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Abstract In this article, an optimal design of two-dimensional finite impulse response digital
differentiators (2-DFIR-DD)with quadrantally odd symmetric impulse response is presented.
The design problem of 2-D FIR-DD is formulated as an optimization problem based on the
L1-error fitness function. The novel error fitness function is based on the L1 norm which
is unique and is liable to produce a flat response. This design methodology incorporates
advantages of L1-error approximating function and cuckoo-search algorithm (CSA) which
is capable of attaining a global optimal solution. The optimized system coefficients are
computed using L1-CSA and performance ismeasured in terms ofmagnitude response, phase
response, absolute magnitude error and elapsed time. Simulation results have been compared
with other optimization algorithms such as real-coded genetic algorithm and particle swarm
optimization and it is observed that L1-CSA delivers optimal results for 2-D FIR-DD design
problem. Further, performance of the L1-CSA based 2-D FIR-DD design is evaluated in
terms of absolute magnitude error and algorithm execution time to demonstrate their effect
with variation in the control parameters of CSA.
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1 Introduction

Two-dimensional finite impulse response digital differentiators (2-D FIR-DD) are exten-
sively used in the field of signal processing, control systems, image processing, biomedical
engineering and in many other practical applications (Cichocki and Amari 2002; Lee 1980;
Chu et al. 1988; Pan et al. 2007). With this wide range of applications, design of 2-D differ-
entiators gained great attention of the practitioners in recent years. The frequency response
of an ideal 2-D differentiator is defined as

D(ω1, ω2) = ( jω1)( jω2), −π ≤ ω1, ω2 ≤ π (1)

where, ω1, ω2 are the frequency components in two dimensions.
The conventional method for designing of digital systems (differentiators, integrators and

filters) involves two approaches, namely, the interpolation and approximation based tech-
niques. These techniques have demonstrated their abilities to deal with the design of 1-D
and 2-D digital filters in the available literature (Rawat 2015; Lin and Vaidyanathan 1996;
Tzafestas 1986; Aggarwal et al. 2015; Dhabal andVenkateswaran 2015; Tseng and Lee 2014;
Lai 2007; Hinamoto and Doi 1996; Bhattacharya and Antoniou 1999; Shyu et al. 2014; Lu
and Hinamoto 2011; Kockanat and Karaboga 2015; Aggarwal et al. 2016a). Previous studies
in 1-D digital differentiator design focusses on the interpolation and approximation based
approaches (Tseng and Lee 2008; Al-Alaoui 2011; Gupta et al. 2011; Upadhyay and Singh
2011; Gupta et al. 2014; Gupta and Yadav 2014; Kumar and Rawat 2015a; Jalloul and Al-
Alaoui 2015). In recent years, design trends for the 1-D digital differentiator has been shifted
towards the approximation based approaches, especially involving the optimization meth-
ods. Significant research in this field has been cited by several researchers and practitioners.
Upadhyay and Singh introduced the design of recursive digital differentiator and integra-
tor using pole-zero method (Upadhyay and Singh 2011). Gupta and Yadav proposed a new
particle swarm optimization (PSO) algorithm for designing of the differentiators, integrators
and fractional order differentiators (Gupta and Yadav 2014; Gupta et al. 2014). In 2015,
Kumar and Rawat introduced optimal design of the fractional order differentiators using
genetic algorithm (GA) and cuckoo-search algorithm (CSA) (Kumar and Rawat 2015a). Jal-
loul and Al-Alaoui applied PSO for further optimization of the existing coefficients of digital
differentiators and integrators (Jalloul and Al-Alaoui 2015). Incorporation of optimization
algorithmsprovidesmoreflexibility and accuracy to the differentiator design problem (Kumar
et al. 2015b, a).

With the successful implementation of approximation based approaches in the 1-D digital
differentiator design problems, recently these techniques have been applied for designing
of 2-D digital differentiators. In particular, approximation algorithms are being success-
fully applied for solving the 2-D differentiator design problem. Tseng and Lee designed the
2-D FIR digital filters and differentiators using fractional derivative constraints based on
the gradient-search optimization (Tseng and Lee 2013). Here, quadrantally odd symmetric
system coefficients are computed using the least-squares technique and Lagrange multi-
plier approach. This method provides large design flexibility. In addition, Tzeng designed
a 2-D FIR-DD with quadrantally symmetric properties using the evolutionary optimization,
GA (Tzeng 2004). The above studies motivate researchers to design 2-D FIR-DD using
metaheuristic optimization techniques to improve the efficiency and performance of dif-
ferentiators. However, most of the metaheuristic algorithms encounter the challenges of
premature convergence, sub-optimal solutions, large number of parameter tuning and com-
putational complexity. Nevertheless, CSA has the potential to overcome these limitations
and provide robust solutions (Yang 2014) in many engineering applications like fractional
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order differentiator design (Kumar and Rawat 2015a), fractional delay filter design (Kumar
and Rawat 2015b), feedback system identification (Patwardhan et al. 2014), optimal filter
designing (Aggarwal et al. 2016c), structure optimization (Gandomi et al. 2013) and many
more.

In this paper, a new algorithm is developed using the capabilities of CSA and properties
of the L1-error approximation for designing of 2-D FIR-DD. The integration of CSA and the
L1-error approximation leads to higher design flexibility and accuracy which provides the
global optimal solution with a flat response in the passband (Aggarwal et al. 2015, 2016b).
The rationale behind the proposed L1-CSA is to introduce flatness in the response of the
2-D FIR-DD design leading to better performance in terms of magnitude error. To validate
the superiority of the proposed L1-CSA compared to L1-PSO and L1-real coded genetic
algorithm (L1-RCGA), a set of simulations have been carried out. Magnitude response,
phase response, absolute magnitude error and elapsed time are the performance measures
to evaluate the efficiency of the proposed method. Furthermore, optimal values of the filter
coefficients are obtained by performing an exhaustive search with a different set of control
parameters of CSA. The elapsed time and a small magnitude error observed for the proposed
algorithm guarantees the practical applicability of the designed 2-D FIR-DDwithin the given
time frame.

Rest of the paper is organized as follows: In Sect. 2, design problem of the 2-D FIR-DD
with quadrantally odd symmetric impulse response is explained as an optimization problem.
CSA is briefly introduced for designing of the 2-D FIR-DD in Sect. 3. Further, in Sect. 3,
theoretical analysis of CSA with other metaheuristic algorithms is presented. Simulation
results are discussed in Sect. 4. Performance evaluation of CSA for designing of the 2-D
FIR-DD with respect to its control parameters is also presented in Sect. 4. Finally, the paper
is concluded in Sect. 5.

2 Problem formulation

In this section, design problem of the 2-D FIR-DD is formulated by approximating the mag-
nitude response of a 2-D FIR system to the magnitude response of an ideal 2-D differentiator,
given in Eq. (1). Transfer function of a linear phase 2-D FIR system is given by

H(z1, z2) = z−N1
1 z−N2

2

N1∑

n1=−N1

N2∑

n2=−N2

h(n1, n2)z
−n1
1 z−n2

2 (2)

with z1 = e jω1 , z2 = e jω2 , N1, N2 are order of the system in each dimension, and h(n1, n2) is
the impulse response. A quadrantally odd symmetric impulse response satisfies the following
condition.

h(n1, n2) = −h(−n1, n2) = −h(n1,−n2) = h(−n1,−n2) (3)

Thus, the impulse response is an (2N1 + 1) × (2N2 + 1) matrix with the quadrantally odd
symmetric system coefficients with h(n1, 0) = 0 and h(0, n2) = 0. The frequency response
of the 2-D FIR system with quadrantally odd symmetric impulse response is given by

H(e jω1 , e jω2) = e− jω1N1e− jω2N2( j)2 H̃(ω1, ω2) (4)
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where, the amplitude response, H̃(ω1, ω2) is written as

H̃(ω1, ω2) =
N1∑

n1=1

N2∑

n2=1

a(n1, n2) sin(n1ω1) sin(n2ω2) (5)

and the system coefficients, a(n1, n2) are given by

a(n1, n2) = 4h(n1, n2)

Next, the lexicographic ordering is used to map the 2-D response in 1-D (Tseng and Lee
2013) and the amplitude response can be rewritten as

H̃(ω1, ω2) =
L∑

m=1

qmvm(ω1, ω2) (6)

where L = N1N2, the coefficient vector qm = a(n1, n2) and vm(ω1, ω2) = sin(n1ω1)

sin(n2ω2) with m = (n2 − 1)N1 + n1. The amplitude response is written in the matrix form
as

H̃(ω1, ω2) = bTg(ω1, ω2) (7)

where, the two column vectors are defined as

b = [
q1 q2 . . . qL

]T
(8)

and
g(ω1, ω2) = [

v1(ω1, ω2) v2(ω1, ω2) . . . vL(ω1, ω2)
]T

(9)

Now, design problem of the 2-D FIR-DD approaches to an optimization problem. Our
objective is to compute the optimal system parameters, b, such that the difference between
the amplitude response, H̃(ω1, ω2) and the ideal response, D(ω1, ω2) is minimum. The error
objective function is defined as

Ẽ =
∑

ω1

∑

ω2

∣∣H̃(ω1, ω2) − D(ω1, ω2)
∣∣ (10)

The error objective function, Ẽ is minimized over the complete frequency band in the two
dimensions. The fitness function is chosen in the L1-sense, that is, the absolute magnitude of
the error between the desired differentiator and the designed FIR system response. This L1-
error approximation yields more flatness in the passband of the system response (Grossmann
and Eldar 2007; Aggarwal et al. 2016a) and thus, achieves a flat wideband response.

3 Employed algorithm

This section briefly introduces the cuckoo-search algorithm employed for designing of the 2-
DFIR-DD. Further, in this section, implementation of the 2-DFIR-DDwithCSA is compared
with other metaheuristic algorithms, such as RCGA and PSO. Tuning of control parameters
for CSA, PSO and RCGA is also explained. Simulation results of L1-CSA are compared
with the L1-RCGA and L1-PSO in the following section.
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3.1 Cuckoo-search algorithm

CSA is a mathematical conceptualization which simulates the breeding capabilities of the
cuckoo birds, developed in 2009 (Yang and Deb 2009; Yang et al. 2013). It is based on
the unique parasitism behavior of some cuckoo bird species in combination with the Lévy
flight which improves their local search capabilities with random walk. These bird species
aggressively reproduce and lay their eggs in the nests of other birds. The host birds sometimes
either belligerently throw away the foreign eggs or simply abandon their nests and build a
new nest in a new location. In CSA, each cuckoo egg in the host’s nest symbolizes to a
potential solution of the design problem. Each solution is characterized by its fitness value
with an objective to exchange a low fitness value solution with a better solution iteratively. In
the process of generating a new solution, the concept of random walk is performed by Lévy
flights. In this, the next step of the random walk is based on the current location (solution)
and the transition probability to the next location.

3.1.1 Mathematical compilation of cuckoo-search algorithm

Three guiding rules are developed to simplify the algorithm. (i) Each bird is allowed to lay
only one egg at once, which is randomly placed among the host bird’s nests. (ii) The nest
with highest quality eggs (solutions with high fitness values) will be carried over to the next
generation. (iii) A predetermined number of host nests are available in which the probability
of identification of alien eggs by host birds is fixed (Pa ∈ [0, 1]). If Pa = 0.25, 1/4 of the
search time is fixed for the exploitation process and the rest for exploration of the search space
for global solution. This guarantees the global optimality condition with higher probability.
In the instance of discovery, the host bird can either throw the alien egg or abandon the nest.

This algorithm is formulated for optimal results, balancing between exploration and
exploitation in the search space. An exploiting local random walk and the explorative global
random walk is performed using the controlling parameter Pa . The local search capabilities
of CSA are enhanced by using the following solution update equation, given by

al+1
i = ali + δ ⊗ H(Pa − ε) ⊗ (alj − alk) (11)

where ai is the solution vector at the lth iteration given by i th nest. alj and a
l
k are the location

of the two different solutions selected randomly at the lth iteration. δ (δ > 0) is the step size
that determines the distance of the randomwalk. If δ is too big, then al+1 will be too far away
from al and if δ is too small, then al+1 will be very close to al to be of any importance. H(x)
is a unit step function and ε is uniformly distributed random number. Here, ⊗ symbolizes
for the entry-wise product of two vectors.

While generating new solutions, the Lévy flight is performed for the exploration process.
It is a Markov chain in which the next step depends on the current location and the transition
probability, given by

al+1
i = ali + δ ⊗ Lévy(λ) (12)

where Lévy(λ) is adopted from the Lévy distribution with an infinite variance and infinite
mean with 1 < λ ≤ 3 (Yang and Deb 2009). This enables the generation of a substantial
fraction of new solutions far from the current best solution, thus avoiding the algorithm to
be trapped in local minima.
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3.1.2 The 2-D FIR-DD design using CSA

The steps adopted for the implementation of CSA for the 2-D FIR-DD design problem
are summarized. The error objective function (the L1-error approximated fitness function)
defined in Eq. (10) for designing of the 2-D FIR-DD is evaluated at each iteration for all
possible solutions. The optimal solution of this problem is to achieve the (2N1+1)×(2N2+1)
matrix with the quadrantally odd symmetric system coefficients in order to design the N1th,
N2th order 2-D FIR system. This is ensured by specifying the condition of symmetry on the
coefficients to be optimized which states that h(n1, n2) = −h(−n1, n2) = −h(n1,−n2) =
h(−n1,−n2), −N1 ≤ n1 ≤ N1, −N2 ≤ n2 ≤ N2. With this, the designed system features
the linear phase response. The flow chart of CSA for the 2-D FIR-DD design problem is
depicted in Fig. 1.

Fig. 1 Flowchart for the
L1-CSA based 2-D FIR-DD
design method
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Table 1 Control parameters for the 2-D FIR-DD

Parameters Symbol L1-RCGA L1-PSO L1-CSA

Population size ng, n p, nc 100 90 25

Max. iteration cycle N 1000 1000 1000

Tolerance 10−6 10−6 10−6

Limits of filter coefficients −1, +1 −1, +1 −1, +1

Selection Tournament Size: 6 – –

Crossover rate, ratio Heuristic 0.8, 1.2 – –

Mutation rate Adaptive feasible 0.01 – –

Learning parameters C1,C2 – 2, 2 –

Particle velocity vmin , vmax – 0.01, 1 –

Inertia weight W – 0.4 –

Discovering rate of alien eggs Pa – – 0.25

The parameter values of population size, lower and upper limit of the optimized solution
are selected after many simulation runs for best results.

Step 1 Initialize the population size of host nests, nc = 25, probability of discovering the
alien eggs, Pa = 0.25 and the lower and upper bounds of the system coefficients, -1, +1
for the 2-D FIR-DD. Set the maximum number of iterations, N = 1000 to explore the
search space.
Step 2 Randomly generate an initial population of nc host nests, which individually
represents a candidate solution (impulse response of the 2-D FIR-DD) as variable b. The
variable b represents the (2N1 + 1) × (2N2 + 1) matrix of the 2-D system coefficients
to be optimized.
Step 3Compute fitness of the initial randomly generated nest, Fl (error objective function
given in Eq. (10) at the lth iteration).
Step 4Generate a new nest using the Lévy flights given in Eq. (12) and evaluate its fitness
Fl+1. Compare the fitness values.
Step 5 For minimization if Fl+1 < Fl , initial host nests al is replaced with new nests,
al+1 generated by Lévy flight.
Step 6 Eliminate nests with the worst fitness values depending on the probability, Pa =
0.25 and build new nests.
Step 7 New solutions are built using Eq. (11) to perform the intensification process and
increase the exploitation potency of the algorithm.
Step 8 Compute fitness of all the new nests and update the best nest ab of the generation.
Step 9 Repeat steps 2-8, until the stopping criterion (maximum number of iterations) is
met and the best nest obtained ab are the optimal 2-D system coefficients. These optimum
coefficients are employed for designing of the 2-D FIR-DD.

3.2 Analysis of RCGA, PSO and CSA for the design of 2-D FIR-DD

In this section, employed algorithms are compared on the basis of their exploitation and
exploration capabilities, controlling parameter selection, computational complexity and con-
vergence rate. The technique RCGA provides diversity (exploration) for new solutions with
crossover and mutation, however, the mutation may drift away the solutions with converged
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Fig. 2 Magnitude response of an ideal 2-D FIR digital differentiator
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Fig. 3 Magnitude response of 2-D FIR digital differentiator using L1-RCGA
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Table 2 Statistical analysis of the 2-D FIR-DD designed using L1-RCGA, L1-PSO and L1-CSA

Algorithm L1-Error Mean absolute error Standard deviation Elapsed time

L1-RCGA 1.3169 2.7625 0.0549 35.76

L1-PSO 0.9561 2.2148 0.0247 28.54

L1-CSA 0.1678 1.7238 0.0084 24.44
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Fig. 4 Magnitude error of 2-D FIR digital differentiator using L1-RCGA

characteristics. The selection process in RCGA is the essence for algorithm convergence by
selecting only the fitter solutions and discarding the unfit solutions gradually. The PSO algo-
rithm mainly consists of the mutation and selection processes which provide the exploration
capability with high mobility in the particles. The use of gbest variable has an advantage of
the high speed of convergence as well as the disadvantage of premature convergence since it
can mislead if the global optimal solution is not selected. Finally, the CSA is observed to be
advantageous over RCGA as well as PSO with its exploitation and exploration capabilities.
It has been proven in the past research that RCGA and PSO are incapable to guarantee global
convergence of the algorithms (Yang 2014; Yang et al. 2013). Whereas, the updating equa-
tion (Eq. 12) of the CSA can satisfy the global convergence requirements and thus premature
convergence is avoided. Moreover, the local search and global search in CSA is controlled
by Pa with which a balance is maintained between these characteristics to achieve good
performance. The efficiency of CSA is highly improved with the Lévy flight exploration
as compared to standard random walks. Furthermore, the complexity of the algorithms is
estimated through their execution time (compared in the next section) and the application of
CSA demonstrates a fast convergence with shorter algorithm execution time as compared to
RCGA and PSO.

123



1578 Multidim Syst Sign Process (2017) 28:1569–1587

−2

0

2

−3−2−10123
0

50

100

150

200

Frequency ω1

Frequency ω2

Ph
as

e 
(D

eg
re

e)

Fig. 5 Phase response of 2-D FIR digital differentiator using L1-RCGA
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Fig. 6 Magnitude response of 2-D FIR digital differentiator using L1-PSO
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Fig. 7 Magnitude error of 2-D FIR digital differentiator using L1-PSO

3.3 Tuning of control parameters

The setting of algorithm control parameters is a challenging task. It is itself an optimization
problem and performance of the algorithm can be greatly influenced for a specific problem.
Intrinsically, there is no explicit method available in the literature for the fine tuning of
parameters.Researchers performextensive simulationswith different sets of parameter values
within their specified range. Thus, similar methodology is employed in this work while
performing loads of simulations with slight variations in the control parameters’ values
within the specified range provided in the literature (Yang 2014).

In this paper, parameters of each algorithm are chosen after multiple simulations within
the range suggested in the previous literatures. The control parameters for all the algorithms
selected for the filter design process are given in Table 1.

4 Simulation results and discussions

Simulations are carried out in MATLAB using Intel Core i5, 2.53 GHz, 4 GB RAM. Perfor-
mance of the L1-CSA based 2-D FIR-DD is evaluated in terms of the magnitude response,
L1-error (absolute magnitude error), elapsed time and is compared with the designs using
L1-RCGA and L1-PSO. The order of the differentiator, N1, N2 is selected to be 15. The
results reported here are obtained as best after performing around 100 simulation trails with
random alterations in the parameters. The optimal solution is recorded with a minimum fit-
ness value. A set of simulations have been performed for selecting the control parameters of
the employed algorithms which are listed in Table 1. In order to ensure fairness in the oper-
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Fig. 8 Phase response of 2-D FIR digital differentiator using L1-PSO

ation of the heuristic algorithms, the desired differentiator specifications were kept the same
and the algorithm specific parameters were fixed according to the recommended settings.

The magnitude response of the ideal 2-D digital differentiator with respect to ω1, ω2 is
shown in Fig. 2. Three metaheuristic algorithms are implemented for designing of the 2-D
FIR-DD. The absolute magnitude response of the L1-RCGA based 2-D FIR-DD is plotted
in Fig. 3. It shows a close approximation with an absolute magnitude error of 1.3169 with
respect to the ideal response, given in Table 2. Figure 4 shows the absolute magnitude error
with respect to the two frequency components. The L1-RCGA based 2-D FIR-DD yields a
linear phase and the phase plot is shown in Fig. 5.

The absolute magnitude response of the L1-PSO based 2-D FIR-DD using the is presented
inFig. 6.Thegraphical appearance reveals a better approximationof the response as compared
to the L1-RCGA differentiator with the absolute magnitude error of 0.9561, reported in
Table 2. The absolute magnitude error of the 2-D differentiator is plotted in Fig. 7. Further,
the phase response is shown in Fig. 8. The absolute magnitude response of the L1-CSA based
2-D FIR-DD is shown in Fig. 9. A clear conclusion can be drawn from the displayed graphics
that the proposed L1-CSA technique yields the best results with an absolute magnitude
error of 0.1678. The plot for the magnitude error and the phase response are shown in
Figs. 10 and 11, respectively. The values of the mean absolute error (computed with 100
simulation results) and standard deviation are reported in Table 2. The inference is that the
proposed L1-CSA yields the best results. Comparison of the convergence profile for the
design of 2-D differentiator is plotted in Fig. 12. It demonstrates that L1-CSA possesses the
fastest convergence rate and converges to a minimum value as compared to other employed
algorithms.

Further, Fig. 13 shows the percentage improvement in the form of bar chart. The improved
performance of the designed 2-D FIR-DD using L1-CSA is demonstrated over the perfor-
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Fig. 9 Magnitude response of 2-D FIR digital differentiator using L1-CSA

0
0.5

1
1.5

2
2.5

3 0
0.5

1
1.5

2
2.5

3

0

0.2

0.4

0.6

0.8

1

Frequency ω2

Frequency ω1

A
bs

ol
ut

e 
M

ag
ni

tu
de

 E
rr

or

Fig. 10 Magnitude error of 2-D FIR digital differentiator using L1-CSA
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Fig. 11 Phase response of 2-D FIR digital differentiator using L1-CSA
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Fig. 12 Comparison of fitness profile for the design of 2-DFIRdigital differentiator using L1-RCGA, L1-PSO
and L1-CSA

mance of differentiators designed using L1-RCGA and L1-PSO. The L1-error computed
with L1-CSA is improved by 87.26 and 82.45% over L1-RCGA and L1-PSO, respec-
tively. In terms of algorithm elapsed time, L1-CSA shows an improvement of 31.66 and
14.37% over L1-RCGA and L1-PSO, respectively. Thus, L1-CSA yields least error with fast
convergence.
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Table 3 Performance evaluation of the L1-error for the design of 2-DFIRdigital differentiators using L1-CSA

Performance measures Pa = 0.25 Pa = 0.30 Pa = 0.35 Pa = 0.40

N = 25 0.1678 0.1836 0.1798 0.1763

N = 30 0.1751 0.1868 0.1800 0.1823

N = 40 0.1865 0.1974 0.1881 0.1971

N = 50 0.1933 0.1687 0.1902 0.1920

4.1 Performance evaluation of L1-CSA for the design of 2-D FIR digital
differentiators

In order to measure performance of the L1-CSA based 2-D FIR-DD, exhaustive simulations
are carried out while varying the control parameters of CSA. CSA is known to have only two
major controlling parameters, with varying characteristics, the population size, N and the
probability of discovering alien eggs, Pa . Variation in Pa and N , may lead to small changes in
the performance of the algorithm. Thus, to evaluate the performance of CSA, simulations are
performed with varying parameter values Pa = 0.25, 3.0, 3.5, 4.0 and N = 25, 30, 40, 50.
The L1-error values obtained with these variations are reported in Table 3. It is observed
from Table 3 that the least magnitude error of 0.1678 is ensured with Pa = 0.25 and N = 25.
Apart from this, with Pa = 0.25, the magnitude error increases with N . In addition, it can be
inferred from Table 3, that with fixed Pa , the magnitude error increases with the population
size.

Further, in Table 4 the algorithm elapsed time is evaluated with the varying control para-
meters. The observations are similar, with Pa = 0.25 and N = 25 fastest convergence is
obtained in 24.44 s (per 100 iterations). Moreover, conclusions can be made that with the
increase in the population size with fixed Pa , the algorithm execution time is increased. Fig-
ure 14 depicts the percentage improvement graph of L1-CSA with Pa = 0.25 and N = 25
over simulations with Pa = 0.25 and N = 30, 40, 50 in terms of the L1-error and algorithm
elapsed time. Thus, the best combination of control parameters of L1-CSA with Pa = 0.25
and N = 25 leads to the optimal results for designing of the 2-D FIR-DD.
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Table 4 Performance evaluation of elapsed time in seconds (per 100 iteration cycle) for designing of the 2-D
FIR digital differentiators using L1-CSA

Performance measures Pa = 0.25 Pa = 0.30 Pa = 0.35 Pa = 0.40

N = 25 24.44 28.16 28.06 26.54

N = 30 31.48 31.14 31.35 29.46

N = 40 44.06 43.97 42.52 40.63

N = 50 54.39 53.27 50.13 50.55
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Fig. 14 Percentage improvement in CSA with Pa = 0.25, N = 25 over varied N

5 Conclusion

An optimal design of 2-D FIR-DD is presented in this article. The 2-D differentiators are
widely used in the field of signal and image processing. The design of 2-D FIR-DD is
formulated as an optimization problem with an aim to minimize the L1-error function. The
proposed method successfully incorporates the advantages of both, CSA and the L1-error
approximation. The cuckoo-search algorithm is employed for an efficient design of the 2-
D FIR-DD, which effectively searches for the global results with a fast convergence rate.
CSA optimizes the fitness function based on the L1-error approximation, which yields a flat
response. The results of 2-D FIR-DD using L1-CSA are compared with those of L1-PSO
and L1-RCGA. The graphical comparison with the corresponding results of L1-PSO and
L1-RCGA confirms that the proposed L1-CSA is much more effective and accurate for the
2-D FIR-DD design. Absolute magnitude error, standard deviation and elapsed time are the
parameters considered to prove the efficiency of the proposed L1-CSA method. Simulations
with different set of parameters have been performed to assess the performance of the L1-
CSA based 2-D FIR-DD with change in the parameter values. Further, the proposed method
needs to be explored in future work, for the design of 2-D filters and 2-D fractional order
differentiator.
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