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Abstract Recently, there has been a great interest in the application of Lyapunov exponents
for calculation of chaos levels in dynamical systems. Accordingly, this study aims at present-
ing two new methods for utilizing Lyapunov exponents to evaluate the spatiotemporal chaos
in various images. Further, early detection of cancerous tumors could be obtained by mea-
suring the chaotic indices in biomedical images. Unlike the available systems described by
partial differential equations, the proposed method employs a number of interactive dynamic
variables for image modeling. Since the Lyapunov exponents cannot be applied to such sys-
tems, the image model should be modified. The mean Lyapunov exponent is defined as a
chaotic index for measuring the contour borders irregularities in images to detect benign or
malignant tumors. Moreover, a two-dimensional mean Lyapunov exponent is incorporated
to identify irregularities existing in each axis of the targeted images. Experiments on a set of
region of interest in breast mammogram images yielded a sensitivity of 95% and a specificity
of 97.3% and verified the remarkable precision of the proposed methods in classifying of
breast lesions obtained from breast mammogram images.
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1 Introduction

Images of cancerous tissues have been one of the main motives for developing specific diag-
nosis tools to detect irregularities in the contour borders of targeted images. Clearly, cancer
is usually recognized as a chaotic and poorly regulated growth of cells and tumors. can-
cerous tumors have irregular forms which cannot be described through common Euclidean
geometry (EtehadTavakol et al. 2010). The malignant tumors usually have rough or spicu-
lated blurred boundary contours while benign masses are round, smooth with a well-defined
boundary (Rangayyan and Nguyen 2007; Guliato et al. 2008). Consequently, measuring the
shape roughness and complexity in contour boundaries could be utilized as two criteria for
malignancy and benignity classification based on their related shapes (Rangayyan et al. 2000;
Ma and Staunton 2013). In other words, chaos recognition in medical images can lead to
early detection of certain cancers (EtehadTavakol et al. 2012).

Similarly, detection of the system behavior by analyzing its image features has been the
second motivation of the present study. In some certain systems, the analysis of the image
features is the only way for the determination of the system behavior. For instance, some
physical systems cannot be described by using specific physical models; and as a result,
image may be the only accessible information for their analysis. It is generally known that
boundary irregularity associated with targeted images may be due to the chaotic behavior
of nonlinear systems. In other words, some irregularities appearing in images are originated
from the chaotic behaviors created by the causation processes underlying them. Thus, the
distinction between images with irregular and regular boundaries defined by their chaotic
and non-chaotic natures requires the application of a new strategy.

Chaotic indices are potentially capable in feature extraction and classification of images.
Image processing and compression (Chauveau et al. 2010; Al-Maadeed et al. 2012), image
encryption andwatermarking (Huang 2011; Shanthi and Bhuvaneswaran 2014), human iden-
tity (Yu et al. 2005; Zhao et al. 2008), military applications (Yafei et al. 2007; Zhang 2011)
and different medical approaches (EtehadTavakol et al. 2010; Cabral and Rangayyan 2012)
are only a few examples representing the mutual relationship between images and chaotic
indices. Several indices have been introduced for chaos quantification to study system behav-
ior (Hilborn 2000). The positive Lyapunov exponent (LE) is an index for measuring the
hypersensitivity to initial conditions and has been an essential feature of a chaotic system.
Thus, the present work aims at utilizing a new approach to extract the mean of Lyapunov
exponent (MLE) for images.

As we know, there are few studies on LEs extraction methods for the images. Detecting
marine mobile targets (Yang et al. 2008), analyzing the tissues in breast thermal images
(EtehadTavakol et al. 2012), feature extracting from hyper-spectral images (Yin et al. 2012),
multi-scale analyzing of images (Blasch et al. 2012), detecting pathological carotid artery
from ecographic images (Positano et al. 2000) and distinguishing between cancerous cells
in Squamous Cell Carcinoma (SCC-61) and normal Mouse Embryonic Fibroblast (MEF)
images (Pham and Ichikawa 2013) are some case studies where LEs are calculated on images.
Themain idea of these studies includes the conversionof image specifications (such as contour
boundaries and gray levels of each pixel) into time series, and employing the time series
methods of LEs estimation [for instance, reconstructing the phase space using Embedding
Dimension (ED) theory].

Clearly, all surveyed studies existing in the literature have the following drawbacks:
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– Early studies for LE calculation on the images are based on conversion of images into
one dimensional time series. In these studies, image equations and their corresponding
features were not examined for chaos detection.

– In some studies, the conversion of a two-dimensional signal, image, into a one-
dimensional signal, time series, may lead to losing some features. This means that LE
calculation based on the mentioned approaches fails to preserve the image features com-
pletely.

To overcome these drawbacks, this paper proposes new approaches using a spatially extended
system (SES) model for analyzing the nonlinear indices of the images. Here, parametric
deformable model (PDM) which is based on partial differential equation (PDE) is employed
for image segmentation. PDEcontaining interactive variables is used as one of theSESmodels
to detect the spatiotemporal chaos. Since the PDE model of an image contains dynamic
variables, some type of modification is performed to provide the necessary condition of LEs
estimation.

MLE as the “mean” of LEs is utilized instead of the LE spectrum in the present study. By
this newMLEcalculationmethod, it is not necessary to estimate all LEswhich is very difficult
and time-consuming. Thus, the computational speed rate could be improved. Moreover,
employingMLE, the chaos rate and contour boundary irregularities in image can bemeasured.
The concept of two-dimensional mean Lyapunov exponent (2D-MLE) can be also defined
via the proposed two-dimensional approach. The new approach is meritorious for several
reasons. First of all, it makes possible to detect irregularities along each image axis. Similar
to MLE, the speed of calculation may be improved. In addition, adopting 2D-MLE as a
diagnostic criterion may lead to higher accuracy classifying.

A variety of simulations on the corresponding region of interest (ROI) in mammogram
images are performed to calculate theMLEand2D-MLE.The ability of the proposedmethods
in the distinction between the malignant tumors and benign masses is evaluated. Besides,
the mammogram images are classified based on their calculated indices. Some classifying
performance indices such as sensitivity, specificity and overall accuracy are computed for the
classifiers precision assessment. Notably, the LEs estimation hasn’t employed as a feature
for mammography images in the literature.

The remainder of this paper is organized as follows. Section 2 includes the proposed
structure for nonlinear analysis of the images, its modeling based on PDM, MLE and 2D-
MLE definitions as well as their calculation. In Sect. 3, MLE and 2D-MLE for a lot of
mammogram images are calculated and the normality or abnormality of thementioned images
is distinguished through the proposedmethods. Section4provides the discussion for the study.
Finally, the paper is concluded in Sect. 5.

2 Materials and methods

In this section, the proposed structure for nonlinear analysis of images is presented. In this
structure, image is the input of the algorithm while the calculated MLE and 2D-MLE are
the outputs. Since the main purpose of the present study is the detection of irregularity in
image boundary, the single object image is considered here as the input of the algorithm.
More specifically, digitized single contour images with extracted ROI contour boundary are
considered as the desired type of input. For other types of single object images, the desired
format of input is obtained through the preprocessing stage.

Rescaling the images to a standard size, converting the RGB into a gray-scale, noise
removal and converting the resultant image into a binary image are the main steps of pre-
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processing stage. Depending on the image type, some of these steps should be utilized. Hence,
the only limitation of the method is that the type of images should be in a single object form.

After preprocessing, the image contour boundaries are extracted through the PDM seg-
mentation method. In the next step, the model of image is modified to prepare the model
equations for the MLE and 2D-MLE estimation. Finally, in the analysis stage, the MLE and
2D-MLE are calculated on the image. Notably, the obtained MLE and 2D-MLE could be
considered as the criteria for classifying different lesions in mammogram images.

2.1 Image modeling based on parametric deformable model

For applying the proposed methods, the primary step is allocating a mathematical model
to the image. The internal objects in the images could be extracted using several image
segmentation methods. The PDM is a powerful segmentation method based on solving some
PDEs. Here, this approach is used to detect the contour boundaries of the image. Analysis
of this contour, which is the ROI of the image, could provide valuable information about the
image. In the PDM method, a curve is constructed in the image which could be moved by
the internal and external forces. The internal forces are designed to keep the model smooth.
While, the external forces computed from the image data, are designed to move the model
toward an object boundary (Xu et al. 2000; Hsu et al. 2012). The final equation used for the
PDM method is given by

γ
∂X

∂t
= ∂

∂s

(
α

∂X

∂s

)
− ∂2

∂s2

(
β

∂2X

∂s2

)
− ∇P(X), (1)

where
X (s) = [x(s, t), y(s, t)] , s ∈ [0, 1] . (2)

Here, γ denotes the damping coefficient introduced to make consistency between the
units of the left and right sides, α and β are weighting parameters used for controlling the
strength of the model tension and its rigidity and ∇P(X) describes the energy of the image.
Moreover, x and y are the length and width of the image which can be described in terms
of contour boundary variable (s) and time (t). Equation (1) couldn’t be solved analytically.
Thus, a numerical method should be employed to solve it. Considering the discrete variables
Xn
i = (
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)T in (1) and adopting the finite difference method, yields
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where i indicates the point number on the contour, n describes the iteration number, Δh
and Δt and Fext (Xn

i ) are the spatial and time step size and image energy in discrete form,
respectively. Equation (3) can be written in a compact form as
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where

τ = Δt

γ
. (5)

Equation (4) can be solved using an initial condition (Xu et al. 2000). According to (4),
the image could be converted into a PDE with interacting dynamical variables. The PDE is
one of the descriptive models of the SES (Schuster and Just 2006) which could represent the
spatiotemporal chaos. The obtained equation would be used for calculation of the proposed
methods.

2.2 MLE calculation based on the modified equations

The disorderly nature of spatial patterns as a representative of spatiotemporal chaos could be
quantified through the MLE calculation (Shibata 1999; Zhao 2003). In this case, the order
or disorder of the spatial patterns could be indicated by the small or large values of MLE
(Shibata 1999;Behnia et al. 2011). In this section, a newMLEcalculationmethod is presented
based on the image equations. This is consistent with the Shibata results presented for MLE
estimation of PDEs (Shibata 1999). Consider the following PDE

∂

∂t
u(r , t) = f (r , u(r , t), t), (6)

where f (r , u(r , t), t) denotes a function of the field variable u(r , t), locus (r) and time (t).
Employing the finite difference method, Eq. (6) becomes

uk+1
j − ukj

Δt
= g

(
Δx,

{
ukj

})
, j = 1, . . . , N , k = 1, . . . , M, (7)

where Δt and Δx indicate the time and spatial step size, k and j are the time iteration and

discrete locus number,
{
ukj

}
and g shows a set of field variables and a function of them,

respectively. Equation (7) states the relationship between
{
uk+1
j

}
and

{
ukj

}
. The Jacobi

matrix (Bk,N ) associated with (7) is presented follows

Bk,N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂uk+1
1

∂uk1

∂uk+1
1

∂uk2
· · · ∂uk+1

1
∂ukN

∂uk+1
2

∂uk1

∂uk+1
2

∂uk2
· · · ∂uk+1

2
∂ukN

...
...

. . .
...

∂uk+1
N

∂uk1

∂uk+1
N

∂uk2
· · · ∂uk+1

N

∂ukN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

The Jacobi matrix indicates both the stability of the linear system and its orderly behavior at
time k. The MLE introduced by (Shibata 1999) is represented as

λk ≡ 1

N
ln

∣∣Bk,N
∣∣ , (9)

where
∣∣Bk,N

∣∣ indicates the determinant of matrix Bk,N . Here, the existence of chaos in (6)
is specified with MLE (λk). If λk gradually increases over time, the chaotic behavior of the
spatial pattern of the system could be observed. If the MLE is calculated for different values
of the system parameters at the same iteration, the larger exponent value reflects that the
system is approaching a chaotic behavior (Shibata 1999).
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The MLE defined in (9) can be interpreted as follows: Determinant of the matrix is equal
to the product of its eigenvalues. The logarithm converts the multiplication into addition and
its averaging will lead to the mean of the logarithm of eigenvalues. This definition completely
agrees with the presented concept for the LE in other dynamical systems.

In order to calculate the MLE for the image Eq. (4), The image energy (Fext ) should be
modified. It is notable that although Fext is completely dependent on position, this depen-
dency doesn’t appear explicitly. Therefore, it cannot be used for calculation of the Jacobi
matrix. Without considering the image energy, the Jacobi matrix appears the same for all
images and cannot distinguish between regular and irregular contour borders. To solve this
problem, the cubic interpolation method is employed to approximate the image energy with
a third order polynomial function. Another reason for this interpolation is the lack of image
energy in all of the desired points and iterations. It is observed that Eq. (4) describes a multi-
dimensional interacting system in terms of length and width variables. Through the proposed
approximation, the system variables could be separated. This means that Eq. (4) is converted
to (10) and (11) for the length and width variables of the image.
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According to (8), the following Jacobi matrix for the (10) and (11) could be obtained.

Bk,2m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂xk+1
1

∂xk1
· · · ∂xk+1

1
∂xkm

∂xk+1
1

∂yk1
· · · ∂xk+1

1
∂ykm

...
. . .

...
...

. . .
...

∂xk+1
m

∂xk1
· · · ∂xk+1

m
∂xkm

∂xk+1
m

∂yk1
· · · ∂xk+1

m
∂ykm

∂yk+1
1

∂xk1
· · · ∂xk+1

m
∂ykm

∂yk+1
1

∂yk1
· · · ∂yk+1

1
∂ykm

...
. . .

...
...

. . .
...

∂yk+1
m

∂xk1
· · · ∂yk+1

m
∂xkm

∂yk+1
m

∂yk1
· · · ∂yk+1

m
∂ykm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

The rest of calculation is based on Eq. (9). After calculating the determinant of the Jacobi
matrix and adopting the required logarithm, the MLE is estimated by averaging of obtained
logarithm. As stated previously, the orderly or disorderly behavior of spatial patterns could be
quantitatively characterized by theMLE.Therefore, imageswith irregular contour boundaries
have larger values of the MLE compared with regular and smooth ones.
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2.3 Developing a two-dimensional mean Lyapunov exponent

Generally, the existing LE computing methods for continuous dynamical system are based
on calculating the eigenvalues of the Jacobi matrix. In the eigenvalues of the Jacobi matrix,
the gradients of the function are considered and the logarithm of the gradient values indicates
the system LEs.

Let to revisit the Jacobi Equation in (12). In this study, the spatial pattern in the image
equation consists of two variables; namely, length and width symbolized by x and y. Since it
is not possible to solve the equations on a continuous basis, discretization on the length and
width of the image are made. Accordingly, the two variables are converted into 2m variables;
hence, the Jacobi matrix of the system is converted to a matrix with 2m × 2m elements as
given in (12). The firstmth elements of vector Xn comprise xi s and the secondmth elements
include yi s. Therefore, the Jacobi matrix is represented by

Bk,2m =
(
Bxx Bxy

Byx Byy

)
, (13)

where

Bpq =

⎛
⎜⎜⎜⎜⎝

∂pk+1
1

∂qk1
. . .

∂pk+1
1

∂qkm
...

. . .
...

∂pk+1
m

∂qk1
· · · ∂pk+1

m
∂qkm

⎞
⎟⎟⎟⎟⎠ , p = x, y, q = x, y. (14)

Due to the considered cubic interpolation, Eq. (13) could be simplified as

Bk,2m =
(
Bxx 0
0 Byy

)
. (15)

Each submatrix in (13) and (15) is composed of m × m elements. Bxx reflects the effect of
xkj s on xk+1

j s and the Byy indicates the effect of ykj s on yk+1
j s while the other elements are

zero. As stated before, the eigenvalues of the Jacobi matrix indicate the gradient values of
any function. Thus, by calculating eigenvalues of Bxx , the gradient of x

k+1
j with respect to

xkj is computed and its average could be assumed as the mean effect of xkj s on xk+1
i s.

Note that it is not necessary to estimate all the eigenvalues of a function for computing the
mean of them. Since, the trace of a matrix indicates the sum of its eigenvalues, dividing the
trace by their number (m)will yield the desiredmean. In addition, discretization requirements
necessitate us to convert two continuous variables (x and y) of image equations to 2m
discrete variables. This leads to a redundancy in obtained LEs which could be avoided by
the mentioned averaging approach. The Average indicates the effect of each variable at one
iteration on other variables at the next iteration. The matrix Jk can be defined as follows

Jk =
(
J kxx 0
0 J kyy

)
, (16)

where

J kxx = 1

m
× trace

(
∂xk+1

i

∂xkj

)
, J kyy = 1

m
× trace

(
∂yk+1

i

∂ykj

)
. (17)

The rest of calculation is similar to the continuous systems, where the eigenvalues of
matrix Jk is estimated as the (mi ) and then 2D-MLE could be presented as λ1 and λ2 through
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Fig. 1 Flow diagram of the proposed methods

Eq. (19).

det (mI − Jk) = 0, (18)

λi = lim
t→0

1

t
ln |mi (t)| , i = 1, . . . ,m. (19)

According to the diagonal form of (15), λ1 and λ2 are the MLEs along the x-axis and the
y-axis, respectively. Therefore, 2D-MLE is defined as two exponents in the direction of the
x-axis and y-axis. Consequently, the irregularities of the object boundaries of an image along
each axis could be detected through the so-defined 2D-MLE. The procedure of the proposed
methods for the MLE and 2D-MLE is given in a flowchart shown in Fig. 1.

2.4 Dataset

The suggested methods in this study are implemented for several mammography images.
57 mammogram images are selected in which their normalized ROI relates to the breast
masses. This dataset includes 37 ROIs of benign masses and 20 ROIs of malignant tumors
(Rangayyan and Nguyen 2007; Cabral and Rangayyan 2012). The normalized ROIs for two
benign masses (B1 and B2) as well as two malignant tumors (M1 and M2) of the targeted
dataset are presented in Fig. 2. This dataset is employed to evaluate the proposed strategy of
several researches such as (Mu et al. 2007; Guliato et al. 2008; Mu et al. 2008).

It should be mentioned that the ROI of breast mammograms is completely different from
the original breast mammography images. Generally, detection of the breast masses and
extraction of its contour borders is presently an active research area in Computer Aided
Diagnosis (CAD) systems of breast mammograms. For instance, automatic contour proce-
dure such as fractal method (Beheshti et al. 2014), maximum likelihood, maximum gradient,
hybrid assessment function (Cao et al. 2010), K-means (Oliveira Martins et al. 2009), com-
bination of gradient field information and gray level information (Wei et al. 2005), contour
segmentation of breast mass (Berber et al. 2013), improved level set (Liu et al. 2011), semi-
automatic contour procedure (Gupta et al. 2011) and manual selection of contour boundaries
by expert radiologists (Cabral and Rangayyan 2012) are only some of the approaches consid-
ered for the detection of the suspicious mass and extraction of ROI in breast mammograms.
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Fig. 2 Contours of the ROIs related to the selected mammogram images, the symbols B and M indicate the
benign and malignant cases, respectively (Rangayyan and Nguyen 2007). a B1, b B2, cM1, d M2

Fig. 3 Segmentation results for one lesion examples. a Original image; b segmented results based on max-
imum likelihood analysis; c maximum gradient analysis; d hybrid assessment function (Cao et al. 2010)

As an example, in Fig. 3 one lesion image of breast mammogram and the segmented results
based on three assessment methods proposed by Cao et al. (2010) are illustrated.

It is necessary tomention that the contour of eachmass of this dataset imageswasmanually
drawn by an expert radiologist specialized in mammography and verified independently by a
second radiologist (Rangayyan and Nguyen 2007; Cabral and Rangayyan 2012). In medical
images, the contour extraction as a method for boundary detection of objects within an ROI
can provide valuable information for diagnosis and treatment of diseases (Hsu et al. 2012).
Thus, the contour boundary analysis could be employed to extract the image features. In
addition, the ROI of breast mass is completely compatible with the desired input form of this
paper as the single object or single contour image.

3 Results

In this section, to investigate the performance of the proposed algorithms in detecting the
irregularities in contour boundaries of images, some simulations on the introduced dataset are
performed. First step of applying the proposed methods is providing an image description
using a mathematical model with modified equations (10, 11). Numerical solution of the
mentioned equations converts any initial contour to the main contour. Then, the MLE and
2D-MLE are calculated based on the corresponding equations of the main contour. In all of
the simulations, similar number of points are considered in the segmentation stage. Solving
(10) and (11) yields the segmented images of B2 and M2 given in Fig. 4.

As could be seen from Fig. 4, the image energy approximation in (10) and (11) has
a negligible effect on the segmentation accuracy. In Fig. 4, the segmentation result, the
initial and main contours are indicated by solid red, dashed green circle and solid black
contour, respectively. In the next step, the correspondingMLEs for all of the study images are
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Fig. 4 The segmented images of B2 and M2 based on the modified equations (10) and (11). a B2, b M2

Table 1 Mean and SD of calculated MLEs and 2D-MLEs for benign and malignant cases

Chaotic indices MLE MLE-X MLE-Y

Statistical indices Benign Malignant Benign Malignant Benign Malignant

Mean value −0.2652 −0.1819 −0.1513 −0.1093 −0.1479 −0.1121

SD ±0.0219 ±0.0183 ±0.0128 ±0.0103 ±0.0143 ±0.0109

calculated and their mean values and standard deviations (SD) for benign andmalignant cases
are presented in Table 1. According to Table 1, there is a significant difference between the
obtained MLEs for benign and malignant cases. Furthermore, the p values are less than 0.05
for both cases indicates the differences are statistically significant. The dataset is classified
to demonstrate the effectiveness of the calculated MLE in classifying the normality and
abnormality in mammography images. The closeness of obtained MLEs for each of dataset
images to the mean values given in Table 1, shows their corresponding category (benign
or malignant). Then, true positive (TP) and true negative (TN) as the number of samples
which are correctly identified as positives or negatives by the classifier and false negative
(FN) and false positive (FP) representing the number of samples corresponding to the cases
mistakenly classified as benign or malignant are computed. Afterwards, three evaluation
terms; namely, sensitivity, specificity and overall accuracy are computed as 95, 94.6 and
94.7% respectively. The resulting accuracy indicates that the MLE is an appropriate choice
for classifyingmalignancy andbenignity of the targeted tumors. The last step of the simulation
involves the calculation of 2D-MLE for the mammogram images of the mentioned dataset.
The mean values and SDs of results are illustrated in the same table:

In Table 1,MLE-X is related to theMLE along x-axis, whileMLE-Y relates toMLE along
y-axis and describe the irregularity of borders for each axis. There is a significant difference
between the irregularity of benign and malignant cases for both x and y axes. Hence, it is
possible to distinguish between cancerous and normal tissues through calculating either the
MLE-X or MLE-Y. In addition, detection of boundary irregularities in the image along its
related axis becomes possible through 2D-MLE. For example, the obtained MLE-X for M1
is−0.0961. This value is larger than the MLE-Y of this image (−0.1189) which indicate that
the spatial pattern of this image in x-axis is more irregular than its spatial pattern in the y-axis.
The p values of 2D-MLE are also less than 0.05 for both cases demonstrating that the results
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Table 2 Comparison between accuracy of three classification criteria: LEs based on RPS, MLE and 2D-MLE

Classification
performance indices

Sensitivity (%) Specificity (%) Accuracy (%)

LEs calculationmethods

LEs based on RPS 85 78.4 80.7

MLE 95 94.6 94.7

2D-MLE 95 97.3 96.5

have an acceptable accuracy. Similarly, classification on the dataset is performed through the
calculated 2D-MLE. The summation of the differences between the obtained 2D-MLE values
for each dataset images and mean values of malignant or benign categories for both MLE-X
andMLE-Y is considered as the classification criterion. In this case, evaluation terms such as
sensitivity, specificity and overall accuracy for the 2D-MLE are computed which are equal
to 95, 97.3 and 96.5%, respectively. Thus, the introduced 2D-MLE can be considered as an
accurate index for differentiating between the normality and abnormality in mammography
images.

To compare the performances of the proposed methods with the previous works, the LEs
estimationmethod presented by (EtehadTavakol et al. 2012) is employed to classify the breast
mammogram images of the mentioned dataset. Distinction between cancerous and normal
tissues by estimating the MLE-X or MLE-Y and the detection of irregularities in borders
of images along their axes makes 2D-MLE quite different from the MLE. In addition, the
comparison depicted in Table 2 indicates that the 2D-MLE has a higher accuracy than the
other LEs calculation methods in terms of contour irregularity measurement and malignancy
or benignity classification in breast mammogram images.

4 Discussion

As previously stated,MLE is substituted with LE spectrum in this study. Due to themultiplic-
ity of the variables involved, the estimation of all LEs could be difficult and time-consuming.
In addition, since PDEs are utilized to describe the infinite dimensional systems, the estima-
tion of the LE spectrum for such systemswill be impossible. Accordingly, the LEs calculation
could be lead to computing the largest of them. To solve the problem, the Q-R factorization
algorithm (Khaki-Sedigh et al. 2004) and Gram-Schmidt orthogonalization process (Ott
2002) had been utilized. While, in the current method, since the MLE calculation is based
on computing the trace or the determinant of Jacobi matrix, it is not necessary to estimate all
the LEs. By this approach, the computational complexity is decreased. Therefore, the speed
of calculation will be increased. As stated previously, improvement in computational effi-
ciency enhances the performance of some cancer treatment methods which their structures
are analyzing the chaotic indices of images.

Another reason for usingMLE is non-informative nature of entire LEs of the system under
investigation. Although the 2m LEs can be obtained from the image segmentation Eqs. (10,
11), the recognition of regular or irregular contour boundaries of the images does not require
large numbers of LEs. Similar situations exist in other discrete systems. For example, (Übeyli
2010) calculated 128 LEs for ECG signal. However, the largest LE was selected to detect
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heart arrhythmia. The characteristic common to all the mentioned equations is their discrete
nature. In continuous systems, the number of LEs is equal to the number of system variables
and each of their exponents indicates the system behavior based on its state variables. While
in discrete systems, although many variables are produced due to the discretization process,
the corresponding eigenvalues contain some redundant information. Thus, a representative
exponent, for example, the Largest LE (LLE) or MLE should be selected as a criterion to
detect the system behavior. It seems that the MLE is more suitable than LLE due to its higher
sensitivity and easier calculation.

Moreover, as previously mentioned, the irregularity in contour borders of images is the
result of their chaotic dynamics. It is known that malignant and cancerous tumors have more
chaotic dynamics than benign ones. Simulation results demonstrate that malignant tumors
with irregular contour boundaries have greater values ofMLE than benignmasseswith regular
boundaries. Thus, the proposed indices can be introduced as indicators representing the rate
of chaos in images. The high precision results obtained from mammogram images classified
by the MLE and 2D-MLE show that they are potentially suitable for image classification.

Clearly, for a dissipative system, the sum of LEs must be negative (Hilborn 2000). This
means that the existence of some positive LEs in Lyapunov spectrum of chaotic systems does
not lead to a positiveMLE. Although theMLE for both the chaotic and deterministic systems
(i.e. irregular and regular contour borderlines in this study) is negative, the corresponding
values obtained for chaotic systems are higher than the deterministic ones.

Generally, the CADs are procedures in medicine that assist doctors in the interpretation
of medical images. With CAD, the computer output is considered as a second opinion for
radiologists to make the final decision. In other words, CAD is not the substitution of the
doctor in medical diagnosis, albeit has a complementary effect (Doi 2007; Fujita et al. 2012;
Larvie et al. 2016). Therefore, the obtained results of diagnosis the malignancy or benignity
through the proposed methods can offer complimentary computing power to improve the
medical examination ability of physicians.

5 Conclusion

Detection of regularity or irregularity of object boundaries in medical images is important for
the determination of chaotic behavior of different systems and early detection of cancerous
tissues and tumors. Therefore, it is necessary to evaluate the chaotic behavior of images
through empirically specified criteria. The present study focuses on the application of a
two-dimensional PDE for creating a reliable model of image. The MLE, as the modified
version of LE, is utilized to detect the spatiotemporal chaos in the studied images. With
the modification of image model equations, the MLE calculation on an image results in the
distinguishing between its regular and irregular borderlines. The obtained two-dimensional
equation of the image is employed to extend the concept of MLE to 2D-MLE. Consequently,
the calculation of 2D-MLE facilitates the detection of irregularities in contour borders of
an image existing along its axis. The non-informative nature of the image LE spectrum and
resultant computational speed rate improvement encourage us to employ MLE instead of LE
spectrum.

Experimental results on a set of breast mammograms containing malignant and benign
cases substantiate the credibility of the claims about the distinction between images with
regular and irregular borders. The high accuracy of the proposed methods demonstrates their
satisfactory efficiency for classifying the malignancy and benignity of the body tissues which
is a central factor in the diagnosis of cancerous tumors.
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