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Abstract In this manuscript, we formulate the problem of source localization based on Time
Differences of Arrival (TDOAs) in the TDOA space, i.e., the Euclidean space spanned by
TDOAmeasurements. More specifically, we show that source localization can be interpreted
as a denoising problem of TDOA measurements. As this denoising problem is difficult to
solve in general, our analysis shows that it is possible to resort to a relaxed version of it. The
solution of the relaxedproblem through linear operations in theTDOAspace is thendiscussed,
and its analysis leads to a parallelismwith other state-of-the-art TDOA denoising algorithms.
Additionally, we extend the proposed solution also to the case where only TDOAs between
few pairs of microphones within an array have been computed. The reported denoising
algorithms are all analytically justified, and numerically tested through simulative campaign.
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1 Introduction

Source localization is a research theme that has significantly grown in popularity in the past
few decades, and whose interest ranges from audio to radar. As far as audio signal processing
is concerned, several applications including teleconferencing (D’Arca et al. 2014), audio-
surveillance (Valenzise et al. 2007) and human–machine interaction (Trifa et al. 2007) can
benefit from the knowledge of the source location. Among the techniques that are avail-
able in the literature (Benesty and Huang 2004), those based on Time Difference of Arrival
(TDOA) measurements are particularly appreciated for their modest computational require-
ments. TDOAs, in fact, are usually estimated through peak-picking on the Generalized Cross
Correlation of the signals acquired at microphone pairs (Ianniello 1982; Knapp and Carter
1976), or on the whole set of microphones (Chen et al. 2002; Hu andYang 2010). TDOAs can
be easily converted to range differences (RD), once the sound speed is known. The source
location is then found as the point in space that best fits the RD measurements according
to properly defined cost functions (Beck et al. 2008; Hahn and Tretter 1973; Huang et al.
2001; Schau and Robinson 1987; Schmidt 1972; Stoica and Nehorai 1998). More recently,
the widespread diffusion of sensor networks stemmed an interest in source localization also
in other research communities, such as remote sensing and radar (Koch and Westphal 1995;
Yimin et al. 2008). In this context range differences are obtained from TDOAs (Kehu et al.
2009), or from energy measurements (Hu and Li 2002).

The main drawback of TDOA-based localization techniques lies in their sensitivity to
measurement noise. In particular, we can distinguish between additive noise (generally due
to sampling in the time domain, circuit noise, but also other physical phenomena) and outlier
measurements (produced by reverberation or interfering sources). Outlier identification and
removal has beenwidely studied in the literature (see for instanceScheuing andYang2008and
references therein; Canclini et al. 2013, 2015). Therefore, applying one of these techniques it
is possible to remove outliers from the pool of available measurements. Nonetheless, additive
noise still impairs the localization accuracy.

In this manuscript we interpret the problem of source localization studying the effect of
additive noise on TDOA measurements using the TDOA space formalism, i.e., a space in
which a set of measured TDOAs is mapped into a point. The sensitivity to noise afflicts
also range differences obtained from energy measurements. Indeed, the hostile propagation
conditions yield a difference of the measured energy from the ideal free-field assumption.
In the following we will specifically refer to the problem of localizing acoustic sources,
but the theory can be readily applied also to other kinds of signals. The concept of TDOA
space is not novel and was first introduced in Spencer (2007) for localization purposes.
From that representation, a TDOA map (from the space of source locations to the space of
TDOAs) was later introduced and analytically derived in Compagnoni et al. (2014), which
proposed an exhaustive analytic study of the identifiability and invertibility of this map for
the three-microphone case. In the most general case, given a set of n + 1 microphones,
q = n(n + 1)/2 TDOAs can be computed considering all the possible microphone pairs. In
a noiseless scenario, however, we can always find an independent set of n such TDOAs that
we can compute all the other TDOAs from. This is why most TDOA-based algorithms define
a reference microphone, with respect to which the n independent TDOAs are computed. In
the TDOA space, this corresponds to the fact that TDOAs lie on a linear subspace Vn of the
q-dimensional TDOA space. This subspace can be computed in closed form through simple
considerations. Feasible TDOAs (i.e., points in the TDOA space that correspond to source
locations) are bound to lie in a region Θn ⊂ Vn . In Compagnoni et al. (2014) authors derive
Θn in terms of real algebraic geometry.
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Working in the TDOA space essentially means solving an estimation problem in its dual
space. As typically done in estimation theory, using a dual domain enables to split a problem
into two parts. In our case, using the TDOA space formalism, source localization can be
interpreted as a two-step procedure: (1) a denoising operation, which consists in removing or
attenuating part of the additive noise; (2) the application on the denoised TDOAs of a simple
mapping from the TDOA space to the geometric space. Starting from this perspective, in
this work we provide a deeper investigation on the geometrical characteristics of the TDOA
space. More specifically, we first derive the correct denoising formulation that fully describes
the source localization problem. As the denoising problem formulated this way is not easy
to deal with, we resort to a relaxed version of it, which exploits the linear subspace Vn . In
particular, we show that additive noise can be decomposed into the sum of two orthogonal
components, and the relaxed problem formulation aims at reducing only one of them, still
positively impacting on source localization.

This relaxed version of the problem was implicitly solved in So et al. (2008) and Schmidt
(1996),where the authors derive closed-form expressions for converting the full set of TDOAs
to the nonredundant one. However, authors in So et al. (2008) and Schmidt (1996) limited
their analysis to simulations showing that this conversion is able to reduce the impact of
noise in localization accuracy. Instead, working in the TDOA space paves the way to a
deeper understanding of the impact of relaxed denoising on source localization. In particular
we will: (1) analytically prove the positive effect of denoising on source localization through
a set of solid theorems, thus also theoretically validating So et al. (2008) and Schmidt (1996);
(2) find a solution to the relaxed denoising problem when some TDOAmeasurements are not
available; (3) quantify analytically the improvement in localization accuracy brought by the
use of the denoised TDOAs given a specific localization algorithm in use.We accomplish this
analysis by means of the error propagation theory introduced in Compagnoni et al. (2012).

We test the presented algorithm also under different noise hypotheses to show that it
works also if the underlying assumptions are not strictly verified. In particular, Monte Carlo
simulations were carried out to show how different state-of-the-art techniques [the SRD-LS
algorithm (Beck et al. 2008), least squares (Smith and Abel 1987)] and Gillette–Silverman
(Gillette andSilverman 2008)methods benefit fromdenoising, approaching theRMSELower
Bound (RLB) implied by the Cramer–Rao Lower Bound (CRLB) (Benesty andHuang 2004).
We also show that it is possible to performdenoising on a set of TDOAs including q−s, s > 0
measurements, with an apparent advantage in terms of accuracy.

The rest of the manuscript is structured as follows. In Sect. 2 we deeply introduce the for-
malism of TDOA space. In Sect. 3 we interpret the problem of source localization within this
context. In Sect. 4 we provide the denoising formulation of the source localization problem,
also reporting the relaxed problem version and an algorithm for its solution. A parallelism
with related state-of-the-art works is also provided. In Sect. 5 we analytically prove the pos-
itive impact of denoising on source localization, and provide additional simulative analysis.
Section 6 is devoted to denoising problem formulation and solution in case some TDOAs are
missing within the pool of measurements (i.e., we measure TDOAs using only a few pairs
of microphones). Finally, Sect. 7 remarks some final conclusions highlighting possible open
future research lines.

2 Theoretical background

In this section we offer the reader some background that will simplify the reading of this
article. In particular, we first provide the formal definition of the TDOA space. Then, we
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give the interpretation of noisy measurements and source localization problem in the TDOA
space.

2.1 The TDOA space

The ideas of the TDOA space; the feasible set of TDOA measurements; and the TDOA map
appeared in several manuscripts concerning multilateration (see for example Compagnoni
et al. 2014; Grafarend and Shan 2002; Schmidt 1996; Spencer 2007). These concepts are
the essential ingredients for the mathematical definition and analysis of many problems
involving TDOAmeasurements, such as source localization, synchronization and calibration
of the receivers. A recent example in this direction can be found in Alameda-Pineda and
Horaud (2014), where the TDOA space formalism is used for defining a novel algorithm
to estimate the TDOAs and concurrently locate the source. In the following, we present the
basic definitions and properties regarding the TDOA space.

Letmi = (xi , yi , zi )T , i = 0, . . . , n be the sensor locations and x be the source position
in the 3DEuclidean spaceR

3. For notational simplicity, andwith no loss of generality, inwhat
follows we assume the sound speed to be equal to 1, so that the noiseless TDOAs correspond
to the range differences. This way, given any pair of sensors (mj,mi), n ≥ j > i ≥ 0, the
relative TDOA is a function of the source position x and it can be defined as

τ j i : R
3 −→ R

x �−→ τ j i (x)
, (1)

where
τ j i (x) = ‖x − mj‖ − ‖x − mi‖. (2)

If we collect the q = n(n+1)
2 range differences in a q-dimensional vector, we obtain the map

τ∗
n : R

3 −→ R
q

x �−→ (τ10(x), τ20(x), . . . , τn n−1(x))T
. (3)

In Compagnoni et al. (2014), τ∗
n has been called the complete TDOAmap, while the resulting

target set R
q of τ∗

n is referred to as the TDOA space or τ -space. Clearly, a point in the TDOA
space corresponds to any set of TDOAmeasurements. Moreover, in a noiseless scenario, the
subset of the τ -space containing the TDOAs generated by all the potential source positions
coincides with the image Im(τ∗

n ) of the TDOA map, and we call it Θn . This means that any
collection of noiseless TDOAs defines a point τ = (τ10, . . . , τn n−1)

T ∈ Θn and viceversa.

2.2 The 2D case with n=2

The study of the properties of τ∗
n is a fundamental step towards a deeper understanding of

the geometrical acoustics model for TDOA-based localization. However, since its inherent
complexity, the full description of the general case of τ∗

n goes beyond the scope of this
manuscript. In this section, we summarize the main results contained in Compagnoni and
Notari (2014) and Compagnoni et al. (2014) on the minimal case of two dimensional source
localization, with three synchronized and calibrated sensors.1 We report this analysis because
this is the minimal non trivial case of TDOA-based localization, the only one that has been

1 In order to simplify the presentation, we consider only the case with the microphones in general position on
the plane, i.e., they do not lie on a line. The interested reader can find the complete analysis for every scenario
and the proofs in the original manuscripts.
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Fig. 1 The image of τ2 is the
gray subset of the hexagon P2
with continuous and dashed
sides. In the light gray region E−
the map τ2 is 1-to-1, while in the
medium gray region
U0 ∪U1 ∪U2 the map τ2 is
2-to-1. Let us observe that
U0 ∪U1 ∪U2 ⊂ C+ ∩ P2. The
continuous part of the boundary
of the hexagon and the blue
ellipse E, together with the
vertices Ri , are in the image, and
there τ2 is 1-to-1. The points T±

i
and the dashed boundaries do not
belong to Im(τ2) (Color figure
online)

C

P2

E

E+
E−

C+

C−

R0

R1

R2

T+
1

T−
1

T+
2

T−
2

T+
0

T−
0

U0

U1

U2

τ10

τ20

exhaustively studied and where one may observe some important features characterizing
every localization model. We will return on this model in Sect. 4.

In the planar case, the set Θ2 is a surface embedded into R
3, being the image of the

restriction of the TDOA map τ∗
2 to R

2 (by abuse of notation, we continue to name it τ∗
2 ).

Actually, one can interpret τ∗
2 as a (radical) parameterization of Θ2. Moreover, it is well

known that the three TDOAs are not independent, since they satisfy the zero-sum condition
(ZSC) (Scheuing and Yang 2006). Indeed, the linear relation τ21(x) = τ20(x) − τ10(x)
holds for each x ∈ R

2. Geometrically speaking, this means that three noiseless TDOAs are
constrained on the plane

V2 = {
τ ∈ R

3 | τ10 − τ20 + τ21 = 0
} ⊂ R

3 (4)

and so Θ2 ⊆ V2.
Because of the above linear relation, in the literature it is customary to work with a

reference microphone, for examplem0, and to consider only the two TDOAs τ10(x), τ20(x).
Mathematically speaking, let us define the reduced TDOA map

τ2 : R
2 −→ R

2

x −→ (τ10(x), τ20(x))
(5)

and let us consider the projection map p3 : R
3 → R

2 forgetting the third coordinate τ21 of
the τ -space. Then, we have τ2 = p3 ◦ τ∗

2 and p3 is a natural bijection between Im(τ∗
2 ) and

Im(τ2). Hence, one can investigate the properties of the noiseless TDOA model by studying
the simpler map τ2. For the sake of simplicity, in Fig. 1 we draw Im(τ2) for the configuration
of the microphone at m0 = (0, 0)T , m1 = (1, 0)T and m2 = (1, 1)T . Symbols defined
therein are introduced in the next few paragraphs. Figure 2 shows its relation with Im(τ∗

2 ).
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Fig. 2 The image of τ∗
2 is the

green subset of the hexagon
P2 ⊂ V2, while the image of τ2
is the red subset of P2. There is a
1-to-1 correspondence between
Im(τ∗

2 ) and Im(τ2) via the
projection map p3. In the lightly
shaded regions, the TDOA maps
are 1-to-1, while in the more
darkly shaded regions the maps
are 2-to-1 (Color figure online)

Let us define the displacement vectors dji = mj − mi; their Euclidean norms d ji =
‖dji‖, i, j = 0, 1, 2; the scalar W = det

(
d10 d20

)
; and the matrix

H =
(
0 −1
1 0

)
.

First of all, Im(τ2) is contained into the hexagon P2 defined by the triangle inequalities:
⎧
⎨

⎩

−d10 ≤ τ10 ≤ d10
−d20 ≤ τ20 ≤ d20
−d21 ≤ τ20 − τ10 ≤ d21

. (6)

In particular, the vertices R0 = (d10, d20), R1 = (−d10, d21−d10), R2 = (d21−d20,−d20)
of P2 correspond to the pairs of TDOAs associated to a source atm0,m1,m2, respectively.
Then, by following the analysis contained in Sect. 6 of Compagnoni et al. (2014), for any
τ = (τ10, τ20) ∈ R

2 we define the vectors

v(τ ) = H (τ20 d10 − τ10 d20), l0(τ ) = H
(d220 − τ 220)d10 − (d210 − τ 210)d20

2W
(7)

and the polynomials

a(τ ) = ‖v(τ )‖2 − W 2, b(τ ) = v(τ )T · l0(τ ), c(τ ) = ‖l0(τ )‖2. (8)

Im(τ2) and the admissible source positions τ2
−1(τ ) can be computed in terms of these

polynomials.
We have the following facts:

• a(τ ) = 0 defines the unique ellipse E tangent to every facet of P2.We name E− and E+
the interior and the exterior regions of E where a(τ ) < 0 and a(τ ) > 0, respectively;

• b(τ ) = 0 defines a cubic curve C. We name C− and C+ the regions where b(τ ) < 0
and b(τ ) > 0, respectively;
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Fig. 3 The different localization
regions and the curve Ẽ in the
x-plane. The microphones are the
marked points
m0 = (0, 0), m1 = (1, 0) and
m2 = (1, 1). The curve Ẽ
separates the light gray region
Ẽ−, where the map τ2 is 1–1 and
it is possible to locate the source,
and the medium gray region
Ũ0 ∪ Ũ1 ∪ Ũ2, where τ2 is 2–1
and the localization is not unique.
On the dashed lines the
localization is possible but very
sensitive to the measurement
noise

• c(τ ) is a quartic non negative polynomial.

In Compagnoni et al. (2014) it has been proved that the image of τ 2 is the set

Im(τ2) = E− ∪ (C+ ∩ P2) ∪ R0. (9)

For each τ ∈ Im(τ2) we have at most two admissible source positions, whose coordinates
are given by the formula

x±(τ ) = m0 + l0(τ ) + λ±(τ )v(τ ), (10)

where λ±(τ ) are the solutions of the quadratic equation a(τ )λ2 + 2b(τ )λ + c(τ ) = 0 :

λ±(τ ) = −b(τ ) ± √
b(τ )2 − a(τ )c(τ )

a(τ )
.

For τ ∈ (E− ∪ E ∪ ∂P2) ∩ Im(τ2) we have to take only the x+(τ ) solution and so we have
uniqueness of localization. On the complementary set, that is the union of the three disjoint
sets U0, U1 and U2 depicted in medium gray in Fig. 1, the map τ2 is 2-to-1 and there is an
intrinsic ambiguity in the source position between the two solutions x±(τ ).

For the sake of completeness, in Fig. 3 we depict the corresponding localization regions
in the x-plane. Roughly speaking, we have the preimage of the interior of the ellipse Ẽ− =
τ2

−1(E−), where the TDOA map is 1-to-1 and the source localization is possible, and the
preimages Ũi = τ2

−1(Ui ), for i = 0, 1, 2, where the map is 2-to-1 and there is no way to
uniquely locate the source. The region of transition is the bifurcation curve Ẽ = τ2

−1(E),
that is a quintic algebraic curve (Compagnoni and Notari 2014) consisting of three disjoint
and unbounded arcs, one for each arc of E contained in Im(τ2). As a point τ in one of theUi

gets close to E , the solution x+(τ ) gets close to a point on Ẽ , while x−(τ ) goes to infinity.
The sets Ẽ−, Ũ0, Ũ1, Ũ2 are open subsets of the x-plane, separated by the three arcs of Ẽ .

Finally, the union D of the six dashed half-lines outgoing from the receivers is the degen-
eracy locus of the TDOA map, where the rank of the Jacobian matrix of τ2 drops. D is the
preimage of the six segments in ∂P2 ∩ Im(τ2). On D the two solutions x±(τ ) are coincident,
thus the TDOAmap is 1-to-1. Furthermore, D divide each Ũi into two connected components
and τ 2 is a bijection between each of them and the corresponding Ui .
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2.3 The general case

Aswe said above, some of the propertieswe described in theminimal planar case are common
to every TDOA-based localization model. In particular, we have the following proposition.

Proposition 1 Let us take n + 1 sensors at m0, . . . ,mn in R
3, where n ≥ 2. Then, Θn is a

subset of the n-dimensional linear subspace Vn ⊂ R
q defined by equations

− τi0 + τ j0 − τ j i = 0, 0 < i < j ≤ n, (11)

representing the ZSCs for all the microphone triplets containingm0.

Proof In a configuration with n + 1 microphones, the maximum number of independent
TDOAs is equal to n. In particular, if we takem0 as the reference microphone, the n TDOAs
{τ10(x), . . . , τn0(x)} are independent, while the others satisfy Eq. (11), as can be easily
verified using definition (2). These are q − n independent homogeneous linear equations,
therefore they define an n-dimensional linear subspace Vn of the τ -space and Θn is a subset
of Vn .

This means that, also in the general case, the set of feasible TDOAs is contained into an
n-dimensional linear subspace of the TDOA space R

q . This property stays at the basis of the
denoising procedure that we describe in the next sections. However, Θn is strictly contained
in Vn . Indeed, since Θn is the image of R

3 through the almost everywhere smooth function
τn, its dimension is equal to 3. As above, one can consider τn as a radical parameterization
of Θn . This way the feasible set becomes a topological manifold (possibly with a boundary,
as forΘ2), that is almost everywhere differentiable. Moreover, we can reasonably conjecture
that Θn can be described again in terms of algebraic equations and inequalities, hence it is a
so called semialgebraic variety (Basu et al. 2006).

3 Interpretation of source localization in the TDOA space

The TDOA space formalism that we just introduced can be used to provide a geometric
interpretation of TDOA-based source localization problem. As a matter of fact, other geo-
metric interpretations have been proposed in the literature (Bestagini et al. 2013). However,
working in the TDOA space also highlights that source localization can be solved as a TDOA
denoising problem. In this section, we provide such interpretation of source localization in
the TDOA space, starting from a commonly used statistical noise model.

3.1 Statistical noise model

In the presence of measurement errors, we must resort to statistical modeling. In this manu-
script we assume the TDOAs associated to a source in x to be described by

τ̂∗
n (x) = τ∗

n (x) + ε, (12)

where ε ∼ N (0,Σ) is an additive Gaussian noise. Also techniques that compute range
differences from other measurements, such as energy, are prone to additive noise. In this
latter case, in particular, the magnitude of the additive noise becomes relevant. Under the
assumption in (12), the probability density function (p.d.f.) of the TDOA set is (Benesty and
Huang 2004)

p(τ̂ ; τ∗
n (x),Σ) = e− 1

2 (τ̂−τ∗
n (x))T Σ−1(τ̂−τ∗

n (x))
√

(2π)q |Σ | . (13)
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Since the covariancematrixΣ is symmetric and positive defined, from a geometric standpoint
(see, for example, Amari and Nagaoka 2000) the Fisher matrix Σ−1 defines a scalar product
on R

q :
〈v1, v2〉Σ−1 = v1TΣ−1v2, v1, v2 ∈ R

q . (14)

Thisway, theTDOAspace turns out to be equippedwith aEuclidean structure,whose distance
is known in the statistical literature as the Mahalanobis distance:

‖v‖Σ−1 =
√
vTΣ−1v, v ∈ R

q . (15)

With this setting, the p.d.f. (13) can be rewritten as

p(τ̂ ; τ∗
n (x),Σ) = e− 1

2 ‖τ̂−τ∗
n (x)‖2

Σ−1
√

(2π)q |Σ | , (16)

which depends only on the Mahalanobis distance between τ̂ and τ∗
n (x).

3.2 Source localization

The first application of the TDOA space and map was in the study of the TDOA-based source
localization (see Compagnoni et al. 2014; Spencer 2007). As amatter of fact, the fundamental
questions in localization problems can be readily formulated in terms of τ∗

n . In a noiseless
scenario, the analysis of the existence and uniqueness of localization is equivalent to the
study of the set Θn and the invertibility of τ∗

n . As we saw in Sect. 2.2 for the minimal planar
case, for a given τ ∈ R

q there exists a unique source at position τ∗
n

−1(τ ) if, and only if, τ is
a point lying on a region of Θn where the TDOA map is 1-to-1.

In case of noisymeasurements, the data errors force the point τ̂ not to lie onΘn .Therefore,
to localize the source one needs an estimation procedure. Most of the algorithms proposed
in the literature rely on the optimization of a cost function, based on some criterion that
can be either statistically motivated [e.g., Maximum-Likelihood estimation (Benesty and
Huang 2004)] or not [e.g., linear least squares (Gillette and Silverman 2008; Smith and Abel
1987), squared range-differences-based least squares estimation (Beck et al. 2008), etc.].
The source position is thus found as the point x̄ that minimizes a suitable non-negative cost
function f (τ̂ , x), defined so that its value is zero in noiseless conditions, i.e.,

f
(
τ∗
n (x), x

) = 0 (17)

for every x ∈ R
3. In mathematical terms, source localization is therefore formulated as

x̄ = argmin
x∈R3

f
(
τ̂ , x

)
. (18)

In the TDOA space, the estimated source position is associated to the feasible point
τ̄ = τ∗

n (x̄) ∈ Θn . Therefore, any localization algorithm maps a noisy TDOA vector τ̂ onto a
feasible TDOA vector τ̄ . It is worth noticing that different algorithms may produce different
source estimates, corresponding to mappings onto likewise different feasible TDOA vectors.
A special case occurs when the input TDOA vector is feasible, i.e., when τ̂ ∈ Θn . In this
case, there exists a point x̄ so that τ̂ = τ∗

n (x̄). Thus, in virtue of (17), we expect any algorithm
to produce the same estimate x̄ = τ∗

n
−1(τ̂ ).

Let us now focus on the Maximum-Likelihood (ML) estimator, which is known to be
optimal in the statistical sense. For the Gaussian noise model described above, the ML
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localization problem can be formulated as (Benesty and Huang 2004)

x̄ML = argmax
x∈R3

e− 1
2 ‖τ̂−τ∗

n (x)‖2
Σ−1

√
(2π)q |Σ | . (19)

By defining fML(τ̂ , x) = ‖τ̂ − τ∗
n (x)‖2

Σ−1 , we have

x̄ML = argmin
x∈R3

fML(τ̂ , x). (20)

In the TDOA space framework, theML estimator has a neat geometric interpretation. Indeed,
solving theML problem is equivalent to finding the point τ̄ML = τ∗

n (x̄ML) ∈ Θn at minimum
Mahalanobis distance from τ̂ :

τ̄ML = argmin
τ∈Θn

‖τ̂ − τ‖2
Σ−1 . (21)

It trivially follows that the source position x̄ estimated by means of a generic localization
algorithm leads to a point τ̄ = τ∗

n (x̄) ∈ Θn such that

‖τ̂ − τ̄‖Σ−1 ≥ ‖τ̂ − τ̄ML‖Σ−1 . (22)

In other words, the distance ‖τ̂ − τ̄‖Σ−1 is bounded from below by the one obtained through
ML estimation.

In the light of the above considerations, we can interpret source localization in the TDOA
space as a two-step procedure:

1. mapping of the noisy TDOAs τ̂ onto the corresponding feasible vector τ̄ ∈ Θn , accord-
ingly with the chosen optimization criterion;

2. recovering of the estimated source position as x̄ = τ∗
n

−1(τ̄ ).

Note that step 1 represents a TDOA denoising operation. Moreover, once this step has been
accomplished, step 2 is straightforward when the mapping τ∗

n is 1-to-1, that is the standard
case for a sufficiently large number n of sensors in general positions. From this perspective,
source localization can be considered as a TDOA denoising problem.

4 Denoising of TDOAs

As discussed in Sect. 3, source localization can be solved in the TDOA space as a denoising
problem. Given a noisy TDOA vector τ̂ , this corresponds to finding a feasible (i.e., denoised)
TDOA vector belonging to Θn according to some criteria that depends on the chosen cost
function f (τ̂ , x). If we consider the Maximum-Likelihood formulation of the problem, the
criterion is readily formulated as in (21). Therefore, statistically speaking, the best achievable
denoising corresponds to finding the feasible TDOA vector at the minimum Mahalanobis
distance from the noisy one.

Despite the error function ‖τ̂ − τ‖2
Σ−1 could suggest a standard weighted linear least-

squares solution (Teunissen 2000), the problem in (21) can not be solved in a linear fashion.
Indeed, the search space is Θn , which turns (21) in a difficult, in general non convex, opti-
mization problem. However, in the following we investigate the possibility of relaxing the
problem in (21), leveraging on the fact that Θn is contained in the linear subspace Vn of the
TDOA space.
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4.1 From the complete to the relaxed denoising problem

Weclaimed above that solving the ideal denoising problem (21) is a non trivial task. However,
by working in the TDOA space we can subdivide such problem in two distinct steps. Let
us consider the orthogonal projection P(τ̂ ;Σ) of τ̂ ∈ R

q on Vn, with respect to the scalar
product 〈 , 〉Σ−1 . From the general properties of thismap,wehave the following equivalences:

τ̄ML = argmin
τ∈Θn

‖τ̂ − τ‖2
Σ−1

= argmin
τ∈Θn

‖(τ̂−P(τ̂ ;Σ)) + (P(τ̂ ;Σ)−τ )‖2
Σ−1

= argmin
τ∈Θn

(
‖τ̂−P(τ̂ ;Σ)‖2

Σ−1 + ‖P(τ̂ ;Σ)−τ‖2
Σ−1

)

= argmin
τ∈Θn

‖P(τ̂ ;Σ)−τ‖2
Σ−1 ,

where in the third equality we used the fact that τ̂ −P(τ̂ ;Σ) andP(τ̂ ;Σ)−τ are orthogonal
each other, thus

〈τ̂ − P(τ̂ ;Σ),P(τ̂ ;Σ) − τ̄ML〉Σ−1 = 0.

This means that the ML estimation gives exactly the same results if we start from the original
data τ̂ or the projected one P(τ̂ ;Σ).

We explicitly show this fact in Fig. 4, for the case of planar localization with n = 2. In
this case one has two different situations, exemplified for the measurement points τ̂ 1 and τ̂ 2,
respectively. In the first case, the orthogonal projection P(τ̂ 1;Σ) ∈ Θ2, thus it coincides
with its ML estimate τ̄ML,1. Differently, for the second point one hasP(τ̂ 2;Σ) /∈ Θ2. In this
case, finding the correspondingML solution τ̄ML,2 corresponds to finding the closest point to
P(τ̂ 2;Σ) in Θ2, which implies solving a complicated minimization problem in V2. Indeed,
as we explained in Sect. 2.2, the feasible set Θ2 has a non trivial structure. In particular,
its boundary is the union of six segments and three arcs of ellipse. If we define τ̄ML,2 as
the closest point to τ̂ 2 lying on one of these sets, then it is necessary to develop an ad hoc
algorithm for finding it. Another complication is that Θ2 is not a closed set. This implies that
if τ̄ML,2 lies on the ellipse, then it does not correspond to a true source position because it is
not part of Θ2. Conversely we should consider τ̄ML,2 as the TDOAs associated to a source
placed at infinity.

Thanks to the results and discussion contained in Sect. 2.3, we can generalize the previous
analysis. The denoising problem (21) can be subdivided into two subproblems.

1. The easiest part is the projection on the linear subspace Vn . We can call it the relaxed
denoising problem

P(τ̂ ;Σ) = argmin
τ∈Vn

‖τ̂ − τ‖2
Σ−1 , (23)

in comparison to the complete denoising problem (21). Being the search set in (23) a
linear subspace, the problem admits a closed solution.

2. The hardest part is the projection of P(τ̂ ;Σ) onto Θn :
τ̄ML = argmin

τ∈Θn

‖P(τ̂ ;Σ)−τ‖2
Σ−1 ,

From the discussion contained in Sect. 2.3, the difficulties are twofold: we have not
the analytic description of Θn and, in any case, the feasible set is a complicated three
dimensional semialgebraic variety embedded in the n- dimensional linear subspace Vn .
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Fig. 4 Denoising in the TDOA space, for the case of planar localization with n = 2. A generic set of noisy
TDOAs τ̂ do not lie on Θ2. The ML estimation finds the closest point τ̄ML ∈ Θ2 to τ̂ . The solution of the
relaxed denoisig problem is P(τ̂ ,Σ) ∈ V2. For the point τ̂1 it lies on Θ2, then the projection P(τ̂1,Σ)

coincides with the ML solution τ̄1. For the point τ̂2 this is not true, thus P(τ̂1,Σ) �= τ̄2. In any case, the
projection gives a better estimate of the noiseless measurements τ , closest to τ̄ML with respect to the original
data point τ̂

The previous observations are the original starting points for our interpretation and for the
statistical justification of the relaxed denoising procedure. Indeed, observation 2 confirms the
well known fact that solvingML estimation is a too difficult task, due to the non-linearity and
non-convexity of the feasible set Θn . However, observation 1 states that ML is composed by
two parts with different difficulties.We can easily envision that the projection of themeasured
TDOAs onto the linear subspace Vn leads to improvements in terms of localization accuracy,
and this will be confirmed analytically in the forthcoming sections.

4.2 The relaxed denoising algorithm and its statistical analysis

We can now proceed with a rigorous formulation of the intuition discussed above and with
a precise definition of the relaxed denoising algorithm.

4.2.1 The projection as a sufficient statistic

Theorem 1 The orthogonal projection P(τ̂ ;Σ) of τ̂ ∈ R
q on Vn, with respect to the scalar

product 〈 , 〉Σ−1 , is a sufficient statistic for the underlying parameter x.

Proof Let us start from

‖τ̂−τ∗
n (x)‖2

Σ−1 = ‖τ̂−P(τ̂ ;Σ)‖2
Σ−1 + ‖P(τ̂ ;Σ)−τ∗

n (x)‖2
Σ−1 .
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Therefore, the probability density function (13) can be rewritten as

p(τ̂ ; τ∗
n (x),Σ) = e− 1

2 ‖τ̂−P(τ̂ ;Σ)‖2
Σ−1 e− 1

2 ‖P(τ̂ ;Σ)−τ∗
n (x)‖2

Σ−1
√

(2π)q |Σ | .

Then, the proof follows as a consequence of the Fisher–Neyman factorization theorem
(Lehmann and Casella 1998). ��

Theorem 1 states that the component of τ̂ orthogonal to the linear subspace Vn does not
carry information on the source location and that we can remove it without corrupting the
data.

4.2.2 The algorithm

For any τ̂ ∈ R
q , the projection P(τ̂ ;Σ) can be computed in closed form in two steps:

I. If we group all the Eq. (11), we end up with the homogeneous equation system

Cτ = 0, (24)

where C is the (q − n, q) matrix

C =

⎛

⎜
⎜
⎜
⎝

−1 1 0 · · · 0 0 −1 0 · · · 0
−1 0 1 · · · 0 0 0 −1 · · · 0
...

...
...

...
...

...
...

...

0 0 0 · · · −1 1 0 0 · · · −1

⎞

⎟
⎟
⎟
⎠

.

The solutionof this linear system isVn = ker(C).In particular,we canfind anorthonormal
basis {v1, . . . , vn}Σ−1 of Vn, if necessary by usingGram–Schmidt algorithm definedwith
respect to the scalar product (14).

II. The projection map P is defined on τ̂ ∈ R
q as

P(τ̂ ;Σ) = 〈τ̂ , v1〉Σ−1 v1 + · · · + 〈τ̂ , vn〉Σ−1 vn. (25)

Let eji, n ≥ j > i ≥ 1 be the vectors in the standard basis Bq of R
q . With respect to

Bq , the projection is represented by the (q, q) matrix

P = [P(e10;Σ) · · · P(en−1 n;Σ)
]
. (26)

Consequently, the set of denoised TDOAs is obtained as

P(τ̂ ;Σ) = P τ̂ . (27)

4.2.3 The analysis of the noise reduction

We can now compute the noise reduction on the TDOAs due to the relaxed denoising proce-
dure defined above. Preliminarily, we prove the following Lemma.

Lemma 1 The covariance matrix Σ defines a Euclidean structure on R
q and the matrix PT

represents an orthogonal projection with respect to the scalar product 〈 , 〉Σ .

Proof By construction Σ is symmetric and positive defined, therefore it defines a scalar
product on R

q . To prove that PT represents an orthogonal projection with respect to this
Euclidean structure, we have to show that PTPT = PT and ΣPT = PΣ . On the other hand,
we know that the matrix P represents an orthogonal projection with respect to 〈 , 〉Σ−1 , hence
PP = P and Σ−1P = PTΣ−1. By using these identities, we have:
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• PTPT = (PP)T = PT ,

• PΣ = ΣΣ−1PΣ = ΣPTΣ−1Σ = ΣPT ,

which completes the proof. ��
A consequence of Lemma 1 is that ‖v‖2Σ ≥ ‖PT v‖2Σ for any v ∈ R

q . This is useful for
proving the next Theorem.

Theorem 2 Let Σ be the covariance matrix of τ̂ . Then:

1. the covariance matrix of P(τ̂ ;Σ) is Σ ′ = PΣPT ;
2. we have Σ � Σ ′, i.e., Σ − Σ ′ is positive semidefinite.

Proof the first claim follows from the general transformation rule of the covariance matrix
under linear mapping of τ̂ . Using this fact and Lemma 1, we have that vT (Σ − Σ ′)v =
‖v‖2Σ − ‖PT v‖2Σ ≥ 0 for any v ∈ R

q , which completes the proof. ��
Theorem 2 states that the relaxed denoising procedure always reduces the noise on the

TDOA dataset and it gives the way to quantify such reduction.

4.3 Relation to state-of-the-art algorithms

As alreadymentioned in the Introduction, the algorithm presented to solve the relaxed denois-
ing problem is a different interpretation of other methods proposed for reducing the noise on
TDOAs, exploiting data redundancy. In particular, authors in Schmidt (1996) and So et al.
(2008) use the constraints in (11) to relate the full set of q TDOAs τ to n nonredundant
TDOAs referred to a sensor. Selecting the first sensor as the reference one, the nonredundant
set is τNR = (τ10, τ20, . . . , τn0)

T . The linear relation between the two sets is given by

τ = GτNR, with G =
[
In
Y

]
where Y =

⎛

⎜
⎜
⎝

−1 1 0 · · · 0 0
−1 0 1 · · · 0 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 · · · −1 1

⎞

⎟
⎟
⎠ ,

and In is the identity matrix of order n. Given the measured TDOAs τ̂ , in Schmidt (1996)
the nonredundant set is estimated in the least squares sense as

τ̂NR = (GTG)−1GT τ̂ .

In So et al. (2008) this result is generalized accounting for the covariance structure of noise.
To this purpose, the noise covariance matrix Σ is introduced in the weighted least squares
solution

τ̂NR = (GTΣ−1G)−1GTΣ−1τ̂ . (28)

Note that the two procedures coincide if Σ = σ 2I.
The nonredundant TDOAs τ̂NR can be considered as the denoised measurements corre-

sponding to the original set τ̂ . As a matter of fact, τ̂NR, computed as in (28), coincides with
the first n components of the orthogonal projection P(τ̂ ;Σ). At this respect, we can be more
precise.

Proposition 2 Given the Euclidean structure on R
q defined by Σ−1, the matrix P that

represents the projection map P, with respect to the canonical basis Bq , is

P = G(GTΣ−1G)−1GTΣ−1.

It follows that τ̂NR is a sufficient statistics for τ̂ .
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Proof First of all, we show that Im(P) = Vn .2 We begin by observing that the matrix
GTΣ−1G is invertible. Indeed, its kernel is given by the vectors x ∈ R

n such that
GTΣ−1Gx = 0. In this case, we have

xTGTΣ−1Gx = ‖Gx‖2
Σ−1 = 0,

hence Gx = 0. Being rank(G) = n, it follows that ker(GTΣ−1G) = ker(G) = {0}.
From the previous point, we have

rank
(
(GTΣ−1G)−1GTΣ−1

)
= rank(GT ) = n

and so Im((GTΣ−1G)−1GTΣ−1) = R
n . It follows that Im(P) = Im(G) = Vn .

Now, it is straightforward to check that P2 = P and Σ−1P = PTΣ−1, thus P represents
the projection map on Im(P) = Vn .

The last statement follows from the 1-to-1 relation P(τ̂ ;Σ) = Gτ̂NR. ��
In the light of the above considerations, all our theorems and simulative results can be

considered as further validations of state-of-the-art works in Schmidt (1996) and So et al.
(2008). In the following sections we will prove, both analytically and numerically, that any
source localization algorithm benefits from denoised TDOAs. Moreover, we will see that this
holds also when the full TDOA set is not completely available.

5 Impact on source localization

To this point we have shown how it is possible to reduce the noise on a TDOA set τ̂ ,
thus approaching τ̄ML. The goal of this section is to prove that source location estimate
benefits from the use of a denoised TDOA set. To this purpose, we first provide a solid
theoretical analysis that demonstrates our claim. Then, we further investigate the effect on
source localization by means of an extensive simulative campaign.

5.1 Impact on sub-optimal localization algorithms

The present analysis is mainly based on the results in Sect. 4.2.3. In great generality, let us
consider a given localization algorithm based on the minimization of a certain cost function
f (x, c), where c are the input TDOA data. Theorem 2 allows us to compare the accuracy
of x̄ = arg min f (x, τ̂ ) and x̄′ = arg min f (x,P(τ̂ ;Σ)). Indeed, the first order error prop-
agation formula given in Compagnoni et al. (2012) relates the covariance matrices Σ,Σ ′ to
Σ x̄,Σ

′̄
x, respectively:

Σ x̄ = A(x)ΣA(x)T and Σ ′̄
x = A(x)Σ ′A(x)T , (29)

where A(x) is defined by equation (26) from Compagnoni et al. (2012). Then, by easily
adapting the proof of Theorem 2, we end up with

Corollary 1 at first order approximation, Σ x̄ � Σ ′̄
x.

We remark that Corollary 1 is valid for every choice of the cost function f (x, c). In particular,
it includes the special cases of f (x, c) explicitly dependingonly onn TDOAs, the ones relative
to a reference microphone. In the following paragraph we will report concrete examples of
these facts.

2 With slight abuse of notation, in the proof we identify a matrix with the associated linear map defined
through matrix multiplication.
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5.2 Numerical examples

We now analyze the effect of relaxed denoising3 on simulated data. Some results were
reported in Schmidt (1996) and So et al. (2008). In particular, in So et al. (2008) authors
proved that the denoising procedure can be used to proficiently exploit the redundancy of the
full set of TDOAs measured among all microphone pairs. Indeed, they numerically verified
thatML source localization using the denoised TDOA set (denoted as optimumnonredundant
set in So et al. 2008) meets the Cramer Rao Lower Bound (CRLB) (Benesty andHuang 2004)
computed considering the full set of measurements. Note that the analytical proof of this fact
is a direct consequence of Theorem 1.

Here we aim at providing a more comprehensive analysis, testing the effect of denoising
on several source localization algorithms. In particular, we are interested in sub-optimal
algorithms admitting an exact solution, i.e., for which the global optimum can be computed
with no approximations. This feature is desirable in practice, as it prevents the risk of getting
trapped in local minima, at the expense of obtaining a solution that does not meet the CRLB.
To this end, we consider the following algorithms:

• LS unconstrained linear least squares estimator (Smith and Abel 1987), admitting a
closed-form solution. It uses the nonredundant TDOA set, measured considering a ref-
erence sensor;

• SRD-LS squared-range-difference least squares estimator (Beck et al. 2008), a constrained
version of the LS one, whose exact solution is computable efficiently. It is based on the
nonredundant TDOA set;

• GS Gillette–Silverman algorithm (Gillette and Silverman 2008), an extension of the LS
algorithm accommodating the case of multiple reference sensors. It can be applied to the
full TDOA set.

Denoising was tested considering TDOAs corrupted by both Gaussian and non-Gaussian
noise. The first case constitutes an ideal scenario, in which the noise model exactly meets
the theoretical assumptions used for deriving the denoising procedure. The second case
represents a non-ideal condition, useful to assess to what extent denoising is applicable when
the assumptions are not obeyed.

5.2.1 TDOAs corrupted by Gaussian noise

We simulated a compact cross array composed by seven microphones in positions (0, 0, 0)T ,
(±0.5, 0, 0)T , (0,±0.5, 0)T , (0, 0,±0.5)T m. More than 500 sources are homogeneously
distributed on a sphere centered at (0, 0, 0)T , whose radius d ranges from 0.5m to 2.5m.
The simulation setup is sketched in Fig. 5. For each source position, we computed the full set
of q = 21 theoretical TDOAs τ . We corrupted the vectors τ with I = 5000 realizations of
i.i.d. zero-mean Gaussian noise with standard deviation σ , leading to the noisy TDOAs τ̂ i .
The covariance matrix thus resulted in Σ = σ 2Iq , where Iq is the identity matrix of order
q . Monte-Carlo simulations were carried out considering the range σ ∈ [0.5 cm, 5 cm]. The
corresponding denoised TDOAs P(τ̂ i ;Σ) were computed using (27).

As a preliminary test, we computed the mean με̃ and the standard deviation σε̃ of the
residual error εi = τ̃ i − τ left on denoised TDOAs. We first observed that με̃ is always
negligible compared to σε̃ , meaning that the denoising procedure does not introduce relevant

3 For the sake of compactness, throughout this paragraph we will use the word denoising referring to relaxed
denoising.
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Fig. 5 Simulation setup

(a) (b)

Fig. 6 TDOA residual error before and after denoising, as a function of: injected noise σ (a); source distance
d (b)

bias on TDOAs. Figure 6a shows the standard deviation of denoised TDOAs σε̃ as a function
of σ , averaged for sources located at a fixed distance d = 1.5m. Similarly, Fig. 6b shows σε̃

for different distance values, fixing σ = 1.5 cm. In both the cases, we notice that σε̃ (solid
line) is always significantly below the value of the standard deviation of the injected noise σ

(dashed line), thus confirming the effectiveness of denoising. We also observe that σε̃ ≈ 1
2σ ,

independently from the source position.
The localization performance was then evaluated in terms of Root Mean Square Error

(RMSE), computed as

RMSE(x) =
√√
√
√1

I

I∑

i=1

‖x̃i − x‖22, (30)

where x is the nominal source position and x̃i is its estimate at the i th Monte-Carlo run.
The three algorithms were fed with both the measured TDOAs τ̂ i and the denoised TDOAs
P(τ̂i ;Σ). In particular, for LS and SRD-LS we considered only the n = 6 TDOAs measured
with respect to the first sensor, selected as the reference one. For GS, we considered the full
set of q TDOAs, before and after denoising. Results are reported in Fig. 7. As done before,
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(a) (b)

Fig. 7 Localization accuracy before and after denoising, as a function of: injected noise σ (a); source distance
d (b)

we report results as a function of σ when d = 1.5m (Fig. 7a); and varying the distance d
when σ = 1.5 cm (Fig. 7b). For each tested algorithm, the figures show the average RMSE
achieved before and after the denoising of the measured TDOAs. For the sake of comparison,
we also report the RMSE Lower Bound (RLB) implied by the CRLB. As expected, all the
algorithms exhibit improved localization accuracy when denoised TDOAs are used. It is
interesting to observe the different behavior of the algorithms using only the nonredundant
TDOAs (LS and SRD-LS) and that using the full TDOA set (GS). Indeed, denoising produces
a moderate effect on LS and SRD-LS, while the benefit is impressive for GS. Despite using
the full TDOA set, before denoising GS exhibits very poor performances compared to LS and
SRD-LS, especially for distant sources and at high amount of injected noise on TDOAs. This
behavior is not completely unexpected, as GS extends the LS approach, which is known to
suffer from non negligible bias (Benesty and Huang 2004). We observed that, using the full
TDOA set, the bias increases significantly, even if the variance of estimation is reduced due
to the availability of more measurements. We preliminarily noticed that the bias is greatly
reduced when GS is fed with the denoised TDOA set. Roughly speaking, this means that
denoising allows GS to effectively exploit the data redundancy. This positively impacts on
source localization with GS after denoising, producing an RMSE that approaches the RLB.
On the other hand, the redundancy is only partially exploited by LS and SRD-LS, as they
rely on the nonredundant denoised TDOA set.

5.2.2 TDOAs corrupted with non-Gaussian noise

Considering the simulation setup described in the previous paragraph, we repeated all the
tests injecting different types of non-Gaussian noise in the ideal TDOAs. In particular, we
focus on the following noise models:

• i.i.d. zero-mean uniform noise in the range
[
− c

2 fs
, c
2 fs

]
, which mimics the sampling

error caused by estimating the TDOA from the a Generalized Cross-Correlation (GCC)
function (Knapp and Carter 1976) sampled at fs = 8 kHz; c = 343m/s is the speed of
sound;
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(a) (b) (c)

Fig. 8 Localization accuracy before and after denoising, as a function of distance d, for different TDOA noise
models: uniformly distributed noise (a), mixture of uniform and Gaussian noise (b), Laplacian noise (c)

• a mixture of i.i.d. zero-mean uniform and Gaussian noise, the former distributed in the

range
[
− c

2 fs
, c
2 fs

]
; the latter with standard deviation σ = 1.5 cm. Thismixture ofmodels

is suggested in Benesty and Huang (2004);
• i.i.d. zero-mean Laplacian noise with standard deviation σ = 1.5 cm.

The localization accuracy of the three algorithms exhibits the same trend obtained for the
Gaussian noise model. For reasons of space, here we limit to report the average RMSE as
a function of the source distance d . Figures 8a, b, c show the results for the three con-
sidered noise distributions, respectively. Even if the noise models differ from the Gaussian
assumption underlying the denoising theory, all the algorithms improve their accuracy using
denoised TDOAs. As before, this is especially true for GS, which exhibit the most noticeable
improvement. This suggests that denoising can be applied when the TDOA error does not
strictly meet the Gaussian assumption.

6 Dealing with an incomplete set of TDOAs

There existmany scenarioswhere not thewhole set of TDOAs is available. For example,when
computational cost is an issue, the computation of all the possible TDOAs is not feasible. In
the following, we adapt our previous analysis in order to handle relaxed denoising also in
such situations.

Let us assume that the TDOAs {τ j1i1 , . . . , τ js is }, 0 ≤ s ≤ q, are not available and let
S = {( j1, i1), . . . , ( js, is)} be the corresponding set of indices. In this setting, the proper
TDOA map is

τ∗
n,S : R

3 −→ R
q−s

x �−→ τ∗
n,S(x)

, (31)

where

τ∗
n,S(x) = (τ10(x), . . ., ̂τ j1i1(x), . . ., τ̂ js is (x), . . ., τn n−1(x))T

and ̂τ j1i1(x) means that the item is missing. As before, we define the TDOA space as the
target set R

q−s of τ∗
n,S and the image Im(τ∗

n,S) as Θn,S . Clearly, the TDOA map τ∗
n,S is

strictly related to τ∗
n . Indeed, let us consider the projection pS : R

q → R
q−s that takes care

of forgetting the s coordinates corresponding to the indices in S. Then, one has τ∗
n,S = pS ◦τ∗

n
and Θn,S = pS(Θn), where the symbol ◦ denotes the function composition operator.
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In the presence of measurement errors, we assume that the TDOAs are described by the
statistical model

τ̂∗
n,S(x) = τ∗

n,S(x) + εS, where εS ∼ N (0,ΣS). (32)

As above, the Fisher matrix ΣS
−1 defines a Euclidean structure on the TDOA space R

q−s

and the same discussion made in Sect. 2 holds in this situation.
The definition and the analysis of the relaxed denoising procedure are very similar to the

ones made in Sect. 4.2. First of all, we adapt Theorem 1.

Theorem 3 Let us take n+ 1microphones atm0, . . . ,mn in R
3, where n ≥ 2. Then Θn,S is

a subset of the linear subspace VS = pS(Vn) ⊂ R
q−s . Moreover, the orthogonal projection

PS(τ̂S;Σ S) of τ̂S ∈ R
q−s on VS, with respect to 〈 , 〉

Σ−1
S

, is a sufficient statistic for the

underlying parameter x.

Proof pS is a linear map, therefore VS is a linear subspace of R
q−s . The other claims follow

in the same way of Proposition 1 and Theorem 1. ��
From Theorem 3 it follows that dim(VS) ≤ dim(Vn) = n, where dim denotes the dimen-

sion of a vector space. It is not difficult to prove that the equality holds if, and only if, the
set of available TDOAs contains n independent measures, for example the n TDOAs calcu-
lated with respect to a reference microphone. In this case, the map pS is a bijection between
V and VS . This means that it is possible to obtain the full set of q denoised TDOAs as
p−1
S (PS(τ̂S;Σ S)) ∈ V . Concretely, one has to use the linear equations

− τik + τ jk − τ j i = 0, i �= j �= k, (33)

to calculate the missing TDOAswith indices in S. It is important to remark that this operation
does not increase the noise on the dataset, as indeed it would happen if we apply the same
procedure on the original data by calculating p−1

S (τ̂S).

6.1 Denoising algorithm

In order to explicitly construct the projection map PS, let us take the (q − s, q) matrix IS
defined by removing the s rows corresponding to the indexes in S from the (q, q) identity
matrix. It can be easily proven that IS represents the map pS with respect to the standard
basis Bq and Bq−s of R

q and R
q−s, respectively. Then, given a generic basis {v1, . . . , vn}

of ker(C), from Theorem 3 follows that the set {IS v1, . . . , IS vn} spans VS . After reducing
it to an independent set of vectors and subsequently applying the Gram–Schmidt algorithm,
we can finally find an orthonormal basis of VS with respect to the scalar product 〈 , 〉

Σ−1
S

.

From this point on, one can proceed exactly as done in the previous sections. In particular,
the map PS is defined by the analogous of the formula (25) and it is represented, with respect
to Bq−s , by a (q − s, q − s) matrix PS. Then, the denoised TDOAs are

PS(τ̂S;Σ S) = PS τ̂S. (34)

6.2 Impact on source localization

We summarize the main facts on the denoising procedure in the following theorem.

Theorem 4 let ΣS be the covariance matrix of τ̂S and f (x, c) be any given cost function,
where c are the input TDOA data. Then:
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1. the covariance matrix of PS(τ̂S;Σ S) is ΣS
′ = PSΣSPS

T ;
2. ΣS � ΣS

′;
3. at first order approximation, the covariance matrices Σ S, x̄ and Σ ′

S, x̄ of the estimators
x̄ = arg min f (x, τ̂S) and x̄′ = arg min f (x,PS(τ̂S;Σ S)), respectively, satisfy Σ S,x̄ �
Σ ′

S,x̄.

Proof The proof is similar to the ones of Theorem 2 and Corollary 1. ��

6.3 Numerical examples

In this paragraph we show some numerical examples, devoted to investigate the effect of
relaxed denoising when the full TDOA set is not entirely available. To this end, we refer again
to the simulation setup described in Sect. 5.2.1. However, we now consider the availability of
the n TDOAs referred to the first microphone, alongwith z ≤ q−n additional TDOAs. Noisy
TDOAs were obtained corrupting their nominal values with i.i.d. zero-mean Gaussian noise
with standard deviation σ = 1.5 cm. In this scenario, denoisingwas accomplished using (34).
In particular, we built the vector τ̂S including the n + z available TDOAs, and we computed
the projection matrix PS accordingly. For this test we considered sources at a fixed distance
d = 1.5m.We tested the denoising procedure considering values of z in the range from 1 and
q − n − 1 = 14. For all the I Monte-Carlo runs, we generated all the possible combinations
of z TDOAs extracted from the last n − q entries of the vector τ̂ i . As before, we considered
the LS, SRD-LS and GS algorithms for source localization. The results, averaged among all
the noise realizations and all the combinations, are reported in Fig. 9. In particular, Fig. 9a
shows the residual error on TDOAs after denoising, while Fig. 9b highlights the impact of
denoising on localization. Note that we added to the graphs the points at z = 0 (i.e., when
only the n TDOAs referred to the first microphone are available) and at z = q − n = 15
(i.e., when all the TDOAs are used). It is worth noticing that the availability of just a few
additional TDOAs leads to a relevant reduction of the TDOA standard deviation, with respect
to z = 0. This reflects also on localization, as all the algorithms monotonically improve their
accuracy increasing the number of available measurements. Also in this case, GS exhibits
the best accuracy after denoising, while being characterized by an unstable behavior using
the original TDOAs. Indeed, with the original data GS improves its accuracy when z < 6;
for higher values of z, the error bias becomes relevant and the overall RMSE diverges.

(a) (b)

Fig. 9 TDOA residual error before and after denoising (a) and localization accuracy (b). Both plots are
function of the number of additional TDOAs
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It is important to highlight the practical implications of these results. Let us consider a
microphone array composed by (n + 1) sensors. The computational power requested for
computing all the q TDOAs is mainly due to the calculation of GCCs between the pairs of
microphone signals. In case of limited computational capabilities, a typical solution would be
that of computing only the nonredundant TDOA set. However, it turns to be more convenient
to compute z additional TDOAs in order to fully exploit the available computational power.
This enables better localization, without modifying the array configuration.

7 Conclusions

In this manuscript we reformulated the problem of source localization in the TDOA space.
This enabled us to show that source localization has a neat interpretation in terms of TDOA
denoising. As a simple solution to the denoising problem is not available, we proved that it is
possible to relax the problem to a linear one, whose solution is based on projecting TDOAs
on a linear subspace of the TDOA space. Moreover, we also derived the problem solution for
the case in which only a few TDOAs measurements are available.

The analysis performed in this manuscript does not limit to numerical simulations. Indeed,
each choice behind the presented algorithm is fully justified by means of analytical proofs
that further validate and justify the works in So et al. (2008) and Schmidt (1996). As a matter
of fact, in this manuscript we proved that denoising has a positive effect on source localization
from a theoretical perspective. Moreover, we tested the denoising algorithm using different
noise models, thus highlighting that the method is still valid even when noise hypotheses
are not completely fulfilled. Finally, we also made use of different cost functions to gain an
interesting insight on how denoising impacts on different localization algorithms.

The extension of the relaxed denoising algorithm to the case of missing TDOAs have
also interesting implications in real-world scenarios. As a matter of fact, it enables to fully
exploit hardware computational capabilities in order to increase localization performance. As
an example, by fixing the available computational complexity, one can tune the localization
system in order to measure a given amount of TDOAs and fully take advantage of them in a
synergistic fashion.

According to the results of this work, it is important to note that it is possible to envision
the development of algorithms working in the TDOA space to solve the complex ML source
localization problem in a easier way. This will be the scope of possible future works.
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