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Abstract This paper investigates the finite frequency (FF) H∞ control problem of two-
dimensional (2-D) continuous systems in Roesser Model. Our attention is focused on
designing state feedback controllers guaranteeing the bounded-input-bounded-output sta-
bility and FF H∞ performance of the corresponding closed-loop system. A generalized 2-D
Kalman-Yakubovich-Popov (KYP) lemma is presented for 2-D continuous systems. By the
generalized 2-DKYP lemma, the existence conditions of H∞ controllers are obtained in terms
of linear matrix inequalities. Two examples are given to validate the proposed methods.
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1 Introduction

The transfer function method and state-space model method are two main approaches to
describe, analyze and design dynamic system, from the frequency-domain and time-domain
points of view, respectively. It is well known that the celebrated Kalman-Yakubovich-Popov
(KYP) lemma (Anderson and Vongpanitlerd 1973; Kalman 1963; Rantzer 1996) effec-
tively builds a bridge between the frequency-domain approach and time-domain approach,
which establishes the equivalence relationship for one-dimensional (1-D) systems between
frequency-domain inequality representing system properties, such as positive realness and
bounded realness (Gahinet and Apkarian 1994; Sun et al. 1994; Xie et al. 1998), and a linear
matrix inequality (LMI) for the state space realization (Iwasaki and Hara 2005). Thus, the
infinite-dimensional problem can be easily converted to a finite dimensional convex feasibil-
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ity problem with LMI constraints. In particular, the development of the numerical algorithm
for LMI further strengthened the position of the KYP lemma in the past two decades.

However, one main drawback of standard KYP lemma is that it is only applicable for
the case over the entire frequency (EF) domain, while system properties are often required
over a specified finite frequency (FF) range in engineering practice. Thus, the generalized
KYP lemma over an FF range proposed in Iwasaki et al. (2000) and Iwasaki and Hara (2005)
broke this obstacle. It has proven that generalized KYP lemma is a useful tool when applied
in various engineering design problems with FF specifications, such as feedback control
synthesis (Iwasaki and Hara 2007), disturbance rejection (Du et al. 2007) and filter design
(Gao and Li 2011).

On the other hand, two-dimensional (2-D) systems also have drawnmuch attention over the
past decades due to their significant applications, such as 2-D digital filtering (Lu and Anto-
niou 1992), image processing (Bracewell 1995) and repetitive processes control (Xu et al.
2003). Two mainly used 2-D models are the Roesser model (Lam et al. 2004; Roesser 1975),
and the Fornasini-Marchesini local state-space (FM LSS) model (Fornasini and Marchesini
1978; Wang and Liu 2003). For these two models, bounded realness (Chen and Fong 2006,
2007; Du and Xie 2002; Wu et al. 2008, 2007) and positive realness (Xu et al. 2002, 2003)
have been extensively researched. Some general results related to the KYP lemma for 2-D
discrete systems have appeared for both EF and FF cases. Bachelier et al. (2008) proposed a
KYP lemma for hybrid 2-DRoesser systems,which included the existing bounded real lemma
in Du and Xie (2002) and positive real lemma in Xu et al. (2003) as special cases, which is
for the EF domain. Bachelier and Mehdi (2006) established the generalized KYP lemma for
multi-dimensional hybrid Roesser systems. Yang et al. (2008) developed generalized KYP
lemmas for 2-D Roesser models which can directly consider properties of a transfer function
over a rectangular FF region. Then, Li and Gao (2012) defined a novel characterization of
rectangular finite frequency regions in the context of FM LSS models and proposed a gener-
alized KYP lemma for FM LSS models. Li et al. (2012) employed the results of (Yang et al.
2008) to solve the robust FF H∞ filtering problem for 2-D Roesser systems. Based on the
generalized KYP lemma, Paszke et al. (2013) developed a 2-D systems based finite frequency
range iterative learning control law design algorithm and Paszke and Bachelier (2013) solved
the robust control problem with finite frequency specification for uncertain discrete linear
repetitive process. Lately, H∞ and H2 norms of 2-Dmixed continuous-discrete-time systems
have been studied via rationally-dependent complex Lyapunov function approach (Chesi and
Middleton 2015).

Recently, attention has been devoted towards 2-D continuous systems. With the aid of
the technique of line integral, several useful results related to 2-D continuous systems are
available. The robust state feedback H∞ control problem for uncertain 2-D continuous state
delayed systems in the Roesser model has been solved lately (Ghous and Xiang 2016). The
problems of stability and H∞ control of 2-D continuous switched systems have been studied
(Ghous and Xiang 2016). Similarly, attention has also been devoted towards robust H∞ fil-
tering of uncertain 2-D continuous systems with time-varying delays (El-Kasri et al. 2013).
However, all the mentioned above literatures considered the problems for 2-D continuous
systems from the point of state-space domain, thus all the obtained results just can be applica-
ble for the case over the EF range. The practical systems face with different performance
requirements under different frequency domains, such as noise signal generally from the low
frequency range, which motivates us to consider the H∞ performance over the FF range.

In this paper, we focus on investigating the FF H∞ control problem for 2-D continuous
systems in Roesser model. The main contribution of this paper is summarized as follows:
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(1) By using the generalized KYP lemma, FF bounded realness property for 2-D continuous
systems is investigated;

(2) A state feedback controller design scheme is proposed to guarantee the bounded-input-
bounded-output (BIBO) stability and FF H∞ performance of the closed-loop system.

The remainder of this paper is organized as follows. Section 2 is devoted to problem for-
mulation and some necessary lemmas. In Sect. 3, the generalized FF KYP lemma for 2-D
continuous is presented. One application of the generalized KYP lemma and FF H∞ con-
troller design are presented in Sect. 4. Two examples are provided in Sect. 5. In Sect. 6,
concluding remarks are given.

Notations The symbols R and C denote the real number set and complex number set,
respectively. Rn and C

n denote the sets of real and complex column vectors of dimension n,
respectively. Rm×n and R

m×n denote, respectively, the sets of real and complex matrices of
dimensionm × n. The symbolsH and In denote the set of Hermitian matrix, and the identity
matrix of dimension n × n, respectively. The transpose and complex conjugate transpose of
a matrix M are denoted by MT and M∗ , respectively, and M > 0 (M ≥ 0 ) means that M
is positive definite (positive semi-definite). NM is an arbitrary matrix whose columns form
a basis of the null-space of M . σmax (·) denotes the maximum singular value of a transfer
function. A L2 norm of a 2-D signal w(t1, t2) is given by

‖w‖2 =
√∫ ∞

0

∫ ∞

0
wT (t1, t2)w (t1, t2)dt1dt2.

2 Problem formulation and preliminaries

Consider the following 2-D continuous Roesser model:[
∂xh(t1,t2)

∂t1
∂xv(t1,t2)

∂t2

]
= A

[
xh (t1, t2)
xv (t1, t2)

]
+ Bu (t1, t2) , (1)

z (t1, t2) = C

[
xh (t1, t2)
xv (t1, t2)

]
+ Du (t1, t2) , (2)

where xh ∈ C
nh , xv ∈ C

nv , u ∈ C
nu and z ∈ C

nz are the horizontal state, vertical state,
input and output of the system, respectively; A, B, C and D are system matrices with
appropriate dimensions.

Let x (t1, t2) =
[
xh (t1, t2)
xv (t1, t2)

]
with n = nh + nv , X and U denote Laplace-tranforms of

the state variable x and input variable u, respectively. A frequency-domain representation of
the Roesser model (1) can be written as

ΩX = AX + BU, Ω = diag
{
jwh Inh , jwv Inv

}
,

for wh, wv ∈ R. The transfer function of the system (1) and (2) is

G ( jwh, jwv) = C(Ω − A)−1B + D. (3)

To obtain main results of this paper, we present the following lemma.

Lemma 1 (Rantzer 1996) Given matrices F,G ∈ C
n×n, vectors f, g ∈ C

n, then

(a) FF∗ = GG∗ if and only if there exists a matrix Γ ∈ C
n×n such that Γ Γ ∗ = In and

F = GΓ .
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(b) For g �= 0, f g∗+g f ∗ = 0 if and only if there exists a scalarw ∈ R such that f = jw ·g.
Next, we extend the result in Iwasaki and Hara (2007) for 1-D continuous-time system

to 2-D continuous system in the following lemma, which establishes equivalence between
frequency condition and LMIs.

Lemma 2 Given two scalars wh0, wv0, and complex vectors f =
[
fh
fv

]
and g =

[
gh
gv

]
∈

C
nh+nv , the following statements (1) and (2) are equivalent.

(1) There exist scalars wh and wv such that f = Ωg , with Ω = diag
{
jwh Inh , jwv Inv

}
,

wh ≤ wh0 and wv ≤ wv0.
(2) For any complex matrices P = diag {Ph, Pv} ∈ Hnh+nv and Q = diag {Qh, Qv} ∈

Hnh+nv > 0, the following inequality holds:[
f
g

]∗ [−Q P
P (Ω0)

2Q

] [
f
g

]
≤ 0, (4)

with Ω0 = diag
{
jwh0 Inh , jwv0 Inv

}
.

Proof If (1) is satisfied, one obtains[
f
g

]∗ [−Q P
P (Ω0)

2Q

] [
f
g

]

=
[
g
g

]∗ [−Ω∗QΩ Ω∗P
PΩ (Ω0)

2Q

] [
g
g

]

= −g∗Ω∗QΩg + g∗Ω∗Pg + g∗PΩg + g∗(Ω0)
2Qg

= −g∗
h( jwh)

∗Qh ( jwh) gh+g∗
h( jwh)

∗Phgh + g∗
h Ph ( jwh) gh + g∗

h( jwh0)
2Qh ( jwh) gh

−g∗
v ( jwv)

∗Qv ( jwv) gv + g∗
v ( jwv)

∗Pvgv + g∗
v Pv ( jwv) gv + g∗

v ( jwv0)
2Qv ( jwv) gv

= [
(wh)

2g∗
h Qhgh − (wh0)

2g∗
h Qhgh

] + [
(wv)

2g∗
v Qvgv − (wv0)

2g∗
v Qvgv

]
≤ 0.

Thus, (2) holds from statement (1).
Conversely, if (2) is satisfied, we have

trace
(− f ∗ f Q + f ∗gP + g∗ f P + g∗g(Ω0)

2Q
) ≤ 0.

For all Hermitian block diagonal matrices P and positive definite matrices Q, it follows that

f ∗
h gh + g∗

h fh = 0,

f ∗
v gv + g∗

v fv = 0,

− f ∗
h fh + gh

∗gh( jwh0)
2 ≤ 0,

− f ∗
v fv + gv

∗gv( jwv0)
2 ≤ 0.

According to Lemma 1, it can be verified that 1) holds. This completes the proof. 	


3 Generalized 2-D KYP lemma over FF domain

In this section, we present a generalized KYP lemma for 2-D continuous systems in Roesser
model over a rectangular FF domain.
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Lemma 3 Consider system (1) with det (Ω − A) �= 0, Ω = diag
{
jwh Inh , jwv Inv

}
, for

a Hermitian matrix Θ ∈ Hn+nu , with n = nh + nv , if there exist Hermitian matrices
P = diag {Ph, Pv} ∈ Hn and Q = diag {Qh, Qv} ∈ Hn > 0 such that

Θ <

[
A B
I 0

]∗ [−Q P
P (Ω0)

2Q

] [
A B
I 0

]
(5)

holds with Ω0 = diag
{
jwh0 Inh , jwv0 Inv

}
and wh0, wv0 ≥ 0 being given scalars, then the

following condition is satisfied for all |wh | ≤ wh0 and |wv| ≤ wv0.[
(Ω − A)−1B

I

]∗
Θ

[
(Ω − A)−1B

I

]
≤ 0. (6)

Proof From (5), we have

Θ −
[
A B
I 0

]∗ [−Q P
P (Ω0)

2Q

] [
A B
I 0

]
< 0.

Thus, the following inequality

ϕ∗
[
Θ −

[
A B
I 0

]∗ [−Q P
P (Ω0)

2Q

] [
A B
I 0

]]
ϕ < 0 (7)

holds for any ϕ ∈
{[

X
U

]
∈ n+m : ΩX = AX + BU,∀ |wh | ≤ wh0, |wv| ≤ wv0

}
. Letting

f = AX + BU and g = X , it is clear that f = Ωg. Thus, (7) can be rewritten as:

ϕ∗Θϕ − φ∗
[−Q P

P (Ω0)
2Q

]
φ < 0, (8)

with φ =
[
f
g

]
. According to Lemma 2, we have

φ∗
[−Q P

P (Ω0)
2Q

]
φ < 0. (9)

Then, combining (8) and (9) leads to

ϕ∗Θϕ < 0, (10)

which implies that the following inequality holds for any U ∈ C
nu .

U∗
{[

(Ω − A)−1B
I

]∗
Θ

[
(Ω − A)−1B

I

]}
U < 0. (11)

Thus, (6) is satisfied. This completes the proof. 	

Remark 1 It should be noted that Lemma 3 gives only a sufficient but not a necessary con-
dition for existence of FF property, since P and Q are required to be diagonal matrices. This
is in contrast with 1-D generalized KYP lemma (Iwasaki and Hara 2007), which provides a
necessary and sufficient condition for the existence of FF property.

Remark 2 In Lemma 3, we present a generalized 2-D KYP lemma for 2-D Roesser model
in the continuous-time domain, which is a special case of the result in Bachelier and Mehdi
(2006).
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Since A, B, M and 	 are general complex matrices, the positive definiteness of a complex
matrix is detected by the following lemma.

Lemma 4 (Iwasaki and Hara 2007) Let X = X R + i X I ∈ Hn, with X R, X I ∈ R
n×n. Then,

X > 0 if and only if [
X R −X I

X I X R

]
> 0. (12)

Also, let Y = Y R + iY I ∈ C
n×n with Y R, Y I ∈ n×n. Then, Y ∗XY > 0 if and only if

[
Y R −Y I

Y I Y R

]T [
X R −X I

X I X R

] [
Y R −Y I

Y I Y R

]
> 0. (13)

Lemma 3 gives a sufficient condition for the existence of a performance characterization
specified over a rectangular low frequency domain. The next lemma presents a sufficient
condition over any given rectangular frequency domain.

Lemma 5 Consider system (1) with det (Ω − A) �= 0, Ω = diag
{
jwh Inh , jwv Inv

}
, for

scalars wh1, wh2, wv1 and wv2 satisfying wh1 ≤ wv2, wv1 ≤ wv2, if there exist Hermitian

matrices P =
[
Ph 0
0 Pv

]
∈ Hn and Q =

[
Qh 0
0 Qv

]
∈ Hn > 0 such that

Θ +
[
A B
I 0

]∗ {[ −Q P + ΩcQ
P − ΩcQ WQ

]}[
A B
I 0

]
< 0, (14)

with

W =
[−wh1wh2 Inh 0

0 −wv1wv2 Inv

]
, Ωc =

[
jwhc Inh 0

0 jwvc Inv

]
,

whc = wh1 + wh2

2
, wvc = wv1 + wv2

2
,

then, the following inequality[
(Ω − A)−1B

I

]∗
Θ

[
(Ω − A)−1B

I

]
< 0 (15)

holds for all wh1 ≤ wh ≤ wh2 and wv1 ≤ wv ≤ wv2.

Proof Note that the condition wh1 ≤ wh ≤ wh2 is equivalent to |wh − whc| ≤ whmax, and
wv1 ≤ wv ≤ wv2 is equivalent to |wv − wvc| ≤ wvmax, with

whmax = wh2 − wh1

2
, wvmax = wv2 − wv1

2
.

Introducing the transformation Ã = A − Ωc, it can be obtained that

Ω − A = Ω̃ − Ã, (16)

with

Ω̃ =
[
j (wh − whc) Inh 0

0 j (wv − wvc) Inv

]
.
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According to Lemma 3, (21) holds if there exist Hermitian matrices P =
[
Ph 0
0 Pv

]
∈ Hn

and Q =
[
Qh 0
0 Qv

]
∈ Hn > 0 such that

Θ +
[
Ã B
I 0

]∗ [−Q P
P (Ωmax)

2Q

] [
Ã B
I 0

]
< 0, (17)

with Ωmax =
[
jwhmax Inh 0

0 jwvmax Inv

]
. Note that

[
Ã B
I 0

]∗ [−Q P
P (Ωmax)

2Q

] [
Ã B
I 0

]

=
[
A − Ωc B

I 0

]∗ [−Q P
P (Ωmax)

2Q

] [
A − Ωc B

I 0

]

=
[
A B
I 0

]∗ {[
I 0

Ωc I

] [−Q P
P (Ωmax)

2Q

] [
I −Ωc

0 I

]}[
A B
I 0

]

=
[
A B
I 0

]∗ {[ −Q P + ΩcQ
P − ΩcQ WQ

]}[
A B
I 0

]
. (18)

Substituting (18) into (17) gets (14). This completes the proof. 	


4 H∞ control

4.1 FF bounded real lemma

Lemma 5 gives sufficient condition for the existence of a performance characterization spec-
ified over a rectangular FF domain. Thus, inequality (15) can be checked by solving the
finite-dimensional convex feasibility problem of (14). Furthermore, appropriate choices of
	 in (15) allow us to represent various system properties including bounded-realness. There-
fore, one application on bounded-realness of generalized 2-D KYP lemma is presented in
the following.

Define a rectangular FF domain Σ as follows:

Σ={(wh, wv) : wh1 ≤ wh ≤ wh2, wv1 ≤ wv ≤ wv2} . (19)

Motivated by the theory of bounded realness for 1-D systems (Anderson and Vongpanitlerd
1973), the corresponding definition for 2-D systems can be defined as follows.

Definition 1 Given a scalar γ > 0 and a rectangular FF domain Σ defined in (19), 2-D
continuous system (1) and (2) is said to be bounded real if its transfer function G (wh, wv)

satisfies
G(wh, wv)

∗G (wh, wv) < γ 2 I, ∀ (wh, wv) ∈ Σ, (20)

or equivalently

‖G‖Σ∞ = sup
(wh ,wv)∈Σ

σmax [G (wh, wv)] < γ, ∀ (wh, wv) ∈ Σ. (21)
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Remark 3 In Xu et al. (2005), the H∞ norm of 2-D continuous system (1) and (2) is defined
as

‖G‖∞ = sup
wh ,wv∈R

σmax [G ( jwh, jwv)] ≤ γ. (22)

By using 2-D Parseval’s theorem, Lu and Antoniou (1992) proved that H∞ norm in (22) is
equavalent to L2-gain J0 = sup

u:‖u‖2 �=0

‖z‖2‖u‖2 . Inspired by the definition of H∞ norm in (22),

‖G‖Σ∞ in (21) is called FF H∞ norm in this paper.

The FF bounded realness property of 2-D continuous system (1) and (2) is presented in the
following lemma.

Lemma 6 Consider system (1) with det (Ω − A) �= 0, Ω = diag
{
jwh Inh , jwv Inv

}
,

for scalars wh1, wh2, wv1 and wv2 satisfying wh1 ≤ wh2, wv1 ≤ wv2, and a posi-
tive constant γ > 0, if there exist Hermitian matrices P = diag {Ph, Pv} ∈ Hn and
Q = diag {Qh, Qv} ∈ Hn > 0 such that[

C∗C C∗D
D∗C −γ 2 I + D∗D

]
+

[
A B
I 0

]∗ {[ −Q P + ΩcQ
P − ΩcQ WQ

]}[
A B
I 0

]
< 0, (23)

with W, Ωc, whc and wvc defined in Lemma 5, then 2-D continuous system (1) and (2) is
bounded real within a rectangular FF domain Σ defined in (19).

Proof Taking Θ=
[
C∗C C∗D
D∗C −γ 2 I + D∗D

]
and applying Lemma 5, we have

[
(Ω − A)−1B

I

]∗ [
C∗C C∗D
D∗C −γ 2 I + D∗D

] [
(Ω − A)−1B

I

]
< 0. (24)

It follows that (
C(Ω − A)−1B − D

)∗ (
C(Ω − A)−1B − D

)
< γ 2 I. (25)

Substituting (3) into (25) gives G(wh, wv)
∗G (wh, wv) < γ 2 I . According to Definition 1,

2-D continuous system (1) and (2) is bounded real within a rectangular FF domain Σ . This
completes the proof. 	

4.2 FF H∞ controller design

In this subsection, with the aid of the bounded real lemma, we are concerned with the FF
H∞ control of the following system[

∂xh(t1,t2)
∂t1

∂xv(t1,t2)
∂t2

]
= A

[
xh (t1, t2)
xv (t1, t2)

]
+ Bu (t1, t2) + B1w (t1, t2) ,

z (t1, t2) = C

[
xh (t1, t2)
xv (t1, t2)

]
+ Du (t1, t2) + D1w (t1, t2) , (26)

where the frequency of the exogenous noise w (t1, t2) ∈ C
nw are assumed to belong to a

known rectangular region, B1 ∈ C
n×nw , D1 ∈ C

nz×nw and other notations are the same as
those in (1) and (2).

The following state feedback controller is used in this paper.

u (t1, t2) = K

[
xh (t1, t2)
xv (t1, t2)

]
, (27)
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where K is an appropriately dimensioned controller gain matrix to be determined. Thus, the
corresponding closed-loop system can be formulated by[

∂xh(t1,t2)
∂t1

∂xv(t1,t2)
∂t2

]
= Ā

[
xh (t1, t2)
xv (t1, t2)

]
+ B̄w (t1, t2) ,

z (t1, t2) = C̄

[
xh (t1, t2)
xv (t1, t2)

]
+ D̄w (t1, t2) , (28)

where

[
Ā B̄
C̄ D̄

]
=

[
A + BK B1

C + DK D1

]
. The transfer function of system (28) from w (t1, t2) to

z (t1, t2) is given by

Ḡ (wh, wv) = C̄
(
Ω − Ā

)−1
B̄ + D̄,

with Ω = diag
{
jwh Inh , jwv Inv

}
.

Throughout the paper, we adopt the following stability definition.

Definition 2 (Xu et al. 2008) The 2-D continuous system[
∂xh(t1,t2)

∂t1
∂xv(t1,t2)

∂t2

]
= A

[
xh (t1, t2)
xv (t1, t2)

]
(29)

is BIBO stable if, under the zero initial condition, the output of the system is bounded for
any bounded input.

Definition 3 Given a scalar γ > 0 and a rectangular FF domain Σ defined in (19), 2-D
continuous system (28) is said to have an FF H∞ performance level γ , if it is BIBO stable
when w(t1, t2) = 0, and its transfer function Ḡ (wh, wv) satisfies

Ḡ(wh, wv)
∗Ḡ (wh, wv) < γ 2 I,∀ (wh, wv) ∈ Σ, (30)

when w(t1, t2) �= 0.

Lemma 7 (Gahinet and Apkarian 1994) Let R, Z and Γ be given. There exists a matrix Y
satisfying R∗Y Z + Z∗Y ∗R+Γ < 0 if and only if the following projection inequalities hold:

N∗
RΓ NR < 0, N∗

ZΓ NZ < 0.

Lemma 8 (Xu et al. 2008) The 2-D continuous system (29) is BIBO stable if there exists a
Hermitian matrix P = diag {Ph, Pv} ∈ Hn > 0 satisfying the LMI: A∗P + PA < 0.

To ensure the BIBO stability and specification (30) for the closed-loop system (28), we need
to resort to Lemma6 andLemma8, repectively. By combining these two results, the following
lemma can be obtained.

Lemma 9 Consider system (26), for a scalar γ > 0, if there exist Hermitian matrices

P̄ =
[
P̄h 0
0 P̄v

]
∈ Hn, P̂ =

[
P̂h 0
0 P̂v

]
∈ Hn and Q̄ =

[
Q̄h 0
0 Q̄v

]
∈ Hn such that Q̄ > 0,

P̂ > 0 and[
Ā B̄
I 0

]∗ {[ −Q̄ P̄ + Ωc Q̄
P̄ − Ωc Q̄ W Q̄

]}[
Ā B̄
I 0

]
+

[
C̄∗C̄ C̄∗ D̄
D̄∗C̄ −γ 2 I + D̄∗ D̄

]
< 0, (31)

[
Ā
I

]∗ [
0 P̂
P̂ 0

] [
Ā
I

]
< 0, (32)
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with W and Ωc defined in Lemma 5, then under the state feedback controller (27), the
corresponding closed-loop system (28) is BIBO stable with specification (30),

To design an FF H∞ controller, it is necessary to decouple the product terms of P̄ , P̂ , Q̄
and system matrices. In the sequel, an FF H∞ controller design scheme will be given.

Theorem 1 Consider system (26), for a scalar γ > 0, if there exist matrices F̄ = diag{
F̄h, F̄v

} ∈ C
n×n, V ∈ C

n×nu and Hermitian matrices P̃ =
[
P̃h 0
0 P̃v

]
∈ Hn,

�

P =[
�

Ph 0

0
�

Pv

]
∈ Hn and Q̃ =

[
Q̃h 0
0 Q̃v

]
∈ Hn such that Q̃ > 0,

�

P > 0 and

⎡
⎢⎢⎣

Λ11 Λ12 Λ13 0
Λ∗

12 Λ22 Λ23 F̄C∗ + VD∗
Λ∗

13 Λ∗
23 Λ33 D1

∗
0

(
F̄C∗ + VD∗)∗

D1 −Inz

⎤
⎥⎥⎦ < 0, (33)

[
−F̄∗ − F̄

�

P + AF̄∗ + BV ∗ − F̄
�

P + F̄ A∗ + V B∗ − F̄∗ AF̄∗ + BV ∗ + F̄ A∗ + V B∗

]
< 0, (34)

where

Λ11 = −Q̃ − F̄∗ − F̄,Λ12 = P̃ + Ωc Q̃ + AF̄∗ + BV ∗ − F̄,

Λ13 = B1,Λ22 = W Q̃ + AF̄∗ + F̄ A∗ + BV ∗ + V B∗,
Λ23 = B1,Λ33 = −γ 2 Inw ,

with W andΩc defined in Lemma 5, then under the state feedback controller (27), the closed-
loop system (28) is BIBO stable with specification (30). Moreover, the controller gain matrix
in (27) is given by K = (

F̄−1V
)∗
.

Proof Let

Γ =
⎡
⎣ −Q̄ P̄ + Ωc Q̄ 0
P̄ − Ωc Q̄ W Q̄ + C̄∗C̄ C̄∗ D̄

0 D̄∗C̄ −γ 2 Inw + D̄∗ D̄

⎤
⎦ ,

Z = [−I Ā B̄
]
, R = I2n+nw , Y = [

F∗ F∗ 0
]∗

.

By Schur complement, the following inequality

R∗Y Z + Z∗Y ∗R + Γ < 0, (35)

is equivalent to ⎡
⎢⎢⎣

Φ11 Φ12 Φ13 0
Φ∗

12 Φ22 Φ23 C̄∗
Φ∗

13 Φ∗
23 Φ33 D̄∗

0 C̄ D̄ −Inz

⎤
⎥⎥⎦ < 0, (36)

where

Φ11 = −Q̄ − F − F∗, Φ12 = P̄ + Ωc Q̄ + F Ā − F∗,
Φ13 = F B̄, Φ22 = W Q̄ + F Ā + Ā∗F∗,
Φ23 = F B̄, Φ33 = −γ 2 Inw .
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Choosing NZ =
⎡
⎣ Â B̂

I 0
0 I

⎤
⎦ and applying Lemma 7, we obtain from (35) that (31) holds.

Set Γ =
[
0 P̂
P̂ 0

]
, Y =

[
F
F

]
, Z = [−I Ā

]
, R = I2n and NZ =

[
Ā
I

]
. By Lemma 7,

(32) holds if the following inequality is satisfied.

RT Y Z + ZT Y T R + Γ =
[ −F − F∗ P̂ + F Ā − F∗
P̂ + Ā∗F∗ − F F Ā + Ā∗F∗

]
< 0. (37)

Let F̄ = F−1, Q̃ = F̄ Q̄ F̄∗, P̃ = F̄ P̄ F̄∗. Pre- and post- multiplying (36) by nonsingular
matrices J = diag

{
F−1, F−1, I, I

}
and J ∗ respectively, we obtain that (36) is equivalent

to ⎡
⎢⎢⎣

Ξ11 Ξ12 Ξ13 0
Ξ∗

12 Ξ22 Ξ23 F̄C̄∗
Ξ∗

13 Ξ∗
23 Ξ33 D̄∗

0 C̄ F̄∗ D̄ −Inz

⎤
⎥⎥⎦ < 0, (38)

where

Ξ11 = −Q̃ − F̄∗ − F̄, Ξ12 = P̃ + Ωc Q̃ + ĀF̄∗ − F̄,

Ξ13 = B̄, Ξ22 = W Q̃ + ĀF̄∗ + F̄ Ā∗,
Ξ23 = B̄, Ξ33 = −γ 2 Inw .

Set
�

P = F−1 P̂ F−∗. Pre- and post- multiplying (37) by Ĵ = diag
{
F−1, F−1

}
and Ĵ ∗,

respectively, we obtain that (37) is equivalent to[
−F̄∗ − F̄

�

P + ĀF̄∗ − F̄
�

P + F̄ Ā∗ − F̄∗ ĀF̄∗ + F̄ Ā∗

]
< 0. (39)

Let V = F̄ K ∗. Due to (28), (38) and (39) are equivalent to (33) and (34), respectively. The
proof is completed. 	


Remark 4 It should be noted that (34) guarantees −F̄ − F̄∗ < 0, which implies that F̄ is
nonsingular. By the slack matrix F , the product terms of P̄ , Q̄, P̂ in Lemma 9 and system
matrices have been decoupled, which is helpful to H∞ controller design. However, the fact
that F is the same in (33) and (34) unavoidably is a part of conservatism.

Remark 5 Like most of the LMI results dedicated to the stability or H∞ analysis of 2-D
models, the conservatism of our results partially come from the fact that P and Q are assumed
to be block-diagonal. Very recently, Bachelier et al. (2016) proposed a less conservative LMI
stability criteria for 2-D systems by reducing the polynomial-based tests of stability to that
of LMIs. A promising perspective is the extension to H∞ control which would be our future
work.

5 Illustrative examples

In this section, two exampleswill be provided to demonstrate the effectiveness of the proposed
results.
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Fig. 1 σmax (G(wh , wv)) of the
open-loop system in Example 1
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Fig. 2 σmax (G(wh , wv)) of the
closed-loop system in Example 1
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Example 1 Consider system (26) with the following parameters:

A =
[−0.5 0.2

0.6 −0.2

]
, B =

[
2.0

−0.5

]
, B1 =

[
0.2

−0.5

]
,

C =
[−0.8 −0.9

0.5 −0.3

]
, D =

[
0.6

−0.1

]
, D1 =

[−0.5
0.3

]
. (40)

By simulation, the open-loop system (26) with (40) is not bounded real for given γ = 0.6
within the FF domain Σ̄= {(wh, wv) : 1 ≤ wh ≤ 5, 1 ≤ wv ≤ 5}, which can be seen from
Fig. 1.

According to Theorem 1, a desired FF H∞ state feedback controller gain matrix can be
computed:

K = [−0.8992 1.3341
]
. (41)

To illustrate the effectiveness of the proposed controller, the σmax (G(wh, wv)) of the cor-
responding closed-loop system is depicted in Fig. 2. It is clearly shown that within the
considered frequency region, all the singular values of the closed-loop transfer function are
smaller than γ = 0.6. State trajectories of the closed-loop system are given in Figs. 3, 4,
which show that the closed-loop system is BIBO stable. The effectiveness of the designed
controller is demonstrated.
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Fig. 3 State trajectory of
xh(t1, t2) in Example 1

0

20

40

0
10

20
30

40
50
0

0.1

0.2

t2

Xh

t1

Fig. 4 State trajectory of
xv(t1, t2) in Example 1
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Example 2 In this example, we consider the Darboux equation which can be used to describe
some process of gas absorption,water stream heating and air drying (Kaczorek 1985):

∂2s (x, t)

∂x∂t
= a1

∂s (x, t)

∂t
+ a2

∂s (x, t)

∂x
+a0s (x, t) + a3w (x, t) + bu (x, t) , (42)

where s (x, t) is an unknown function at x ∈ [
0, x f

]
(space) and t ∈ [0,∞)(time), a0, a1, a2,

a3 and b are real coefficients, u (x, t) is a given input function and w (x, t) is a disturbance.

Let us define

r (x, t) = ∂s (x, t)

∂t
− a2s (x, t) . (43)

Using (43),we can transform (42) into an equivalent systemoffirst order differential equations
of the form.[

∂r(x,t)
∂x

∂s(x,t)
∂t

]
=

[
a1 a1a2 + a0
1 a2

] [
r (x, t)
s (x, t)

]
+

[
a3
0

]
w (x, t) +

[
b
0

]
u (x, t) . (44)
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Fig. 5 σmax (G(wh , wv)) of the
open-loop system in Example 2
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Fig. 6 σmax (G(wh , wv)) of the
closed-loop system in Example 2
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From (43), we know that

r (0, t) = ∂s (x, t)

∂t

∣∣∣∣
x=0

− a2s (0, t) = ds (0, t)

dt
− a2s (0, t) = R (t) . (45)

Let xh (t1, t2) = r (x, t), xv (t1, t2) = s (x, t) and take a0 = 0.69, a1 = −0.3, a2 = −0.7,
a3 = 0.5, b = 0.1. Then we obtain a 2-D continuous system (26) with the following
parameters

A =
[−0.3 0.9

1 −0.7

]
, B =

[
0.5
0

]
, B1 =

[
0.1
0

]
,

C = [
0.3 0.2

]
, D = 0.1, D1 = 0.8. (46)

UsingTheorem1,we can obtain a state feedback controller satisfying theFF H∞ performance
level γ = 0.82 as follows:

u (t1, t2) = [−2.1687 −2.3162
] [

xh (t1, t2)
xv (t1, t2)

]
. (47)

Within the FF domain Σ̄ = {(wh, wv) : 0 ≤ wh ≤ 4, 0 ≤ wv ≤ 4}, some of the singular
values σmax (G (wh, wv)) of the open-loop system are larger than γ = 0.82 as shown in
Fig. 5, while all the singular values σmax

(
G (wh, wv)

)
of the closed-loop system are smaller
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Fig. 7 State trajectory of
xh(t1, t2) in Example 2
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Fig. 8 State trajectory of
xv(t1, t2) in Example 2
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than γ = 0.82, which can be seen from Fig. 6. State trajectories of the closed-loop system
are shown in Figs. 7, 8. Simulation results demonstrate the effectiveness of the proposed
method.

6 Conclusions

This paper studied the FF H∞ control problem for 2-D continuous systems in Roesser model.
The frequencies of the exogenous noises are assumed to reside in a known rectangular region.
The generalized KYP lemma for 2-D continuous systems provided sufficient conditions in
terms of LMI for general quadratic properties of the transfer function over a rectangular
FF region. Then, one application of generalized KYP lemma to FF bounded realness was
given. Furthermore, by using the FF bounded real lemma, a systematic method was proposed
for the design of H∞ controllers which guarantee the BIBO stability and FF H∞ perfor-
mance level of the corresponding closed-loop system. These results are expected to be useful
for analysis and synthesis of systems. Two examples were given to validate the proposed
method.
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