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Abstract Relevance feedback (RF) has long been an important approach for multi-media
retrieval because of the semantic gap in image content, where SVM based methods are
widely applied to RF of content-based image retrieval. However, RF based on SVM still
has some limitations: (1) the high dimension of image features always make the RF time-
consuming; (2) the model of SVM is not discriminative, because labels of image features
are not sufficiently exploited. To solve above problems, we proposed robust discriminative
extreme learningmachine (RDELM) in this paper. RDELM involved both robust within-class
and between-class scatter matrices to enhance the discrimination capacity of ELM for RF.
Furthermore, an angle criterion dimensionality reduction method is utilized to extract the
discriminative information for RDELM. Experimental results on four benchmark datasets
(Corel-1K, Corel-5K, Corel-10K and MSRC) illustrate that our proposed RF method in this
paper achieves better performance than several state-of-the-art methods.
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1 Introduction

Image retrieval is an effective approach to search the special images for queries, and has
many emerging applications. There are a significant number of methods for extracting image
features which play an important role in CBIR (Swain and Ballard 1991; Liu et al. 2011;
Ojala et al. 2002). Image representation methods mainly fall into three categories: color,
texture and shape feature. Liu et al. (2011) proposeMicro-structure Descriptor (MSD) which
used edge orientation to extract micro-structures of images. It depends on the similarity of
underlying colors and structure element correlation, then a 72-length feature vector can be
obtained for describing an image. Ojala et al. (2002) propose local binary patterns (LBP) as
texture descriptor of an image, which is widely applied to face recognition (Tan and Triggs
2007), image retrieval (Murala and Wu 2014), etc.

The extracting methods of image feature have improved the image retrieval results, but do
not always describe the semantic of images.Consequently,RFbecomes an essential technique
to deal with the semantic gap (see Fig. 1) (Feng et al. 2015). Yong et al. first involved the
RF concept into a CBIR system. Then, many methods of RF have been proposed to enhance
image retrieval results achieved by Non-RF based methods while semantic gap existed. He
(2004) proposed a semi-supervised learning approach to keep the local space information of
the query image by calculating the local data basis of the query image from RF. Moreover,
by utilizing Locality Preserving Projections (LPP) algorithm (He and Niyogi 2003), the local
visual features were extracted and the graph of LPP were reconstructed with RF. Kundu
et al. (2015) proposed graph-based relevance feedback mechanism for image retrieval task.
Zhang et al. (2015) proposed query special rank fusion to solve the ranking problem in
image retrieval which could also help RF to improve the retrieval results. Besides, many
SVM active learning (Hoi et al. 2008; Anitha and Rinesh 2013; Lu et al. 2006; Hoi and Lyu
2005; Wang et al. 2011) algorithms have been applied in RF-CBIR. However, SVM based
algorithms are difficult to obtain exciting classification results, for the labeled sample size is
generally small in RF-CBIR. Hoi et al. (2008) proposed a semi-supervised SVM batch mode
active learning algorithm. The supervised SVM classifier is trained by constructing a kernel
function learned from the Laplacian graph which represents the global geometry structure of
the samples. And then the supervised SVM classifier is used to label samples containingmost
information. By using the integrated SVM learner in RF-CBIR, Wang et al. (2011) handled
the unbalance problem between positive and negative samples with the asymmetric bagging
SVM and avoided the outfitting problem with subspace random chosen.

Fig. 1 Semantic gap in image retrieval
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ELM is an efficient classification method. There are many ELM-based modified versions
in recent years (Huang et al. 2006, 2012; Huang and Chen 2007; Horata et al. 2012; Deng
et al. 2009; Liu et al. 2014; Tang and Han 2009; Zhang and Yang 2015; Huang 2015; Cao and
Lin 2015; Cao et al. 2015a, b, 2012). Huang et al. proved that by adding activation functions
as nodes randomly, SLFNs can approximate any continuous target function, such as, RBF.
On this basis, they proposed incremental ELM algorithm (Huang et al. 2006) and convex
incremental ELM algorithm (Huang and Chen 2007). Outliers of the training datasets have
a great impact on the precision of ELM (Zhang and Luo 2015). Considering this, Horata
et al. (2012) proposed the Robust ELM algorithm, which gets the output weights by con-
structing an Extended Complete Orthogonal Decomposition. The final output weights are
computed by iterating the initial output weights. Besides, the time complexity of Robust
ELM is equal to that output weights computed by Singular Value Decomposition (SVD).
Its main reason is that the empirical risk of ELM is lowered by the Robust ELM algorithm
through the reasonable numerical computation. Hence, we can conclude that the robustness
of ELM is closely related to the empirical risk. Deng et al. (2009) proposed a weighted
Regular ELM (RELM) algorithm. This algorithm enhances the robustness of RELM to out-
liers and by lowering the empirical risk weights of outliers. Even if the methods introduced
above have done a lot of improvements on ELM, but there are always few labeled samples
in real-world datasets. In order to take full advantage of unlabeled samples and improve
the generalization capability of ELM, Liu et al. (2014) proposed a semi-supervised ELM,
which extends the ELM algorithm to a semi-supervised version based on the graph theory.
In addition to the above theoretical improvements on ELM, some applications of ELM-
related methods also have been proposed. For instance, Iosifidis et al. proposed (Tang and
Han 2009) minimum class variance extreme learning machine method for human action
recognition [also see related papers (Iosifidis et al. 2013, 2014; Mohammed et al. 2011)].
Akusok et al. utilized optimally pruned ELM to analysis web content (Minhas et al. 2010).
Jin et al. (2015) proposed an Ensemble based extreme learning machine method for face
matching.

There are few image retrieval researches related to ELM and discriminative methods.
From previous works, we know that the data distribution in ELM feature space plays
an important role on clustering (Akusok et al. 2015) and classification (Tang and Han
2009). Motivated by this idea, in this paper, we exploit a novel ELM-based method called
RDELM for RF in CBIR system (see Fig. 2). The main contributions of RDELM are as
follows:

(1) RDELM utilizes within and between scatters in hidden layer to detect a discriminative
classification model.

(2) The model of RDELM can balance the within and between scatters of feature space by
using cosine metric.

(3) RDELM involves supervised reductionwith angle criterion in ELM feature space, which
makes the proposed classification method stable and robust in image retrieval task.

The rest of the paper is organized as follows. ELM classification method is reviewed in
Sect. 2. Section 3 analyzes the scatters in ELM feature space, and proposes a supervised
dimensionality reduction method. In Sect. 4, we introduce the RDELM method for RF in
CBIR system. Experimental results are shown in Sect. 5. The last section is the conclusion
of this paper.
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Fig. 2 RDELM for relevance feedback in CBIR system

2 Brief of ELM

Given D dimensional dataset X = [x1, x2, . . . , xN ]T ∈ RD×N with N samples , and corre-
sponding labels ti = [ti1, tt2, . . . , tim]T ∈ Rm , with Ñ hidden neurons in network, then the
output of the network can be obtained by the following equation

Ñ∑

i=1

βi g(ai x j + b j ) = o j (1)

where j = 1, . . . , N , g(ai x j + b j ) denotes activation function in Neural Networks (NN),
ai = [ai1, ai2, . . . , aiN ]T is the weight vector connecting input neurons and the i th hidden
node, bi is bias of the i th hidden node.

For hidden neurons Ñ , Eq. (1) can be rewritten as amatrix format: Hβ = T , where network

hidden layer outputmatrix canbe expressed as H =

⎡

⎢⎢⎣

g(a1, x1, b1) · · · g(aÑ , x1, bÑ )

.

.

. · · ·
.
.
.

g(a1, xN , b1) · · · g(aÑ , xN , bÑ )

⎤

⎥⎥⎦

N×Ñ

=

⎡

⎢⎣

h1
.
.
.

hN

⎤

⎥⎦ , β =

⎡

⎢⎢⎣

βT
1

.

.

.

βT
Ñ

⎤
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Ñ×m

and T =

⎡

⎢⎢⎣

tT1
.
.
.

tTN

⎤

⎥⎥⎦

N×m

, hi =
[
g(a1, xi , b1), . . . , g(aÑ , xi , bÑ )

]
, i =

1, 2, . . . , N . The standard single hidden feedforward neural networks (SLFNs) is to compute
appropriate âi , b̂i and β̂(i = 1, . . . , Ñ ) to satisfy:

∥∥∥H
(
â1, . . . , âÑ , b̂1, . . . , b̂Ñ

)
β − T

∥∥∥
2

2
= min

ai ,bi ,β

∥∥H
(
a1, . . . , aÑ , b1, . . . , bÑ

)
β − T

∥∥2
2

(2)
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Equation (2) can be solved by gradient-based methods. Liu et al. (2011) have proved
that the weights between input layer and the biases need no adjustment compared with the
standard SLFNs. The input weight ai and the biases bi of hidden layer in ELMcan be selected
randomly, if the activation function of network is continuously differentiable. From Eq. (2),
it is clear that the solution of SLFNs’ network can be get by the least-squares methods of the
linear system Hβ = T .

If the number of hidden neurons Ñ is equivalent to the number of training samples N , that
is Ñ = N , the matrix H is invertible directly. However, in most cases Ñ �= N , the solution
of Hβ = T can be written as

β̂ = H†T (3)

where H† denotes the generalized inverse matrix of H . H† can be calculated by SVD or
least-squares. Meanwhile, in order to avoid outfitting, we hope to keep the weights as small
as possible. Thus, the optimization model of ELM can be modeled as follows:

min
β

1

2
‖β‖22 + 1

2
C

N∑

i=1

ξ2i

s.t.
Ñ∑

i=1

βi g(ai · x j + b j ) − t j =ξ j , j = 1, 2, . . . , N (4)

where C is a penalty factor, which can balance the empirical risk and structural risk. The
optimization model in Eq. (4) can be transformed to an unconstrained optimization problem
of solving β with Lagrange method.

ELM can be simply implemented as follows:

(1) Assign arbitrary input weights ai and bias bi , i = 1, . . . , Ñ ;
(2) Calculate the hidden layer output matrix H by active function;
(3) Compute the output weight β̂ = H†T , where T = [t1, . . . , tN ]T .

3 Robust supervised dimensionality reduction for discriminative extreme
learning machine

In this section, we give a theoretical analysis of the within and between scatter in ELMhidden
layer matrix H = [h1, . . . , hN ]T . Then, we introduce supervised dimensionality reduction
in ELM feature space if Ñ < N , otherwise Ñ ≥ N , a dimensionality reduction free method
will be proposed in Sect. 4.

Supposed that matrix H is grouped as H = [H1, H2, . . . , Hm]T , where Hi ∈ RÑ×Ni

is the data matrix consisting of data from the i th class with a sample size of Ni satisfying
N = ∑m

i=1 Ni . The mean vector of the i th class can be defined as μi
h = 1

Ni

∑Ni
j=1 h

i
j , and

the mean vector of H can be calculated as μh = 1
N

∑N
i=1 hi .

In linear discriminant analysis (LDA), the minimization of within-class scatter corre-

sponding subspace is WLDA
opt = argmin

∑
i, j

∥∥∥WWT
(
hij − μi

h

)∥∥∥
2

2
, where WWT (·) is the

orthogonal projection of (·). (·)e denotes the unit vector of (·). Then we can compute the

cosine value of αi
j =

〈
WWT

(
hij − μh

i

)
, hij − μh

i

〉
as follows:
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cos2 αi
j =

[(
hij − μi

h

)T · WWT
(
hij − μi

h

)]2

∥∥∥hij − μi
h

∥∥∥
2

2

∥∥∥WWT
(
hij − μi

h

)∥∥∥
2

2

=
(
hij − μi

h

)T

e
· WWT

(
hij − μi

h

)

e
(5)

From formula (5) we can see that minimization of within-class scatter equals to
minW

∑
i, j cos

2 αi
j in geometry. Similarly, the maximization of between-class scatter equals

to maxW
∑

i, j cos
2 β i

h in geometry, where β i
h = 〈

WWT (hi − μh) , hi − μh
〉
.

m∑

i=1

⎡

⎣Ni

N

1

Ni

Ni∑

j=1

cos2 αi
j

⎤

⎦ = tr

⎡

⎣ 1

N
WT

⎡

⎣
m∑

i=1

Ni∑

j=1

(
hij − μi

h

)T

e

(
hij − μi

h

)

e

⎤

⎦W

⎤

⎦

= tr
[
WT S′

wW
]

(6)

where S′
w = 1

N

∑m
i=1

∑Ni
j=1

(
hij − μi

h

)T

e

(
hij − μi

h

)

e
= HT

weHwe,
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N

[(
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h

)
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(
hN1
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h

)

e
, . . . ,

(
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h

)
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m − μm

h

)

e
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.

The between-class scatter can be written as:

m∑

i=1

(
Ni

N
cos2 β i

h

)
= 1

N

m∑

i=1

Ni
(
μi
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)
WWT
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WT S′
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]

(7)

where S′
b = 1

N

∑m
i=1 Ni

(
μi
h − μh

)T
e

(
μi
h − μh

)
e = HT

beHbe,
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N

[√
N1

(
μ1
h − μh

)
e , . . . ,

√
Nm

(
μm
h − μh

)
e

]T
.

Then, the supervised dimensionality reduction function based on angle criterion can be
expressed as follows:

F (W ) = argmin
w

tr
[
WT (

S′
w − S′

b

)
W

]
(8)

The constraint of Eq. (8) is WTW = I , where I is an identity matrix.
S′
w and S′

b can balance the scatter of within and between class. This conclusion is shown
in Fig. 3. There are three classes features in Fig. 3a, b. In Fig. 3a, LDA can obtain an
appropriate subspace, but fails in Fig. 3b. Comparing with LDA, our angle criterion approach
is suitable in the two feature spaces because of the scatter balance. The conclusion is detailed
in reference Liu et al. (2015).

4 Robust discriminative extreme learning machine for RF

In this section, we will propose the RDELM model for classification, and give a RDELM-
based relevance feedback method for CBIR system. RDELM is introduced in Sect. 4.1,
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Fig. 3 Comparing our robust scatter method to LDA in ELM hyperplane selection. a Feature space data1,
b feature space data2

(a) (b)

Fig. 4 Comparison of hyper plane on different versions ELM. aMCVELM and ELM, bRDELM,MCVELM
and ELM

and both dimensionality reduction based RDELM and non-dimensionality reduction based
RDELM methods are included. In Sect. 4.2, the RDELM-based retrieval method is utilized
on relevance feedback technique for CBIR system.

4.1 Robust discriminative extreme learning machine

Weknow that the original ELMutilizes H to compute the output weights β directly. Actually,
there are some important structures in hidden layer feature space of ELM. For example, He
et al. (2014) proposed clustering method in ELM feature space. When training samples
containing outliers, over-fitting problem is important to the classifier (see Fig. 4b).

As shown in Fig. 4, original ELM and MCVELM can get appropriate decision spaces
when there is no outlier involved in feature space (Fig. 4a). But if outliers exist because of
over-fitting in the feature space, the original ELM and MCVELM may generate unsuitable
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decision spaces (Fig. 4b). Consequently, we can involve the robust class structure to construct
an ELM-based classifier.

4.1.1 Dimensionality reduction free based version of RDELM

Considering theminimization ofwithin-class scatter, themaximization of between-class scat-
ter and the algorithm robustness, RDELMmethod can bemodeled by solving an optimization
problem as follows:

min
β

‖Hweβ‖22 − ‖Hbeβ‖22 + λ ‖β‖22 + C
N∑
i=1

‖ξi‖22
s.t. hiβ = ti − ξi , i = 1, 2, . . . , N

(9)

In (9), ‖Hweβ‖22 and ‖Hbeβ‖22 aim to balance the class structure of the feature space in
ELM, λ ‖β‖22 is to avoid over-fitting problem, and the C

∑N
i=1 ‖ξi‖22 term can minimize the

error which is generated by the constraint. RDELM is robust which is analyzed in Sect. 3.
The solution of (9) can be calculated by Lagrange multiplier method. β can be expressed by

β =
(
1

C

(
S′
w − S′

b

) + 1

Cλ
I + HT H

)−1

HT T (10)

From (10), the output function of RDELM classifier can be written as:

f (x) = h (x) β = h (x)

(
1

C

(
S′
w − S′

b

) + 1

Cλ
I + HT H

)−1

HT T (11)

4.1.2 Dimensionality reduction based version of RDELM

When Ñ < N , P = 1
C

(
S′
w − S′

b

) + 1
Cλ

I + HT H may not be invertible. To keep the
discriminative information and make P invertible, the dimensionality reduction method in
Eq. (8) can be applied to the basis RDELM classifier. Then, the within-class and between
scatter matrices are rewritten by Ŝw = WT S′

wW and Ŝb = WT S′
bW , respectively. So, the

final solution of dimensionality reduction based version of RDELM can be got by

β =
[
WT

(
1

C

(
S′
w − S′

b

) + 1

Cλ
I + HT H

)
W

]−1

WT HT T (12)

where W has been calculated by Eq. (8) in Sect. 3. We illustrate that Ñ is chosen by users.
Then, we will know whether Ñ < N or not, and select the method in Sects. 4.1.1 or 4.1.2.

4.2 The RF algorithm using RDELM

The scheme of relevance feedback based on SVM has been exploited in CBIR system.
However, an unsatisfied performance may be occurred because of the over-fitting problem
when the large number of feature dimensions need to be calculated in SVM. Furthermore,
SVM has to generate a lot of support vectors which leads to classification a time-consuming
work. In order to solve the above problems, a RDELM-based relevance feedback method is
proposed in CBIR system (see Fig. 5).

According to the above introduction, the retrieved images in the previous step can be
marked by users themselves. Take the retrieved images as training data, a two classes learning
algorithm can be carried out by ELM, based on which a classifier can be constructed. Given
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Fig. 5 Comparison of ELM-based and SVM-based RF image retrieval

an arbitrarily distinct sample set (xi , ti ), xi ∈ RD , where xi represents feature vector of an
image containing the information of color, texture and shape, and ti is the label of xi , ti ∈
{(1,−1)T , (−1, 1)T }. Then constructing a classifier by ELM algorithm, and classifying rest
images into relevant class or irrelevant class. On this basis, we can obtain a better result after
several feedbacks after sorting images according to their relevance to the query. The process
of our algorithm is summarized in Algorithm 1:

Algorithm 1: RF based on RDELM
Step 1. Obtain top N images of the total images by a traditional retrieval algorithm;
Step 2. Distinct the N images into two classes, and mark them as relevant set I+ and

irrelevant set;
Step 3. Prepare the training data (xi, ti)for the RDELM algorithm, where xi ∈ I+ ∪ I−

and ti
(1,−1)T , x ∈ I+

(−1, 1)T , x ∈ I−
;

Step 4. Construct the RDELM algorithm based classification equation (11) or (12);
Step 5. Calculate the output vector for each image in the dataset. By Choosing the first

value of output vector in the classifier f (x) to output the similarity distance of the
query. Besides, the score for each image Ii can be shown as scores (Ii) = UT f (xi),
U = (1, 0)T ;

Step 6. Sort the images by their score and return the new retrieval result.
Step 7. Repeat Step2-Step6 until a satisfied results is obtained.

Sigmoid function is selected for ELM-based classification methods. The above process of
the algorithm is obviously similar to the relevant feedback scheme based on SVM (Wang et al.
2011). However, this algorithm can be thousands times faster than the SVM based relevant
feedback scheme and performs better while completing the same task. Its main reason is the
utilizing of the ELMclassifier, and our experiments illustrate the validity and time complexity
of the algorithm.
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5 Experimental results

In this section, we utilize four image retrieval datasets and three RF methods (SVM, ELM,
MCVELM, RDELM and the RDELM-DRfree version methods) to evaluate the effect of our
proposed RF image retrieval method. The four dataset are listed as follows: Corel-1K, Corel-
5K, Corel-10K and MSRC image databases (see Figs. 6, 7, 8, 9, respectively). In following
experiments, we re-write RDELM-DRfree method as DRfree for short.

In the following experiments, we assign C = 0.05, λ = 1. There are four RF times in our
experiments, which are denoted by RF1, RF2, RF3 and RF4. The original image retrieval
results mark as “Init”. “FE method” represents feature extraction method. “STY1” indicates
a feature extraction method, and includes global color histogram, LBP feature, and basis
shape feature.

5.1 Image retrieval results

Corel-1K contains 10 categories and total 1000 images, includes bus, drag, food and so on.
The size of each image is 256 × 384 or 384 × 256 (Fig. 6). The results of Corel-1K images
are listed in Tables 1, 2, 3 and 4.

Fig. 6 Some samples of Corel-1K images

Fig. 7 Some samples of Corel-5K images
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Fig. 8 Some samples of Corel-10K images

Fig. 9 Some samples of MSRC images

Table 1 The precision of STY1 and MSD features by SVM, ELM, MCVELM, DRfree and RDELMmethod
in Corel-1K dataset (feedback 20 images) (%)

FE method RF method Init RF1 RF2 RF3 RF4

STY1 SVM 52.4625 62.1722 65.8108 66.7117 67.4725

ELM 52.4625 65.5856 74.2693 79.7798 83.7237

RDELM 52.4625 69.049 75.3353 79.7548 82.5576

DRFree 52.4625 67.5656 74.5312 79.7790 82.4505

MCVELM 52.4625 64.8929 72.4675 78.0591 81.7107

MSD SVM 67.1171 82.3674 85.7307 86.5916 87.022

ELM 67.1171 81.967 85.4555 86.6466 87.3824

RDELM 67.1171 82.2823 85.7508 87.047 87.8378

DRfree 67.1171 81.8388 83.2382 85.2152 86.8519

MCVELM 67.1171 81.0480 82.0971 83.7688 85.6056
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Table 2 The precision of STY1 and MSD features by SVM, ELM, MCVELM, DRfree and RDELMmethod
in Corel-1K dataset (feedback 30 images) (%)

FE method RF method Init RF1 RF2 RF3 RF4

STY1 SVM 47.8545 60.6073 64.6847 65.5822 66.2863

ELM 47.8545 60.7774 70.1735 76.5999 81.0177

RDELM 47.8545 67.9947 74.2576 79.0023 82.1388

DRFree 47.8545 65.7147 72.8942 77.1665 81.8782

MCVELM 47.8545 63.6643 70.8051 76.4201 80.1985

MSD SVM 62.9162 81.3146 84.4511 85.1318 85.5088

ELM 62.9162 81.0577 84.1909 85.2219 85.7891

RDELM 62.9162 81.1111 84.4745 85.4421 86.1828

DRfree 62.9162 80.8178 82.5726 84.3410 86.1662

MCVELM 62.9162 80.8345 82.2155 84.0574 85.5289

Table 3 The precision of STY1 and MSD features by SVM, ELM, MCVELM, DRfree and RDELMmethod
in Corel-1K dataset (feedback 40 images) (%)

FE method RF method Init RF1 RF2 RF3 RF4

STY1 SVM 44.452 59.0465 63.3208 63.9965 64.6947

ELM 44.452 57.3649 66.8844 73.0531 78.1031

RDELM 44.452 66.4289 72.8879 77.8654 80.6957

DRFree 44.452 64.7673 70.5105 75.9880 79.6371

MCVELM 44.452 62.6642 67.2187 74.6226 78.1742

MSD SVM 59.4344 80.1176 82.9755 83.6737 84.0591

ELM 59.4344 80.03 83.0305 84.0415 84.5796

RDELM 59.4344 80.523 83.6461 84.532 85.1502

DRfree 59.4344 79.9620 81.6992 83.1306 84.7372

MCVELM 59.4344 80.0596 80.9284 82.3899 84.0265

Table 4 The precision of STY1 and MSD features by SVM, ELM, MCVELM, DRfree and RDELMmethod
in Corel-1K dataset (feedback 50 images) (%)

FE method RF method Init RF1 RF2 RF3 RF4

STY1 SVM 41.958 57.7277 61.7417 62.3564 63.1752

ELM 41.958 54.8068 65.001 71.2412 76.3003

RDELM 41.958 64.7708 71.2432 76.3443 79.3714

DRFree 41.958 61.4805 67.2422 72.2322 77.6436

MCVELM 41.958 60.1640 65.0861 70.2112 75.7187

MSD SVM 56.7568 79.3714 82.1762 82.6987 83.1011

ELM 56.7568 79.4094 82.0881 82.9049 83.5155

RDELM 56.7568 79.7477 82.8048 83.5876 84.1141

DRfree 56.7568 79.0581 80.8248 82.0901 83.6837

MCVELM 56.7568 79.0961 80.2102 81.5155 82.9269
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Table 5 The precision of STY1 and MSD features by SVM, ELM, MCVELM, DRfree and RDELMmethod
in Corel-5K dataset (feedback 20 images) (%)

FE method RF method Init RF1 RF2 RF3 RF4

STY1 SVM 24.775 27.115 29.1 29.93 30.35

ELM 24.775 30.255 34.17 36.805 39.41

RDELM 24.775 30.51 34.165 37.14 39.73

DRFree 24.775 30.4900 34.1800 36.6850 39.0650

MCVELM 24.775 30.0425 33.7548 36.6593 38.8320

MSD SVM 27.215 38.345 42.195 43.84 45

ELM 27.215 38.74 42.24 43.715 44.93

RDELM 27.215 38.615 42.385 43.805 45.155

DRfree 27.215 39.8000 40.4950 42.1250 43.5350

MCVELM 27.215 38.9853 39.8626 41.1675 42.5778

Table 6 The precision of STY1 and MSD features by SVM, ELM, MCVELM, DRfree and RDELMmethod
in Corel-5K dataset (feedback 30 images) (%)

FE method RF method Init RF1 RF2 RF3 RF4

STY1 SVM 21.2 24.073 25.893 26.853 27.373

ELM 21.2 26.61 30.23 32.897 35.367

RDELM 21.2 27.023 30.81 33.677 35.987

DRFree 21.2 26.1367 30.6567 32.2167 35.6100

MCVELM 21.2 26.0110 30.2807 31.8116 35.3416

MSD SVM 23.48 36.263 40.197 41.933 43.01

ELM 23.48 36.49 40.173 41.67 42.633

RDELM 23.48 36.677 40.12 41.633 42.773

DRfree 23.48 38.1667 38.8900 40.5733 41.9733

MCVELM 23.48 37.2609 38.7925 39.6084 41.4880

Corel-5K contains 50 categories and total 5000 images. The size of each image is 192×128
or 128 × 192 (Fig. 7). The results of Corel-5K images are listed in Tables 5, 6, 7 and 8.

The Corel-10K contains 100 categories and total 10000 images. The size of each image is
126×187 or 187×126 (Fig. 8). The results of Corel-10K images are listed in Tables 9, 10, 11
and 12.

We select a sub-dataset which includes 30 images for each of the 19 classes from MSRC
dataset (as shown in Fig. 9). The size of each image is about 320×240. The results of MSRC
images are listed in Tables 13, 14 and 15.

5.2 Parameters analysis

In this subsection, we discuss the influence of parameters in Eq. (9). Three parameters λ, C
and Ñ are illustrated as follows. The parameter C is used to balance the Structural risk and
empiric risk in Eq. (9). In image retrieval task, structural risk is more important than empiric
risk because of small size of labeled samples. In our paper, we setC = 0.05 in all experiments
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Table 7 The precision of STY1 and MSD features by SVM, ELM, MCVELM, DRfree and RDELMmethod
in Corel-5K dataset (feedback 40 images) (%)

FE method RF method Init RF1 RF2 RF3 RF4

STY1 SVM 19.005 22.23 23.99 24.865 25.223

ELM 19.005 25.165 28.585 31.24 33.477

RDELM 19.005 24.805 28.418 31.282 33.9

DRFree 19.005 24.4425 28.8600 31.4825 33.6575

MCVELM 19.005 23.9952 28.5217 31.2921 33.3349

MSD SVM 21.488 35.063 39.27 40.847 41.763

ELM 21.488 35.557 39.15 40.485 41.44

RDELM 21.488 35.495 39.278 40.725 41.727

DRfree 21.488 37.2975 37.8450 39.2875 40.4125

MCVELM 21.488 36.1705 37.5665 39.1299 39.6122

Table 8 The precision of STY1 and MSD features by SVM, ELM, MCVELM, DRfree and RDELMmethod
in Corel-5K dataset (feedback 50 images) (%)

FE method RF method Init RF1 RF2 RF3 RF4

STY1 SVM 17.442 20.916 22.954 23.69 24.156

ELM 17.442 23.78 27.102 29.802 31.976

RDELM 17.442 23.594 27.032 29.856 32.208

DRFree 17.442 23.6980 27.0460 29.7020 31.8840

MCVELM 17.442 23.5312 26.6102 29.5329 31.7659

MSD SVM 19.728 33.97 38.258 39.892 40.7

ELM 19.728 34.63 38.33 39.574 40.474

RDELM 19.728 34.49 38.134 39.52 40.518

DRfree 19.728 36.4360 37.0080 38.4200 39.4220

MCVELM 19.728 35.5226 36.4611 37.4494 39.2801

Table 9 The precision of STY1 and MSD features by SVM, ELM, MCVELM, DRfree and RDELMmethod
in Corel-10K dataset (feedback 20 images) (%)

FE method RF method Init RF1 RF2 RF3 RF4

STY1 SVM 23.9 25.832 26.844 27.268 27.564

ELM 23.9 27.12 30.924 33.292 35.68

RDELM 23.9 27.116 30.856 33.26 35.684

DRfree 23.9 27.3600 30.5200 33.9640 35.8920

MCVELM 23.9 26.5798 30.1143 33.3047 35.7772

MSD SVM 37.46 46.616 48.732 49.564 49.968

ELM 37.46 45.524 47.632 48.468 49.212

RDELM 37.46 45.532 47.604 48.524 49.22

DRfree 37.46 46.0168 47.3788 48.7322 49.2117

MCVELM 37.46 45.3332 47.1810 48.5792 49.0966
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Table 10 The precision of STY1 andMSD features by SVM, ELM,MCVELM, DRfree and RDELMmethod
in Corel-10K dataset (feedback 30 images) (%)

FE method RF method Init RF1 RF2 RF3 RF4

STY1 SVM 20.168 22.496 23.408 23.797 24.016

ELM 20.168 24.123 27.763 30.435 32.632

RDELM 20.168 23.971 27.571 30.075 32.536

DRfree 20.168 24.2053 28.6347 30.9333 32.6933

MCVELM 20.168 23.4001 28.0961 30.4345 32.2548

MSD SVM 32.648 43.64 45.955 46.795 47.339

ELM 32.648 42.251 44.28 45.307 46.053

RDELM 32.648 42.517 44.653 45.563 46.315

DRfree 32.648 42.5498 43.9608 44.9072 46.1786

MCVELM 32.648 42.4671 43.5410 44.4693 45.2294

Table 11 The precision of STY1 andMSD features by SVM, ELM,MCVELM, DRfree and RDELMmethod
in Corel-10K dataset (feedback 40 images) (%)

FE method RF method Init RF1 RF2 RF3 RF4

STY1 SVM 17.854 20.736 21.66 22.024 22.288

ELM 17.854 22.256 25.866 28.47 30.486

RDELM 17.854 22 25.568 28.152 30.458

DRfree 17.854 22.9340 25.8060 28.5940 30.3420

MCVELM 17.854 22.8937 25.7948 27.6845 30.1959

MSD SVM 29.51 41.572 44.108 44.982 45.488

ELM 29.51 40.398 42.972 43.826 44.44

RDELM 29.51 40.594 42.818 43.656 44.292

DRfree 29.51 40.4171 42.9217 43.1185 43.7399

MCVELM 29.51 40.3783 42.2788 42.7534 43.3636

Table 12 The precision of STY1 andMSD features by SVM, ELM,MCVELM, DRfree and RDELMmethod
in Corel-10K dataset (feedback 50 images) (%)

FE method RF method Init RF1 RF2 RF3 RF4

STY1 SVM 16.102 19.174 20.122 20.509 20.715

ELM 16.102 20.883 24.254 26.749 28.755

RDELM 16.102 20.083 23.547 26.198 28.41

DRfree 16.102 20.9648 23.2560 26.5504 28.3040

MCVELM 16.102 20.7011 22.5595 25.9867 28.2543

MSD SVM 27.11 39.728 42.683 43.726 44.23

ELM 27.11 38.811 41.261 42.166 42.846

RDELM 27.11 39.046 41.451 42.293 42.866

DRfree 27.11 38.9424 40.9541 42.2439 42.7135

MCVELM 27.11 38.0825 40.0968 42.2002 42.8174
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Table 13 The precision of STY1 andMSD features by SVM, ELM,MCVELM, DRfree and RDELMmethod
in MSRC dataset (feedback 10 images) (%)

FE method RF method Init RF1 RF2 RF3 RF4

STY1 SVM 46.526 58.018 60.982 61.807 61.982

ELM 46.526 57.772 60.754 61.702 61.982

RDELM 46.526 57.895 61.018 61.947 62.228

DRfree 46.526 60.2427 61.2842 61.8246

MCVELM 46.526 59.6562 60.7716 61.7690

MSD SVM 46.526 57.877 60.947 61.842 62.07

ELM 46.526 57.737 60.596 61.561 61.807

RDELM 46.526 57.947 60.965 61.86 62.088

DRfree 46.526 58.0175 60.8070 61.4912 62.0386

MCVELM 46.526 57.6288 59.8735 60.6023 62.0673

Table 14 The precision of STY1 andMSD features by SVM, ELM,MCVELM, DRfree and RDELMmethod
in MSRC dataset (feedback 20 images) (%)

FE method RF method Init RF1 RF2 RF3 RF4

STY1 SVM 37.237 50.132 54.64 56.289 56.807

ELM 37.237 49.798 54.114 55.851 56.579

RDELM 37.237 49.965 54.43 56.246 56.947

DRfree 37.237 54.1404 56.1281 56.8070

MCVELM 37.237 53.6643 55.6138 55.8595

MSD SVM 37.237 50.123 54.64 56.325 56.886

ELM 37.237 49.658 54.123 55.842 56.526

RDELM 37.237 50.123 54.649 56.325 56.895

DRfree 37.237 50.0439 54.8509 55.8772 56.8982

MCVELM 37.237 50.0336 54.3829 54.9697 56.7576

Table 15 The precision of STY1 andMSD features by SVM, ELM,MCVELM, DRfree and RDELMmethod
in MSRC dataset (feedback 30 images) (%)

FE method RF method Init RF1 RF2 RF3 RF4

STY1 SVM 32.83 45.772 50.474 52.532 53.351

ELM 32.83 45.24 49.965 52.053 53.094

RDELM 32.83 45.497 50.211 52.298 53.263

DRfree 32.83 45.561 49.4298 52.4298 53.2982

MCVELM 32.83 44.925 49.1126 51.8077 52.7909

MSD SVM 32.83 45.76 50.444 52.491 53.339

ELM 32.83 45.24 49.86 51.901 52.743

RDELM 32.83 45.678 50.386 52.427 53.257

DRfree 32.83 45.7485 50.4620 52.5263 53.1111

MCVELM 32.83 44.8621 49.8403 51.9922 52.7122
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and data sets. We involved λ to avoid the optimization matrix irreversible in Eq. (10). We set
λ = 1 in our method. In fact, λ can be set by λ = tr(S′

w − S′
b) in any cases. In ELM, the

parameter Ñ is also important, more details can be seen in references Huang et al. (2006)
and Huang and Chen (2007). We set Ñ = 200 in all ELM versions and experiments.

5.3 Results analysis

RDELM and the DRfree version achieve better performance than SVM, MCVELM and
ELM in most cases, especially in Corel-1K dataset (see Tables 1, 2, 3, 4). This is mainly
because the classes of images keep good structures in RDELM space. There is also an
interesting result that retrieval results of MSD are always better than that of STY1 (see
Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12). It illustrates that a good feature is very important,
and needs fewer times in RF. However, In MSRC dataset, SVM, ELM, MCVELM and
RDELM achieved the similar results which illustrate the classes in ELM space and original
sample space are not distinguishable. This can be also explained by the similar results using
STY1 or MSD features (see Tables 13, 14, 15).

RDELM and the DRfree version get better performance than SVM, MCVELM and ELM
in Corel-1K dataset, which can be also attributed to the robust discriminative structure of
RDELM. Corel-1K is more difficult to retrieve than other datasets. For example, the classes
of beach and mountain share some similar features in Corel-1K dataset. From the above
experimental results in four datasets, we claim that a good descriptor of image may be
discriminative which can also help RF and the discriminative structure in score model.

The efficiency of RDELM is similar to MCVELM because both the two methods need
dimensionality reduction with the similar process and dimension. The time complexity of
dimensionality reduction in RDELM needs O(D3). This is an extra time consuming to ELM.
Therefore, RDELM need more time to get the feedback function. However, it makes little
influence while the feature dimensions of image are not very high (more than 500).

6 Conclusion

In this paper, we deeply analyzed the class structures in ELM feature space, and propose
a robust ELM version for RF in CBIR system (RDELM). RDELM can select whether the
dimensionality reductionmethod need to be involved or not, and is suitable for image retrieval
application. Experimental results on benchmark datasets show that ELM-related methods
are more efficient than SVM-based method. Furthermore, the results of RF1 illustrate image
feature extraction plays an important role in image retrieval process.
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