 4.5 For a more selective filter (ϕ = π/6 and k = 9), we obtain the decomposition
along the same axes:

exp(−9ω2) → exp
(−1.48557 · (ω1 + ω2)

2) · exp (−1.3529 · (2ω1 + ω2)
2) · exp

(
0.14711 · (ω1 + 2ω2)

2)

= HP1(ω1 + ω2) · HP2(2ω1 + ω2) · HP3(ω1 + 2ω2) (47)

Using the method exposed above, we obtain the 2D filter frequency response and contour
plot in Fig. 8f, g. Even for such a selective filter, the characteristic remains very uniform and
linear along the filter longitudinal axis. For comparison, using decomposition (34) the same
frequency response can be expressed as:

H2(ω1, ω2) = exp
(−3.894 · ω2

1

) · exp (
1.984 · (ω1 + ω2)

2) · exp (−4.045 · (2ω1 + ω2)
2)

(48)
which is much more difficult to approximate than (47), due to its larger exponents. This
proves that a proper choice of decomposition axes is important. The following three-axis
decomposition would be convenient for orientation angles around 0 (along frequency axis
ω1), e.g. from the range ϕ ∈ [0, π/8]; the decomposition is made along the axesω1, 2ω1−ω2

and 2ω1 + ω2, shown in the frequency plane in Fig. 5d:

ω2 → a · ω2
1 + b · (2ω1 − ω2)

2 + c · (2ω1 + ω2)
2 (49)

a = (−3 + 5 cos(2ϕ))/2

b = (2 − 2 cos(2ϕ) − sin(2ϕ))/8

c = (2 − 2 cos(2ϕ) + sin(2ϕ))/8 (50)

The variation of a, b and c on the angle value range ϕ ∈ [0, π/8] is displayed in Fig. 8h.
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Fig. 8 a, b frequency response and contour plot of the Gaussian oriented filter HG (ω1, ω2); c, d, e the
component filters HG1(ω1, ω2), HG2(ω1, ω2) and HG3(ω1, ω2) oriented along the directionsω1+ω2, 2ω1+
ω2 and ω1 + 2ω2; f, g frequency response and contour plot of the Gaussian oriented filter HG (ω1, ω2)based
on HP (ω) = exp(−9ω2) and ϕ = π/6; h Variation of coefficients a, b, c given by (50) with the orientation
angle ϕ
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Fig. 9 a, b frequency response and contour plot of the Gaussian oriented filter HG (ω1, ω2) with ϕ = 0.1π
and k = 4, decomposed along the directions ω1, 2ω1 − ω2 and 2ω1 + ω2

Example 4.6 For ϕ = 0.1π and k = 4, the following decomposition is derived along the
specified axes:

HG(ω1, ω2) = exp
(−2.09017 · ω2

1

) · exp (
0.10291 · (2ω1 − ω2)

2)

· exp (−0.4849 · (2ω1 + ω2)
2) (51)

The following approximations result:

HP1(ω) ∼= 0.19488 + 0.34582 · cosω + 0.24153 · cos(2ω) + 0.1328 · cos(3ω)

+ 0.0575 · cos(4ω) + 0.01958 · cos(5ω) (52)

HP2(ω) ∼= 1.47249 − 0.629866 · cosω + 0.23045 · cos(2ω) − 0.11407 · cos(3ω)

+ 0.06717 · cos(4ω) − 0.04413 · cos(5ω) (53)

HP3(ω) ∼= 0.40425 + 0.48515 · cosω + 0.10173 · cos(2ω) (54)

The 2D straight directional filter for these parameters is shown in Fig. 9a, b. The filter
characteristic shows a small ripple-like distortion along its longitudinal axis, but still the
frequency response has a satisfactory shape.

4.2.2 Generalization

In a more general case, the direction Mω1+Nω2 corresponds to an orientation angle ϕMN =
arctg(N/M), with M and N integers, and will result in an oriented Gaussian which will
expand in a series of cosine terms of the form cos(Mω1 + Nω2). In 2D Z-transform, this

corresponds to a term 0.5 ·
(
zM1 zN2 + z−M

1 z−N
2

)
. Of course, for larger M and N , higher order

terms result, which implies a higher complexity of the 2D filter. The case M = N is trivial,
as the direction Mω1+Nω2 would be the same as ω1+ω2, i.e. the diagonal of the frequency
plane. For our purpose, the frequency combinations ω1 ± 2ω2 and 2ω1 ± ω2 are sufficient
to implement a 2D Gaussian oriented filter. The direction 2ω1 + ω2 corresponds to an angle
of ϕ21 = arctg(0.5) ∼= 0.1476π ∼= 26.5o.
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Fig. 10 Variation of coefficients a, b, and c for: a E = 2, F = 1, variable orientation: ϕ ∈ [0, π/4]; b
ϕ = π/6 and variable ellipse aspect ratio: 2 < E/F < 10 (E = 2, F ∈ [0.2, 1])

4.2.3 Gaussian oriented filter with elliptically-shaped section

For a Gaussian oriented filter with elliptically-shaped section, we can apply the same method
of decomposition along three convenient axes. Let us use first the decomposition along the
axes ω1, ω2 and ω1 + ω2.

Identifying the coefficients in (10) and (17), the following expressions will result, where
p = 1/E2 and p = 1/F2:

a = 0.5(p + q) + 0.5(p − q)(sin 2ϕ + cos 2ϕ)

b = 0.5(p + q) + 0.5(p − q)(sin 2ϕ − cos 2ϕ)

c = 0.5(q − p) · sin 2ϕ (55)

These coefficients depend both on orientation angle and ellipse semi-axes; for a given aspect
ratio, these coefficients can be represented graphically. For instance with E = 2, F = 1
we obtain the variation of coefficients a, b, c in Fig. 10a. We notice that all coefficients are
positive for orientation angles ϕ ∈ [0, π/4]. The coefficients (55) are also displayed in Fig.
10b for a fixed angle ϕ = π/6 and variable aspect ratio: 2 < E/F < 10.

Example 4.7 For an orientation angle ϕ = π/6 and E = 2, F = 0.8, the following positive
coefficients result: a = 0.01129, b = 0.663455, c = 0.564791.

HE (ω1, ω2) = HG1(ω1) · HG2(ω2) · HG3(ω1 + ω2)

= exp(−0.01129 · ω2
1) · exp(−0.663455 · ω2

2) · exp (−0.564791 · (ω1 + ω2)
2)

(56)

and the accurate approximations are easily obtained:

HG1(ω) ∼= HP1(ω) = 0.96406 + 0.0432527 · cosω − 0.010268 · cos(2ω)

+ 0.0045307 · cos(3ω) (57)

HG2(ω) ∼= HP2(ω) = 0.34622 + 0.47539 · cosω + 0.15325 · cos(2ω)

+ 0.023464 · cos(3ω) (58)

HG3(ω) ∼= HP3(ω) = 0.37504 + 0.48282 · cosω + 0.12728 · cos(2ω)

+ 0.01438 · cos(3ω) (59)
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Fig. 11 Frequency response (a) and contour plot (b) for an oriented elliptically-shaped Gaussian filter with
ϕ = π/6, E = 2, F = 0.8, resulted by decomposition along axes ω1, ω2, ω1 + ω2

In this particular case, since the coefficient a is very close to zero, HP1(ω1) ∼= 1 and the
frequency response HE (ω1, ω2) can be approximated with a negligible error as

HE (ω1, ω2) ∼= HP2(ω2) · HP3(ω1 + ω2) (60)

It is displayed in Fig. 11a along with its contour plot in Fig. 11b and has a correct and
undistorted elliptical shape.

In all the 2D frequency responses derived using this method, for implementation purposes
we may substitute cosω1, cosω2, cos(ω1 + ω2) and the general term cos(Mω1 + Nω2)

by (z1 + z−1
1 )/2, (z2 + z−1

2 )/2, (z1z2 + z−1
1 z−1

2 )/2 and (zM1 zN2 + z−M
1 z−N

2 )/2 respectively.
For example the factors HP1(ω1), HP2(ω2) and HP3(ω1 + ω2) corresponding to approxi-
mations (57) - (59) can be expressed formally in complex variables z1 and z2 as:

HP1(z1) = 0.96406 + 0.021626 ·
(
z1 + z−1

1

)
− 0.005134 ·

(
z21 + z−2

1

)

+ 0.002265 ·
(
z31 + z−3

1

)
(61)

HP2(z2) = 0.34622 + 0.237695 ·
(
z2 + z−1

2

)
+ 0.076625 ·

(
z22 + z−2

2

)

+ 0.011732 ·
(
z32 + z−3

2

)
(62)

HP3(z1z2) = 0.37504 + 0.24141 ·
(
z1z2 + z−1

1 z−1
2

)
+ 0.06364 ·

(
z21z

2
2 + z−2

1 z−2
2

)

+ 0.00719 ·
(
z31z

3
2 + z−3

1 z−3
2

)
(63)

Thus the overall 2D filter frequency response corresponds to a transfer function in the two-
variable Z -transform:

HE (z1, z2) = HP1(z1) · HP2(z2) · HP3(z1z2) (64)

as a product of three partial transfer functions in the complex variables z1 and z2. For angles
closer to ϕ = π/4, the filter is decomposed along the axes ω1 +ω2, 2ω1 +ω2 and ω1 + 2ω2.
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Fig. 12 Variation of coefficients a, b, and c for: a E = 2, F = 0.4 and variable orientation: ϕ ∈ [π/6, π/4];
b ϕ = π/6 and variable ellipse aspect ratio: 2 < E/F < 10(E = 2, F ∈ [0.2, 1])

Fig. 13 Frequency response (a) and contour plot (b) for an oriented elliptically-shaped Gaussian filter with
π/5, E = 2, F = 0.4, decomposed along the axes ω1 + ω2, 2ω1 + ω2 and ω1 + 2ω2; c Error function
�H(ω1, ω2)

Identifying coefficients from (10), (36) we get:

a = −2(p + q) − 2.5(p − q) sin 2ϕ

b = 0.5(p + q) + (p − q) (3 sin 2ϕ + cos 2ϕ)/6

c = 0.5(p + q) + (p − q) (3 sin 2ϕ − cos 2ϕ)/6 (65)

For E = 2 and F = 0.4, the coefficients a, b and c from (65) are plotted for ϕ ∈ [π/6, π/4]
in Fig. 12a. They can also be plotted for a fixed angle (e.g. ϕ = π/6) and variable aspect
ratio (2 < E/F < 10) as in Fig. 12b.

Example 4.8 Let us design using this three-axis decomposition a Gaussian elliptically-
shaped filter with parameters: E = 2, F = 0.4 (which gives an aspect ratio of E/F = 5)
and the orientation angle ϕ = π/5 = 36o. From (65) the following coefficients result:a =
1.2658, b = 0.0878, c = 0.7058; then the following approximations are derived:

HP1(ω) = 0.25073 + 0.4116 · cosω + 0.2276 · cos2ω + 0.084764 · cos3ω
+ 0.021272 · cos4ω (66)

HP2(ω) = 0.77302 + 0.25484 · cos ω − 0.038876 · cos2ω + 0.016849 · cos3ω (67)

HP3(ω) = 0.33571 + 0.471376 · cosω + 0.162723 · cos2ω + 0.0278 · cos3ω (68)
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and the 2D filter frequency response is:

HE (ω1, ω2) = exp
(−1.2658 · (ω1 + ω2)

2) · exp (−0.0878 · (2ω1 + ω2)
2)

· exp (−0.7058 · (ω1 + 2ω2)
2)

= HP1(ω1 + ω2) · HP2(2ω1 + ω2) · HP3(ω1 + 2ω2) (69)

We notice that all coefficients result positive for the chosen parameters. The frequency
response and contour plot shown in Fig. 13a, b have a correct shape, with some distortions
towards the margins of the frequency plane.

4.3 Distortion analysis

As in any design using analytical or numerical optimization techniques, the 2Dfilters obtained
here inherently present some distortions. For instance, the ringing in the frequency domain,
or ripple, visible in the stop band of the Gaussian characteristic in Fig. 1b appears due to
the polynomial approximation (6) resulted using Chebyshev series expansion. Similarly, the
approximated Gaussian response in Fig. 3b has a small ripple due to the combined approxi-
mation errors from (6) and (22). By substituting (22) into (6), a Fourier series approximation
of the Gaussian is obtained. For a ripple of smaller amplitude, a higher order approximation is
needed, which is not convenient for implementation, so an optimal trade-off must be reached.
In the triple-axis decomposition method, the stop band ripple is further diminished because
it results as a product of small ripples of the three oriented Gaussian responses.

The 2D FIR filters designed using the proposed analytical methods can be characterized
by a distortion measure which describes the similarity between the frequency response of
the designed filter and its ideal counterpart. For instance, if H(ω1, ω2) and HI (ω1, ω2) are
the frequency responses of the designed filter and ideal filter, respectively, their difference
defines the error �H(ω1, ω2) = H(ω1, ω2) − HI (ω1, ω2). The error function for the filter
in Fig. 13a is displayed in Fig. 13c. As can be noticed, the largest distortions are at the
corners of the frequency plane. The frequency response is usually represented as a mesh or
sampled surface in a convenient number of equally spaced points in the frequency plane,
corresponding to a N × N matrix, whereN is the number of points on the [−π, π] range. A
relevant measure of distortion may be the root of average value of the squared differences
over all the sampling points, i.e the RMS. Taking N sampling points on both axes of the
frequency plane, the distortion factor is defined as:

δ = 1

N 2 ·
√√√√

N∑

m=1

N∑

n=1

(�H(2mπ/N , 2nπ/N ))2 (70)

Using the expression (70), we can obtain the dependence of the distortion factor δ on the
orientation angle ϕ of the directional Gaussian filter, which is helpful in evaluating the design
accuracy. Let us consider the filter with elliptical symmetry designed in Example 4.3, with
parameter values ϕ = π/6, E = 4, F = 1.5. Keeping constant the semi-axes values E
and F and varying the orientation angle ϕ in the range ϕ ∈ [0, π/2] with a small step,
the curve displayed in Fig. 14a is obtained, for N = 100 points. The largest distortion is
δmax ∼= 0.031 = 3.1% and occurs at values of ϕ close to 0 and π/2. There is also a local
maximum of about δ ∼= 0.0182 = 1.82% at ϕ = π/4. Due to symmetry, it is sufficient to
analyze the filter distortions for ϕ ∈ [0, π/2]. The factor δ depends weakly on the number N
of sampling points. For example, taking instead N = 1000, we obtain at ϕ = π/4 the value
δ ∼= 0.0181 = 1.81%.
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Fig. 14 Distortion factor δ vs. orientation angle ϕ for the directional elliptically-shaped Gaussian filter with
k = 4 and: a E = 4, F = 1.5; b F = 1; E = 3, E = 4, E = 5 and E = 6 respectively

Let us next consider another Gaussian elliptically-shaped filter, with F = 1 and increasing
aspect ratios E/F ; taking E = 3, E = 4, E = 5 and E = 6 respectively, the curves shown
in Fig. 14b are obtained, again for N = 100 points. It can be noticed that the dependence
of δ with ϕ is symmetric about the angle ϕ = π/4, but not monotonic for ϕ ∈ [0, π/2],
having three or five maxima. The largest distortion for E = 6 is around 5%. Therefore,
the filters designed using this method are quite accurate, even for large aspect ratios, i.e.
high directional selectivity. For filters designed using the triple axis decomposition, a similar
distortion analysis can be made.

4.4 Discussion

In manyworks on this topic, Gaussian directional filters are designed and implemented as IIR
filters, due to their advantages, mainly higher processing speed and reduced computational
complexity, like in Young and Vliet (1995), Geusebroek et al. (2003), Lam and Shi (2007),
Lampert andWirjadi (2006). The aim of our approachwas to develop simple analytical design
methods in the frequency domain for such filters, based on the approximation of the ideal
2D oriented Gaussian response. The main reason why a FIR version was approached here is
that FIR filters are unconditionally stable. It is more difficult to design stable 2D IIR filters
through analytical methods, due to stability restrictions. Even if the 1D IIR prototype used
in design is stable, the applied frequency mappings may not preserve stability, so for 2D IIR
filters, especially non-separable, the stability is difficult to guarantee.Moreover, the proposed
2D FIR Gaussian directional filters have some advantages. In both versions, i.e. based on
mapping substitution and triple axis decomposition, the convolution kernel results directly
decomposed into smaller size kernels, for instance 5 × 5, allowing for the 2D oriented filter
to be realized as a cascade of its component filters, which simplifies the implementation.

ThematrixMϕ givenby (27), and thefilter kernel, expressed as a convolutionof elementary
kernels in (31), depend explicitly on specified parameters—the orientation ϕ for straight
directional filters, and additionally the semi-axes E and F, for elliptically-shaped filters.
Thus, the resulted filters are adjustable in orientation and aspect ratio. Using the second
method, the designer can find an efficient Gaussian decomposition by properly choosing
the set of three axes, such that the component filters result of minimum order. As shown
in design examples, the resulted filters have accurate frequency responses for a wide range
of specifications and present low distortions, mainly due to the small ripple present in the
stop band. Moreover, the first proposed method is more general and is applicable for any
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Fig. 15 a binary test image; b FFT spectrum magnitude; c, d filtered output image for ϕ = π/6
and ϕ = 5π/12; e straw texture image; f FFT spectrum magnitude; g, h, i, j filtered images with
ϕ = π/8, ϕ = −π/6, ϕ = 5π/12 and ϕ = −π/3; k, l binary images resulted from g and h by threshold-
ing

zero-phase prototype with a polynomial approximation, not only Gaussian, for instance a
maximally-flat prototype. The second method exploits the property of 2D Gaussian to be
separable, so it is not suited for other types of filters.

The paper Lampert and Wirjadi (2006) proposes a technique in the space domain to sepa-
rate the Gaussian kernel along arbitrary axes inRN, with minimum number of interpolations.
Our design is achieved in the frequency domain, the filter kernel resulting by coefficient
identification from the factored frequency response, expressed as 2D DFT (Discrete Fourier
Transform). The proposed approach eliminates interpolation between pixels because the
decomposition axes are chosen along directions Mω1 + Nω2, with M and N integers, in
particular ω1, ω2, ω1 ± ω2, ω1 ± 2ω2 and 2ω1 ± ω2. Using the Chebyshev series approxi-
mation in design, the resulted 2D filters are accurate, efficient and of relatively low order for
the given specifications.

5 Applications and simulation results

The designed Gaussian directional filters can be used to select from a given image the lines
with a specified orientation. In order to prove the filtering capability of these filters, two
test images were used. A binary image containing straight lines with gradually varying
orientation is displayed in Fig. 15a, while Fig. 15e shows a real grayscale texture image
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of 1100 × 1100 pixels, representing straws with random orientations. It is known that the
spectrum of a straight line is oriented in the frequency plane (ω1, ω2) at an angle of π/2
with respect to the line direction. This can be seen in the FFT spectrum magnitude (b),
displayed on the range ω1, ω2 ∈ [−π/4, π/4] for better visibility. Only the lines for which
the spectrum overlaps with the filter frequency response remain in the output image, while
the rest are more or less blurred and are practically eliminated through directional low-
pass filtering. For instance, with an orientation ϕ = π/6, in the output image (c), a single
line and its closest neighbors are preserved. With ϕ = 5π/12 we get the output image (d)
in which only two lines are detected. The real texture image (e) has the FFT spectrum
magnitude (f) displayed for ω1, ω2 ∈ [−π/4, π/4], in which a fine structure of spectral lines
is visible, corresponding to the straws which are roughly straight, thin lines. The images from
Fig. 15g, h, i, j result using selective Gaussian straight directional filters with orientation
angles ϕ = π/8, ϕ = −π/6, ϕ = 5π/12 and ϕ = −π/3. A filter with ϕ = −π/6 is a filter
with ϕ = π/6 whose kernel is mirrored left-right. Applying a convenient threshold to the
directionally filtered image, a binary image results, where the detected objects are clearly
visible. For example, the images (k) and (l) result from (g) and (h) by simple thresholding.
Therefore, applying selective directional filters, we can detect the lines with roughly the same
orientation and eliminate the others. The output images show the high directional resolution
of these filters.

6 Conclusion

This work proposes two analytical design methods in the frequency domain for 2D
orientation-selective Gaussian filters. The design relies on specific frequency transformations
applied to a Gaussian prototype. In this paper, FIR filters were approached; this eliminates
from the start the issue of ensuring stability, which for 2D recursive filters, especially non-
separable, may be quite a difficult problem. These methods were applied to two types of
oriented filters, having either a straight directional or an elliptically-shaped support in the
frequency plane.

The first design method is generally easier to apply. For both types of oriented filters, for
specified selectivity, the Gaussian polynomial approximation is found using the Chebyshev
series. For a specified orientation, a certain frequency mapping is determined. Then the
frequency response of the 2D filter results directly in a factored form, by a simple variable
substitution. In the second method, depending on filter specifications, the first design step is
to choose a set of three axes for the decomposition of the 2D oriented Gaussian filter, with
straight or elliptical support. Then, using a Chebyshev series expansion, the Gaussian along
each direction is expressed as a trigonometric polynomial in the two frequency variables.
The desired 2D filter results as a cascade of the three component filters. Design examples
show that the filters have accurate shapes, with relatively low distortions, for a large range
of parameters.

This method yields a factored frequency response from which the filter kernel results
directly as a convolution of small size matrices. The necessity of interpolation, solved by
researchers in various ways, is completely eliminated. This analytical design approach based
on 1D prototypes and frequency mappings is relatively simple, intuitive and accurate and
uses polynomial approximations, but no other optimization algorithms are needed. The aim
of this paper was limited to developing the proposed designmethods and to present the design
steps leading from the prototype and imposed specifications to the frequency response of the
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desired 2D filters. The actual implementation of the 2D filters was not approached here, but
a large variety of existing methods can be applied. In future work on this topic, however,
the filter implementation aspects, mainly regarding computational efficiency, will also be
studied.
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