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Abstract Real world classification tasks may involve high dimensional missing data. The
traditional approach to handling the missing data is to impute the data first, and then apply
the traditional classification algorithms on the imputed data. This method first assumes that
there exist a distribution or feature relations among the data, and then estimates missing
items with existing observed values. A reasonable assumption is a necessary guarantee for
accurate imputation. The distribution or feature relations of data, however, is often complex
or even impossible to be captured in high dimensional data sets, leading to inaccurate impu-
tation. In this paper, we propose a complete-case projection subspace ensemble framework,
where two alternative partition strategies, namely bootstrap subspace partition and missing
pattern-sensitive subspace partition, are developed for incomplete datasets with even missing
patterns and uneven missing patterns, respectively. Multiple component classifiers are then
separately trained in these subspaces. After that, a final ensemble classifier is constructed by
a weighted majority vote of component classifiers. In the experiments, we demonstrate the
effectiveness of the proposed framework over eight high dimensional UCI datasets. Mean-
while, we apply the two proposed partition strategies over data sets with different missing
patterns. As indicated, the proposed algorithm significantly outperforms existing imputation
methods in most cases.
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1 Introduction

Missing data are an extremely common phenomenon in machine learning (Benjamin 2008).
If any feature value of any sample is unobserved, we call it incomplete sample (or sample
with missing value). It may happen in data collecting, data transmission or data integration.
Traditional treatments for missing data are developed in statistical analysis (Little and Rubin
2014). Imputation is the most widely used method. It speculates missing value based on
observed value (or existing value). There are several kinds of imputations. Simple impu-
tation such as mean or mode imputation (MI) preserves mean value of variables. But it
underestimates variance (Donders et al. 2006). A more precise method is k nearest neighbor
imputation (KNNI). KNNI substitutes missing value with mean or mode of K nearest neigh-
bors (Batista and Monard 2002). It believes that nearest samples share similar value in all
features (dimensions). However, when partial distances (i.e. distances measured in feature
subspaces) is not proportional to distances in whole feature space, KNNI is inaccurate. More
advanced imputation methods depend on model assumption. For example, maximum likeli-
hood imputation assumes a data distribution and estimates missing value by most probable
value (Enders 2001). Regression imputation assumes a linear or non linear model between
features (i.e. relation of feature), then it calculates model parameters by learning methods
(Donders et al. 2006). They work well when model assumptions are reasonable and accurate.
However, in many cases, data distributions and relations of features are always complex.
It is impossible to assume an accurate feature relation or data distribution (Graham et al.
2007).

Generally, standard classification algorithms are applied on complete data sets. For classi-
ficationwithmissing data, researchers often share experience in statistical analysis. However,
it should be noted that the purpose of imputation is to keep accuracy of statistical indicators
with missing data (Scheffer 2002). While the purpose of classification is to get an accurate
classification model and prediction. Moreover, an inaccurate imputation introduces much
biased value. Consequently, it has side effect on classification. Therefore, when an accurate
imputation is not guaranteed, or observed values (already-known information) is enough for
model training, we should focus on how to trainingwith observed value rather than estimating
missing value.

Complete-case learning (CCL), which is the simplest and most efficient missing data
treatment, is practical and effective in many real cases (Batista and Monard 2003). CCL
marginalizes (omits or deletes) incomplete samples during model learning. Different from
imputation, CCL does not estimate missing value and no bias or error is introduced. How-
ever, there are two drawbacks in CCL. First, some observed values of incomplete samples
are marginalized as well as missing value. Possibly they are useful information for clas-
sification. It is a good choice when missing values are not important and marginalized
information is relatively small. For high dimensional data, the amount of marginalized
values is much larger and this kind of lost may be even more serious and unacceptable.
Second, CCL does not work for the situation that missing value exists in testing samples. In
other words, a classification model trained in full feature space can not classify incomplete
samples.

In this work, we propose an extreme learning machine (ELM) (Huang 2015) based
complete-case projection subspace (CPS) ensemble framework for classification with high
dimensional missing data. Meanwhile, two subspace partition strategies are developed.
Inspired by bagging, we invent an overlapped subspace partition for incomplete datasets
with uniform missing patterns. Considering that dissimilar missing pattern of different fea-
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tures, we invent a missing pattern-sensitive partition strategy for incomplete datasets with
non-uniform missing patterns.

CPS learns from feature values of incomplete samples as well as complete samples. Addi-
tionally, it manages to classify incomplete samples in subspaces. It constructs several diverse
models by training data in different feature subspaces and then integrates them by weighted
majority vote. For ensemble learning, diversity is a good guarantee for learning accuracy.
CPS achieves its diversity by different feature subspaces and complete-case projection. In
this work, we choose ELM as the component classifier (actually, most existing classification
algorithms can be used by the same way). Two partition strategies are verified in uniform
missing patterns and non-uniform missing patterns respectively.

The main contributions of this work are: (1) We develop a CPS ensemble classification
framework for high dimensional missing data. (2) We design an bootstrap subspace parti-
tion strategy for incomplete datasets with uniform missing patterns. (3) We invent a missing
pattern-sensitive subspace partition strategy for incomplete datasets with non-uniform miss-
ing patterns. The remainder of this paper is organized as follows. Section 2 presents a brief
review of two classical ensemble methods. Section 3 contains detailed description of CSP
ensemble framework and two subspace partition strategies. Section 4 discusses experimental
results. Section 5 gives conclusion.

2 Preliminary

2.1 Extreme learning machine

Extreme learning machine (ELM) is an unifying learning algorithm which can be used for
several learning tasks including classification. It was originally developed for the single-
hidden-layer feed forward neural networks (SLFNs), and then extended to the generalized
SLFNs (Huang et al. 2012). ELMhas already been used inmany real tasks such as biomedical
engineering (Huang et al. 2015), image 3D shape segmentation (Xie et al. 2014), and been
extended tomany kind of learning tasks (Li andMao 2016). Particularly, ELM iswell suitable
for some high dimensional tasks (Cao and Lin 2015) and been integrated in some ensemble
methods (Cao et al. 2012).

Given training set consisting of N training samples : {(x j , t j )|x j ∈ Rn, t j ∈ Rm, j =
1, 2, . . . , N } , where x j is a n-dimensional feature vector and t j is a m-dimensional label
vector. The output of ELM is formulated as Eq. (1)

fL(x) =
L∑

i=1

βi hi (x) = h(x)β (1)

where β = [β1,…, βL ] is the vector of the weights between the hidden layer of L nodes to the
output nodes, and h(.) represents the vector of the activation function. hi (x) = ωi .x+bi , ωi
and bi are random parameters. In training phase, ELM approximates these N samples with

zero error means that there exist β such that t j = fL(x j ) =
L∑

i=1
βi h(ωi , bi , x j ), which can

be equally formulated as Eq. (2),

Hβ = T, (2)
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where

H =
⎡

⎢⎣
h(ω1, b1, x1) · · · h(ωL , bL , x1)
...

. . .
...

h(ω1, b1, xN ) · · · h(ωL , bL , xN )

⎤

⎥⎦

N∗L
ELM aims to minimize the training error ||Hβ − T|| and the norm of weights ||β||, the

smallest norm least-squares solution of the above linear system is

β = H†T (3)

Compared with other learning algorithms, the most significant advantage of ELM is effi-
ciency. ELM randomly generates parameters ω and b for hidden nodes rather than iteratively
adjusting network parameters. Meanwhile, with the objective of reaching the smallest train-
ing error and the smallest norm of output weights, ELM achieves accurate learning as well
as good generalization. All these characteristics make ELM a good candidate for component
classifier in our subspace ensemble framework.

2.2 Ensemble learning

In this section, we give a brief introduction of two classical ensemble methods, i.e. random
subspace ensemble and bagging ensemble, which are just the inspirations of our work.

Subspace ensemble (SE) consists of several classifiers each operating in a subspace of the
original feature space. Random subspace ensemble (RSE) is the simplest and classical RS. It
partitions feature space randomly and trains component classifier on each feature subspace.
Component classifiers trained in different subspaces leads to diversity and final prediction
is based on the outputs of all component classifiers (Bryll et al. 2003). Random subspace
method has already successfully been used for classical learning algorithms, e.g. extreme
learning machine (Huang et al. 2014), support vector machines (Bertoni et al. 2005), nearest
neighbors (Ho 1998), tree-based algorithms (Banfield et al. 2007) and etc. The framework is
an attractive choice for problems where the number of features is large, such as fMRI data
(Kuncheva et al. 2010) or gene expression data (Bertoni et al. 2005).

Bagging ensemble is a classical ensemble method. It generates diversified component
classifiers by different training sets (Skurichina and Duin 2001). Bagging samples training
set repeatedly with replacement, which produces different versions of training sets. Different
components are trained by different versions of training set. Final classification model is
built by votes of components. Bagging has been successfully used in many real classification
tasks. Compared with single classifier, it improves the stability and accuracy. It is worth
mentioning that some samples may occur in many training sets while some samples may not
be included in any training set. This tells us that ensemble can compensate for some loss of
samples, which gives us inspiration for missing data treatment. In addition, different versions
of training set are independent. Therefore, they can be parallel generated and corresponding
components ca be trained simultaneously.

3 Proposed methodology

In this section, we propose complete-case projection subspace ensemble framework. In this
framework, ELM is selected as a component classifier. Two subspace partition strategies are
developed for uniform missing patterns and non-uniform missing patterns respectively.
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Fig. 1 Complete-case projection subspace ensemble framework

3.1 Complete-case projection ensemble framework

Inspired by classical ensemble methods (introduced in Sect. 2.2) and CCL, we propose a
complete-case projection subspace (CPS) ensemble framework for classification with high
dimensional missing data (depicted in Fig. 1).

CPS projects incomplete data into different feature subspaces. Specifically, for each sub-
space projection, once a sample is fully observed in a subspace (rather than in whole feature
space), it will be kept in the projection. Otherwise, it will be omitted in this subspace.

CPS is defined as follows: Let DM∗N = {x j | j = 1, 2 . . . , M} be a dataset withM samples
and N features. Sample x j = (x j

(1), x j
(2), . . . , x j

(N )). DM∗N is projected into subspace S
(|S| = n < N ) as Eq. (4).

CPSS(D) =
{(

x j
(s1), x j

(s2) . . . x j
(sn) . . .

) ∣∣∀k∀ j, x j
(sk ) �= NaN

}
, (4)

where NaN denotes missing value. For an incomplete dataset, the less features in its sub-
spaces, the more samples are preserved after complete-sensitive subspace projection.

Both features and training samples are projected into different subspaces, which naturally
results in diverse component classifiers. Through projection, all training subsets are complete.
Therefore, many incomplete samples in whole space turns into complete in subspaces and
their observed value are used in training. In addition, for most incomplete testing samples, it
can be predicted by some component classifiers at least.

3.2 Bootstrapping subspace partition

For datasets with not too many features, if we divide feature space in a mutually-exclusive
way (such as random subspace ensemble), the number of the feature in subspace is too
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Fig. 2 Missing indication matrix

small. It makes learning in subspaces meaningless. Inspired by baggingmethods, we propose
bootstrapping subspace ensemble method (BS). As a kind of overlapped partition method,
BS generates subspaces by bootstrapping features rather than samples. In order to make
equal chance for all possible feature combinations in subspaces, BS maintains a dynamic
distribution for feature selection. During feature selection for subspace s, BS draws a random
bootstrap sample of nof features according to then current feature distribution Ds (nof is
a preset value). Initially, all features are of equal opportunity to be selected (i.e. D1(1) =
D1(2) = · · · = D1(N )). Once feature f is picked for a subspace, its opportunity for next
selection decreases as Dt+1( f ) = Dt ( f )

γ
(γ ≥ 1).

3.3 Missing pattern-sensitive subspace partition

For incomplete datasets with non-uniform missing patterns, random subspace ensemble is a
favorable choice. Traditional subspace ensemble method divides a feature space randomly.
In recent years, some feature selection methods are used for feature space partition. The main
focus of those methods is relevance and correlation of features.

Unlike existing methods, we aim to get as much observed values (from incomplete
samples) as possible in complete-case projection. We propose a missing pattern-sensitive
subspace (MPS) partition strategy. For missing data, traditional subspace methods may lead
to serious loss of observed value in each subspace under complete-case projection. While
MPS partition keeps as many observed values as possible by the way of grouping features
by missing pattern. Here, we illustrate it by a toy example in Fig. 2. Indication matrix for a
dataset consists of 0 (which denotes missing value) and 1 (which denotes observed value).
Each column fi indicates a missing pattern of a feature (i.e. mp-col) while each row si indi-
cates a missing pattern of a sample (i.e. mp-row). It can be observed that f1 and f5 have
similar missing pattern, while f1 and f4 are quite different.

We quantify similarity of missing pattern by Eq. (5).

Sim_MP(i, j) =
[
fi and f j

]
1[

fi or f j
]
1

(5)

where operator [.]1 counts the number of value 1 in a vector. and and or are vector logical
operation. For example, Sim_MP(1, 4) equals to 0.33 and Sim_MP(1, 5) equals to 1.

The detail of MPS partition is given in algorithm 1. First, it initializes each subspace with
one feature. These initial features are of relatively low Sim_MP value and are determined
by a heuristic way. Then, remaining features are added to its corresponding subspaces (i.e.
the subspace which shares most similar missing pattern with the feature). In step 7, function
SU BS_MATCH returns the subspace which has the most similar missing pattern with
feature f . Missing pattern of a subspace is logical and of all feature pattern vectors in the
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subspace. The Sim_MP value of a feature and a subspace is calculated by the same way as
Eq. (5).

Algorithm 1Missing Pattern-sensitive Subspace Partition
1: procedure MPS_Partition(mp, k) � I : miss indication matrix
2:

� k: number of subspaces
3: ini f s ← GET _I N I T I AL_FE ATU RES(mp, k)
4: ini tial subs1, subs2 . . . , subsk wi th ini f s � subs: feature subspace
5: subspaces ← {subs1, subs2 . . . , subsk }
6: for f ∈ FS do � FS: set of features that are not added into any subs
7: s ← SU BS_MATCH( f, subspaces) � find the most similar subspace for f
8: insert f into s
9: end for
10: return subspaces
11: end procedure
12:
13: procedure get_initial_features(mp, k)
14: ini f s ← { fa , fb} � fa , fb are features with minimum Sim_MP value
15: count ← 2
16: while count < k do
17: f ← f eature which has minimum mps wi th ini f s
18: insert f into ini f s
19: count + +
20: end while
21: return ini f s � ini f s consists of features with relatively low Sim_MP value
22: end procedure

3.4 Components combination

CPS combines component classifiers with weighted majority vote. There are two consider-
ations in our weighting strategy. On the one hand, it is possible that a component is more
accurate when it is acquired by learning more complete samples. On another hand, a model
with higher training accuracy is more reliable. Therefore, component weights are calculated
as Eq. (6) and then normalized as Eq. (7). The In addition, more complete datasets leads to
more accurate learning.

ωi = completeness_ratio ∗ log2

(
acci

1 − acci

)
, i = 1, 2, . . . , N (6)

where completeness_ratio = #complete samples in the subspace
#total samples (completeness_ratio reflects

the number of complete samples in each subspace).

ωi = ωi√
ω2
1 + ω2

2 + · · · + ω2
N

, i = 1, 2, . . . , K , K ≤ N (7)

In testing phase, for complete samples, the final outputs of ensemble are given by Eq. (8)
(K = N ). In the case of prediction for an incomplete sample, only the component classifiers
whose input space do not include the missing features of the incomplete sample are weighted
and combined (K ≤ N ).
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pred(x) = argmax
c

K∑

i=1

ωi ∗ p(c)
i (x)

∑C
c=1 p

(c)
i (x)

, (8)

where C is class label set, and p(c)
i (x) denotes i component classifier predicts sample x

belongs to class c.

3.5 Discussion

Classification with missing data by ensemble method is not new. As the most representative
work, (Peter and Solly 1995) uses multiple neural network for classify thyroid disease data
(with missing values). In order to get deeper understanding of the proposed methods of our
work, we illustrate the novelty of the proposed method by discussing the difference between
this work from Peter and Solly (1995). The differences are mainly in three aspects: (1)
The proposed framework is specially designed for high dimensional data. In detail, it uses
two partition methods, .i.e. bootstrap partition and missing pattern (from the perspective of
features) based partition. While the reduced network is not well fit for high dimensional
data. If the number of features are high (e.g. there are N features), there may be 2N missing
patterns (from the perspective of samples), leading to 2N component learners, which can be
expensive and infeasible for high dimensional data. (2) The proposed framework chooses
extreme learningmachine learning algorithm as the base learner. Due to its learning efficiency
and diversity (randomly generated input weights and biases). Compared with other neural
network, Extreme learning machine is more suitable to ensemble method. (3) The way of
combination are different. The outputs of base classifier in reduced neural network take a
range of values between 0.0 and 1.0 and the final output decided by winner-takes-all strategy.
In our proposedmethod, outputs of base classifiers are either 0 or 1. Final output is ensembled
by voting strategy.

4 Experiments

This section demonstrates the effectiveness of CPS framework and two proposed parti-
tion methods. All simulations are implemented on MATLAB 2015a environment running
in Core(TM) 3.0 GHz CPU and 16 GB RAM. The data sets and their characteristics are
presented in the Table 1. They are from the UCI Machine Learning Repository (Lichman

Table 1 Datasets used in the experiments

Dataset Training samples Testing samples Feature dimension Class number

Ionosphere 234 117 34 2

Segmentation 1540 770 19 7

WBCD 466 233 30 2

Vehicle 564 282 18 4

Madelon 2933 1467 500 2

Isolet 6238 1559 618 26

Multiple features 1333 667 649 10

Internet ads. 2186 1093 1558 2
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Fig. 3 Completeness ratios in whole feature space (WS), BS1, and BS2

2013)with various dimensions ranging from 19 to 1588 and various numbers of samples from
234 to 6238. The missing value are produced artificially for controlling missing ratio. We
simulate missing value with uniformmissing patterns on first four datasets (used in Sect. 4.1)
and non-uniform missing patterns on the other four datasets (used in Sect. 4.2).

For all simulations, the best parameters (activation function and number of hidden units)
of ELM is selected by cross-validation. In addition, we use two popular imputation methods
as contrasts. Abbreviations are as follows. MI indicates single classifier running on data
with mean imputation and KNNI indicates single classifier running on data with k nearest
neighbors imputation. CPS-BS denotes CPS framework with overlapped partition. CPS-
MPS means CPS framework with missing pattern-sensitive partition. CPS-RS represents
CPS framework with random subspace partition.

4.1 Classification accuracy of incomplete datasets with uniform missing pattern

In this subsection, we aim to demonstrate the advantage of BS partition method for datasets
with uniform missing pattern. For controlling missing ratio, we produce missing data artifi-
cially andmissing data distribute uniformly and randomly.We record the completeness ratios
of training sets in whole feature space and BS. The completeness ratios of BS are average
values of all subspaces. The number of features in BS is selected empirically. Additionally,
BS with different feature numbers in subspace are compared. BS1 denotes overlapped sub-

space ensemble with
√

f features and BS2 means overlapped subspace ensemble with
√

f
2

features. ( f is the number of features in whole feature space).
Figure 3 shows the completeness ratios of training sets. The completeness ratio in whole

feature space drops sharply with missing ratio increasing. While in subspaces, completeness
ratio decreases mildly. It can be concluded that more complete samples are derived through
subspace projection. Further, the result indicates that more observed values are learned by
component classifiers in subspaces than in whole feature space. Meanwhile, it shows that
less number of features in subspaces leads to higher completeness ratio.

The corresponding classification accuracy is recorded in Table 2. Figure 4 depicts the trend
of classification accuracy change under different missing ratios. The number of classifiers
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Table 2 Classification accuracy of incomplete datasets with uniform missing patterns (optimal value of each
row is shown in bold)

Dataset MR (%) CPS-BS1 (%) CPS-BS2 (%) MI (%) KNNI (%)

Ionosphere 5 90.71 88.52 89.63 90.82

10 89.06 86.93 86.24 88.37

15 86.92 83.76 82.76 83.92

20 83.07 81.36 80.19 82.54

Segmentation 5 77.03 80.69 78.23 81.07

10 76.63 78.23 76.37 78.38

15 73.58 75.39 71.64 73.63

20 72.83 74.62 70.56 72.9

Wdbc 5 93.85 93.07 93.41 94.06

10 92.64 92.93 91.67 92.71

15 90.53 91.83 89.35 91.67

20 88.39 90.67 85.08 87.72

Vehicle 5 74.23 76.36 72.63 75.37

10 71.06 74.83 71.38 73.94

15 69.73 74.69 68.06 70.62

20 64.37 73.22 62.05 66.47

(i.e. the number of subspaces) is set to be 50 empirically. In practical, optimal value is
task dependent and can be derived by cross-validation. Following are analysis based on
observations.

(1) For the Ionosphere dataset, when missing ratio is less than 5%, all algorithms achieve
relatively accurate learning. When missing ratio exceeds 10%, CPS-BS1 performs a slightly
better than KNNI. As missing ratio goes on, CPS-BS1 shows more and more obvious advan-
tage than others. (2) For the Segmentation dataset, when missing ratio is below 10%, KNNI
is the most accurate. When missing ratio is higher than 10%, CPS-BS1 performs better than
others and MI drops sharply. The accuracies of CPS-BS2 and KNNI are close. (3) For the
WDBC dataset, the performance of all methods shows similar classification ability. MI is the
worst method when missing ratio exceed 10%. (4) For the Vehicle dataset, CPS-BS achieves
the most accurate learning all the time. while the accuracies of other three decrease greatly
as missing ratio goes up. KNNI is the second best method and MI is the most inaccurate.

Above all, completeness ratio and classification accuracy are positively correlative. As
the missing ratio increases, both the classification accuracy and the completeness ratio drop.
CPS-BS1 shows obvious advantage over other methods, especially when missing ratio is
high. CPS-BS2 performs worse than CPS-BS1 and KNNI in most cases. MI declines most
seriously as missing value becomes more. Compared with imputation methods, CPS drops
more mildly as missing ratio goes up.

4.2 Classification accuracy of incomplete datasets with non-uniform missing
pattern

For incomplete datasets with non-uniform missing patterns, missing values concentrate in
a few features. Instead of producing missing value completely randomly, we simulate this
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Fig. 4 Classification accuracy of incomplete datasets with uniform missing pattern
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Fig. 5 Classification accuracy over different numbers of subspaces

situation by selecting some easy-missing features inwhichmissing value resides. Specifically,
we randomly choose a subset (of 10%) of features as easy-missing features and set missing
ratio to be (2, 4, 6, 8%) for them.

The number of subspaces is critical for subspace ensemble classification. In our experi-
ments, the value selected for the number of subspaces (i.e. k) are 5, 7, 9, 11, 13, 15, 17, 19,
21, 23, 25. Accordingly, the subsampling number of features in subspaces are 20, 14,… and
4%. Figure 5 presents the classification accuracy of complete datasets with different num-
bers of subspaces. It can be seen that different k lead to different classification accuracies.
Appropriate choice of k value is task-dependent. Note that for incomplete data sets, k value
affects average completeness (in subspaces), which further affects classification accuracy.
Therefore, we decide k for incomplete datasets by cross-validation.

Here, we first compare the completeness of different partition methods (i.e. RS and MPS)
and then observe their classification accuracies. Figure 6 depicts the average completeness
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Fig. 6 Average completeness of feature subspaces. MR denotes missing ratio

of RS and MPS with different k value. Table 3 shows the classification accuracy of the four
datasets with variousmissing ratios. It can be observed that (1) For theMadelon dataset, when
missing ratio equals to 2%, CPS-RS is the most accurate method. For the rest of conditions,
CPS-MPS performs most accurate. (2) For the Isolet dataset, when missing ratio is less than
4%, KNNI and CPS-RS achieve comparably accurate classification. When missing ratio
exceeds to 6%, CPS-MPS is the most accurate method and the accuracy of CPS-RS drops
sharply. (3) For the Multiple feature dataset, CPS-MPS is the most accurate all the time.
CPS-RS performs well when missing ratio is less than 4%. KNNI preforms stably in various
missing ratios. (4) For the Internet Ads. dataset, KNNI shows obvious advantage over others.
CPS-MPS is the second accurate method.

Figure 7 demonstrates the change of classification accuracy with increasing missing ratio
more clearly. It can be observed that (1) MI curve is at bottom in most cases. (2) Although
CPS-RS preforms comparably accurate, it drops fast, especially in Multiple feature and
Internet Ads. (3) CPS-MPS achieve accurate and stable classification over different missing
ratios. (4) Sometimes KNNI performs most accurate (e.g. Internet Ads.).

To get a deeper understanding of the proposed methods, further explanations are given as
following. Two bases of this work are: (1) With the assumption that observed values (includ-
ing the observed value of incomplete samples) are useful for learning, the more information
being utilized, the more accurate a classification model is. (2) The combination of multiple
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Table 3 Classification accuracy of datasets with non-uniform missing patterns

Dataset MR (%) MI (%) KNNI (%) CPS-RS (%) CPS-MPS (%)

Madelon 2 78.12 79.83 80.75 80.52

4 78.49 79.35 78.36 80.63

6 71.53 77.62 74.29 79.85

8 68.07 76.59 71.79 75.6

Isolet 2 89.83 91.26 91.68 90.69

4 85.67 90.35 83.67 90.26

6 82.73 88.24 83.23 88.37

8 80.54 86.33 78.67 87.68

Multiple features 2 87.75 88.95 90.92 91.16

4 85.29 87.64 90.38 90.81

6 84.37 87.73 83.37 89.35

8 83.38 86.64 75.79 88.67

Internet ads. 2 77.67 80.59 75.39 78.46

4 73.38 79.21 72.67 76.52

6 71.26 77.69 69.25 73.14

8 63.37 76.34 65.19 71.26

Optimal value of each row is in bold
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Fig. 7 Classification accuracy of incomplete datasets with non-uniform missing patterns
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classifiers is effective for high dimensional data. Since the completeness ratio increases sig-
nificantly in subspaces, CPS learns more values from incomplete samples than CCL in whole
feature space. Compared with imputation methods, CPS does not introduce any estimated
value which may lead to additional error. Meanwhile, we use different subspace partition
methods for uniform and non-uniform missing patterns respectively. For datasets with the
uniform missing pattern, BS bootstraps features from whole feature space. For datasets with
the non-uniform missing pattern, MPS partition further improves the completeness ratio of
subspaces.

5 Conclusion and future work

In this paper, we propose an ELM-based complete-case projection subspace ensemble frame-
work for classificationwith high dimensionmissing data. Additionally, BS andMPS partition
strategies are designed for datasets with different missing patterns. CPS learns from incom-
plete samples as well as complete ones. Additionally, incomplete samples can be predicted
by component classifiers in their corresponding subspaces. The experimental results demon-
strate that CPS outperforms imputation methods in classification accuracy in most cases.
In future, we are going to parallelize CPS in a cluster environment. Next, we continue to
explore feature space partition algorithm considering feature relation as well as the number
of complete samples.
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