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Abstract Due to the complexity and extensive application of wireless systems, fading chan-
nel modeling is of great importance for designing a mobile network, especially for high
speed environments. High mobility challenges the speed of channel estimation and model
optimization. In this study, we propose a single-hidden layer feedforward neural network
(SLFN) approach to modelling fading channels, including large-scale attenuation and small-
scale variation. The arrangements of SLFN in path loss (PL) prediction and fading channel
estimation are provided, and the information in both of them is trained with extreme learning
machine (ELM) algorithm and a faster back-propagation (BP) algorithm called Levenberg-
Marquardt algorithm. Computer simulations show that our proposed SLFN estimators could
obtain PL prediction and the instantaneous channel transfer function of sufficient accuracy.
Furthermore, compared with BP algorithm, the ability of ELM to provide millisecond-level
learning makes it very suitable for fading channel modelling in high speed scenarios.
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1 Introduction

High-speed railways (HSR) and highway networks have developed rapidly for nearly ten
years tomeet people’s travel needs. This explosive increase of high speed transportation raises
higher requirements for wireless communication systems, including train ground communi-
cation (TGC) system (Shu et al. 2014), communication based train control (CBTC) system,
vehicle ad hoc network (VAN) (Golestan et al. 2015), vehicle to vehicle (V2V) communica-
tion and so forth.

However, the speedof trains can reach350km/h and the speedof vehicles is up to 120km/h,
which make the users can not enjoy the smooth and high quality wireless services under low
speed environment. In high mobility scenarios, large Doppler frequency shift, fast fading
channel and fast handover issue seriously affect communication performances (Zhou and Ai
2014; Calle-Sanchez et al. 2013).

Wireless channel plays a key background role in transmission rate and the quality of
mobile propagation. The modelling of radio wave propagation is essential for the planning
of physical layer operations, such as the best modulation and coding interleaving scheme,
equalizer design, antenna configuration and subcarrier allocation etc. Taking the continuous
movements of the users into account, the profile of fading channel changes in real time
and the parameters of the propagation process become random variables (Sotiroudis and
Siakavara 2015). Fading channel is modelled in two ways, large-scale attenuation known
as path loss (PL) prediction and small-scale variation known as channel transfer function
estimation (Rappaport 2001). The former predicts the mean signal strength for an arbitrary
large transmitter-receiver distance (several hundreds or thousands of meters; Phillips et al.
2013) while the latter characterizes the rapid fluctuations of received signal strength over
very short distances (a few wavelengths) or short durations (on the order of seconds; Chang
and Wu 2014).

PL prediction proposals in the literature can broadly be classified as (a) empirical and (b)
measurement models. The models of type (a) (Friis 1946; Seidel and Rappaport 1991; ITU-R
2002; Herring et al. 2012) make use of available prior knowledge collected from a given envi-
ronment, so that it is suitable in the situations impossible or difficult to obtain measurements.
These empirical models are widely adopted into network simulators or served to derive a
simplified version of more complex models since they are easy to implement, although they
are questionably accurate. The models of type (b) (Lee 1985) define a sampling method and
a means of PL predicting where PL could not be measured, based on the assumption that the
burden of measurements and prediction is unavoidable and acceptable. The typical methods
as explicit mapping (Hills 2001), partition-based models (Durgin 2009), iterative heuristic
refinement (Robinson et al. 2008) and active learning and geostatistics (Marchant and Lark
2007) choose the measurements set to improve the accuracy of modelling.

Fading channel estimation is crucial for receiver design in coherent communication sys-
tems. Channel estimation models can be grouped into three categories: (a) estimation based
on channel frequency response (Beek et al. 1995), (b) estimation with parametric model
(Yang et al. 2001; Qing and Gang 2014) and (c) iterative channel estimation (Valenti and
Woerner 2001; Kim and Hansen 2015). Approach (a) is a basic method with the minimal
model complexity. It estimates the channel frequency response of pilot symbols first, and then
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obtains the responses of data symbols via interpolation. Approach (b) and (c) can provide
better performance. For approach (b), a set of parameters are estimated in the reconstruction
of channel response, which is suitable for sparse channels with 2–6 dominant paths (Chen
et al. 1999). Approach (c) takes advantage of error-control coding techniques such as turbo
code (Li et al. 2010) and LDPC code (Fang 2010) to estimate channel in an iterative manner.

Both PL prediction and fading channel estimation have twoways to model channels: blind
and pilot channel modelling (Vieira et al. 2013; Larsen et al. 2009). Pilot model (Pun et al.
2011) is typically constructed by using pilot symbols strategically placed at the frame head
or subcarrier. In blind modelling (Mielczarek and Svensson 2005), channel coefficients are
predicted by using statistical features of received signals. Once a channel is estimated its time-
frequency characteristics, relevant parameters are used to update the pre-set model. As in any
estimation application, wireless channel estimation aims to quantify the best performance of
wireless systems. However, due to the unlimited number of received signal, it is a challenge
to extract optimal channel coefficients.

Feedforward neural networks (FNN) is extensively used to provide models for a natural
or artificial phenomena that are difficult to handle using classical parametric techniques (Cao
et al. 2012). A single-hidden layer FNN (SLFN) is found to bemore computationally efficient
for the work than 2- or 3-hidden layered forms (Sarma and Mitra 2013). Simsir and Taspinar
(2015) and Seyman and Taspinar (2013) demonstrated that channel estimation based on
neural network ensures better performance than conventional Least Squares (LS) algorithm
without any requirements for channel statistics and noise. In the meantime, Sotiroudis and
Siakavara (2015) andCheng et al. (2015) also provedSLFNscanbeused in channel estimation
for various wireless environments. Most of the literatures (Sotiroudis and Siakavara 2015;
Seyman and Taspinar 2013; Panda et al. 2015; Taspinar and Cicek 2013) proved that SLFNs
are effective for static and slowly varying channels. Unfortunately, the learning speed of
SLFNs has been a major bottleneck in many applications, and fast fading channel caused by
high mobility makes this method unsuitable for channel modelling too. Unlike traditional
SLFN implementations, a simple learning algorithm called extreme learning machine (ELM)
with good generalization performance (Cao et al. 2012; Cao and Lin 2015; Cao and Lin 2014)
can learn thousands of times faster, which randomly chooses hidden nodes and analytically
determined the output weights of SLFNs. The extremely fast learning speed of ELM makes
the algorithm viable in fading channel modelling.

In this paper, we propose SLFN approaches based on ELM to modelling fading chan-
nel. Since the modelling has concentrate on large-scale attenuation and small-scale variation
(Rappaport 2001), we choose path loss coefficient and channel transfer function to estimate.
The performance of ELMestimator with SLFN architecture is compared to that of BP estima-
tor.We use training and testing time, estimation error, bit error rate (BER) as the performance
criteria.

The outline of the paper is as follows: Sect. 2 describes the basic considerations related
to fading channel modelling using SLFNs. Sect. 3 proposes a PL prediction method based
on ELM for large-scale attenuation and analyzes the simulation results. Sect. 4 develops an
ELM estimator for channel transfer function and derives the results from the simulations.
Conclusion is given in Sect. 5.

The performance of fading channel modelling based on ELM is in comparison with back-
propagation (BP) algorithm (Tariq 1991) (Levenberg-Marquardt algorithm; Bogdan et al.
2010) which is a popular algorithm of SLFNs. All of the simulations are carried out in
MATLAB 7.12.0. Levenberg-Marquardt algorithm is provided by MATLAB package, while
ELM algorithm is from (Cao et al. 2015).
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Fig. 1 Fading channel model with transmitter and receiver’s block diagrams

2 Fading channel and its modelling using SLFNs

In this section, fading channel model and its radio propagation expressions are developed.
The SLFN architecture of ELM and BP algorithms are discussed in the arrangement for PL
prediction and fading channel estimation.

2.1 Radio propagation

A linear fading channel in Fig. 1 is with output r and input s, where r can be expressed as
r = f (s). f (·) denotes a transform function at the receiver end, representing the propagation
related variations due to fading, shadowing or phase shifting.

The input-output relationship is given by

r (k) = H (k) s (k) + w (k) (1)

where s (k) is the transmit symbol at kth time slot, r (k) is the receive signal, w (k) is an
additive noise and H (k) denotes channel transfer function, respectively. Considering the
interference of co-channel, the relationship in (1) is written as

r (k) = H (k) s (k) +
L∑

i=1

Hi (k) si (k) + w (k) (2)

where L is the number of interferers, Hi (k) is channel transfer function of the i th interferer.
If the transmitter has transmit power Pt dBm and antenna gain G t dBi, the total effective

isotropic radiated power (EIRP) in the log domain is Pt + G t . The entire channel in Eq. (1)
in the form of power is expressed as

Pr = Pt + G t + Gr − PL (k) − N0 (3)

where Pr and Gr are receive power and antenna gain. PL encompasses all attenuation due to
path loss and N is the power of thermal noise. Therefore, the signal to noise ratio (SNR) in
log domain is SN R = Pt − N0. Considering interference in Fig. 1, the signal to interference
and noise ratio (SINR) is defined as
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SI N R = Pt −
(
N0 +

L∑

i=1

Ii

)
(4)

where Ii is the receive power from i th interferer.
Commonly, fading channel modelling is aim to estimate the value of PL

PL (k) = Lp (k) + Ls (k) + L f (k) (5)

where Lp is free-space path loss, Ls is the loss due to shadowing (slow fading) from large
obstacles. Lp (k) + Ls (k) is the large-scale fading whereas L f is the small-scale fading.

2.2 SLFN architecture and learning algorithms

The idea to employ SLFN algorithm for the solution of fading channel modelling is based on
its learning ability to find out the relationship between channel parameters and the receive
signals, even when the channel is complicated. SLFN basically consists of input, hidden and
output layers where neurons connected to each other by parallel synaptic weights.

For N independent training samples (xi , ti ) where xi ∈ Rn, ti ∈ Rm, i = 1, 2, · · · , N ,
SLFNs with Ñ hidden nodes are modelled as

Ñ∑

j=1

β j g j (xi ) =
Ñ∑

j=1

β j g
(
w j · xi + b j

) = oi (6)

where w j is the weight vector between the input node and j th hidden node , β j is the weight
vector between j th hidden node and the output nodes, and b j is the threshold of j th hidden
nodes. The operational symbol ’·’ represents inner product.

The objective function of SLFNs E that will be minimized is written as

E
(
w j , β j ,b j

) =
N∑

i=1

‖oi − ti‖ (7)

where vector w is the set of weight
(
w j , β j

)
and biases

(
b j

)
parameters .oi is i th actual

output and ti is i th desired output.

2.2.1 Levenberg-Marquardt algorithm

BP algorithm iteratively adjusts all of its parameters to minimize the objective function by
using gradient-based algorithms (Bogdan et al. 2010). In the minimization procedure, vector
w is iteratively adjusted as follows:

wl+1 = wl − η
∂E (w)

∂w
(8)

where μ is the learning speed.
The training steps of Levenberg-Marquardt algorithm are illustrated as:

(1) Initialize the weight vector w and learning speed μ.
(2) Compute the objective function in terms of mean square error (MSE), i.e. E =

1
N

∑N
i=1 |oi − ti |2.

(3) Update weight vectors with formula Δw = −[
JTJ + μI

]−1JTE where J is the Jacobian
matrix.
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Fig. 2 The application of SLFN
for fading channel modelling

(4) Recompute the objective function with w + Δw. α is a constant that regulates μ and
α < 1. If error is smaller than the MSE value in step 2, reduce μ α times and go to step
3. If error is not reduced, increase μ α−1 times and go to step 3.

(5) Finish the training when error is less than its preset value or iteration epoches reach the
maximum.

2.2.2 ELM algorithm

Although BP’s gradient can be computed efficiently, an inappropriate learning speed might
raise several issues, such as slow convergence, divergence, or stopping at a local minima
(Cao et al. 2015). ELM algorithm randomly assigns the hidden node learning parameters and
analytically determines the network output weights without learning iterations. Therefore,
this method is able to make learning extremely fast.

ELM algorithm steps are as follow:

(1) Assign a training setℵ = { (xi , ti )| i = 1, 2, · · · , N }, active function g(x) and the number
of hidden neurons Ñ ,

(2) Randomly assign input weight vector w j and bias value b j , j = 1, 2, · · · , Ñ ,
(3) Calculate the hidden layer output matrixH and itsMoore−Penrose generalized inverse

matrix H†,
(4) Calculate the outputweight β̂ = H†Twith the least squares,whereT = [t1, t2, . . . , tN ]T.

For a linear system Hβ = T, ELM algorithm finds a least-squares solution β̂ rather than
iterative adjustment (Cao and Xiong 2014). Seen from the steps, the learning time of ELM
is mainly spent on calculating H†. Therefore, ELM saves a lot of time in most applications.
The performance evaluation in Cao et al. (2012); Cao and Lin (2015) shows that ELM can
produce good generalization performance in most cases and can learn more than hundreds
of times faster than BP.

2.3 Configuring SLFN for fading channel modelling

The application of SLFN for fading channel modelling is shown in Fig. 2. In our work, by
adjusting the combination of training data, the corresponding training set is applied to the
SLFNestimatorwith learning ability. The learning procedure is carried outwith no parametric
dependence.

Figure 3 shows the arrangement of SLFN to perform PL prediction in subgraph (a) and (b)
and fading channel estimation in subgraph (c) and (d). For PL prediction, the SLFN estimator
is trained by receive signal r (k) , k = 1, 2, · · · , N or train data set (r (k) , γ̃ (k))where γ̃ (k)
is the reference PL exponent obtained by pilot symbols. The output of SLFN estimator is
γ̃ (k) at kth time slot. Similarly, the SLFN estimator in fading channel estimation is trained

by r (k) or
(
r (k) , H̃ (k)

)
and its output is channel transfer function Ĥ (k).
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Fig. 3 Arrangement of SLFN in PL prediction and fading channel estimation

Table 1 Parameters used in
fading channel modelling

Parameters Values

Carrier frequency 2.35GHz

Transmission rate 1Mbps

Oversampling factor 4

Modulation type BPSK

Velocity of terminals 300km/h (83.3m/s)

120km/h (33.3m/s)

Doppler category Jakes

Transmit power 39.5 dBm

Transmitter-receiver distance 500m

Generation of pilot symbols Hadamard matrix

Frame length 100

Maximum number of errors 500

Maximum number of packets 3000

Number of neurons 10, 20

The performance of our proposed SLFN estimator for fading channels will be demon-
strated by computer simulations. The performance of our proposed estimator is evaluated
using MSE or BER versus SNR criterion. In addition, the mobility of terminals greatly lim-
its the estimation speed, so we also consider the consuming time of the estimators. The
parameters of fading channel we used in the simulations are shown in Table 1.

3 PL prediction modelling

In this section, the structure of ELM estimator in the prediction of PL exponent is proposed
and computer simulations show its performance compared with BP estimator.
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3.1 Model analysis

PL exponent γ indicates the rate at which PL increases with distance. The smaller γ is, the
less energy loss of wireless signal due to transceiver-receiver distance is. Typical value of γ is
determined by carrier frequency and propagation terrain. For example, in HSR environment,
γ is slightly larger than 2 in rural area (within 250–3200m)with narrow band communication
system while it is near to 4 in hilly terrain (within 800–2500m) with broadband system.

In Friis (1946), a basic formula for free-space transmission loss with ideal isotropic anten-
nas is simplified to

Pt
Pr

=
(

λ

πd

)2

(9)

where λ is the carrier’s wavelength and d is the transmitter-receiver distance in meters. Friis
assumed that γ = 2 so that signals degraded as a function of d2 (Friis 1946). However,
a common extension to non-line-of-sight (NLOS) environments is to use a larger γ . Both
theoretical and measurement-based channel models (such as Egli model, two-ray model,
Okumura model, Hata model etc) indicate that γ is in the range 1–4 (Rappaport 2001).
Considering shadowing effects component ψ obeys a log-normal distribution, the statistical
PL model (Erceg et al. 1999; Kastell 2011) is given by

Pr = Pt + 20 log10
λ

4π
− 10γ log10 d − ψ (10)

where ψ is a zero-mean Gaussian distributed random variable with standard deviation σψ

(also in dBm).
PL exponent γ could be obtained by fitting the minimum mean square error (MMSE) of

measurements (Liu et al. 2012)

γ ∗ = FMMSE(γ ) = min
γ

N∑

i=1

[Mmeasured(di ) − Mmodel(di )]
2 (11)

where M = Pt/Pr , Mmeasured(di ) is the measured values at distance di , and Mmodel(di ) =
20 log10 (λ/ (4π)) − 10γ log10 di . And the variance σ 2

ψ is given by

σ 2
ψ = 1

N

N∑

i=1

[Mmeasured(di ) − Mmodel(di )]
2

∣∣∣∣∣
γ ∗

(12)

If the radius of the transmitter’s cell is 1km and the vehicle’s velocity is 120km/h, the
receiver will carry out a handover procedure every 60s, so that γ needs to be calculated at the
receiver at least once per minute. if the velocity is up to 350km/h, γ needs to be calculated
every 20.6 s. According to Eqs. (11) and (12), the calculation of γ requires hundreds or
thousands of receive signal measurements, the introduction of learning algorithm into PL
prediction would be effective in simplifying data processing.

3.2 PL prediction based on ELM

As Fig. 3a, our proposed ELM estimators’s structure at receiver end is shown in Fig. 4 and it
periodically adjust PL prediction according to the latest received frame to trace the variation
of large-scale propagation.

After the receiver receiving a frame, the procedure of ELM estimator is stated as follows:

(1) Initialize the standard deviation σ̂ 2
ψ (0).
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Fig. 4 The structure of ELM
estimator in PL prediction
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Fig. 5 The prediction of PL exponent γ by ELM learning algorithm

(2) After receiving the mth frame, assign a testing set { (Pr i , γi )| i = 1, 2, · · · , N } when N
is the frame length.

(3) Run ELM algorithm and obtain the prediction γ̂ (m) = γ̂i and σ̂ 2
ψ (m).

(4) Update the value of the standard deviation for the next prediction.

Obviously, the whole procedure doesnt have any parameters to be tuned iteratively.

3.3 Simulation results

We use ELM and BP algorithms to predict PL exponent γ . The velocity is set at 120km/h. A
training set (Pr i , γi ) and testing set (Pr i , γi ) with 1000 data, respectively are created where
Pr i is uniformly randomly distributed on the interval (−105,−25) dBm (Liu et al. 2012).
Shadowing effect exponent ψ has been added to all training samples while testing data are
shadowing-free.

The number of hidden neurons of ELM is initially set at 20 and active function is sigmoidal.
Simulation result is shown in Fig. 5. The train accuracymeasured in terms of rootmean square
error (RMSE) is 0.27734 due to the shadowing effect, whereas the test accuracy is 0.012445.
Figure 5 confirms that the prediction results of γ are accurate, and there is a visible margin
of error only when Pr > −30dBm.

123



894 Multidim Syst Sign Process (2017) 28:885–903

Table 2 Performance comparison for learning algorithms in PL prediction

Algorithms Time (s) Training Testing Hidden neurons

Training Testing RMS Dev RMS Dev

ELM 0.0025 0.0008 0.5971 0.0318 0.4955 0.1615 5

BP 30.6555 0.0599 0.0759 0.0027 0.0014 0.0008 5

ELM 0.0040 0.0014 0.3347 0.0238 0.1486 0.0884 10

BP 39.8888 0.0658 0.0748 0.0028 0.0023 0.0010 10

ELM 0.0068 0.0029 0.2828 0.0219 0.0475 0.0500 20

BP 53.6168 0.0671 0.0745 0.0028 0.0031 0.0012 20

Average 200 trails of simulation have been conducted for both ELM and BP algorithm,
whose results are shown in Table 2. In BP, the input and output layers have log-sigmoidal and
the hidden layer have tan-sigmoidal activation functions.When the number of hidden neurons
is 20, ELM estimator spends 6.8ms CPU time on training and 2.9ms on testing. However, it
takes 53.6 s for BP estimator on training and 67.1ms on testing, whichmakes it unsuitable for
high speed scenarios since the consuming time is larger than 20.6 s (for 350km/s) or slightly
lower than 60s (for 120km/h). ELM runs 7800 times faster than BP. Compared with 60s and
20.6 s in Sect. 3.1, BP is too time-consuming to be used in PL prediction in a scenario with
high mobility. Although ELM has a much higher testing error 0.0475 compared with 0.0031
in BP, this prediction error can be acceptable as shown in Fig. 5.

In addition, considering network transmission rate is 1Mbps, the reception of 1000 test
data takes only 1ms, so that ELM estimator can predict PL exponent γ with RMSE less than
0.05 within a time interval less than 8ms. If the velocity is 120km/h, the vehicle has only
moved 0.27m during PL prediction interval. If the velocity is 350km/h, the moving distance
is less than 0.78m. For large-scale fading, γ and σ 2

ψ barely have a sharp change in the range,

so that it is reasonable to use σ 2
ψ in the next prediction in Fig. 4.

Figure 6 shows the relationship between the generalization performance of ELM and the
number of hidden neurons Ñ in PL prediction. Every Ñ simulates 50 times. Obviously, the
generalization performance of ELM is stable when Ñ ≥ 12. Thus, the simulation result in
Fig. 5 is reasonable when Ñ is set at 20.

Figure 7a shows the relationship between RMSE of ELM and the number of train/test data
N when Ñ = 20, and Fig. 7b shows the impact of N on consuming time. Training RMSE
is almost a constant (slightly less than 0.3) because ELM use Moore-Penrose inverse matrix
calculation to solve the problem of finding the smallest norm least-squares output weight.
Unlike it, testing RMSE decreases with an increase in the number of test data. The simulation
confirms the conclusion in Cao et al. (2012) that ELM has no over-trained phenomenon. Both
train and test consuming time increases with N , however, the increase of test time is less
than that of train time. It should also be noted that, even N is up to 104, the time consumed
by ELM estimator is still acceptable, which is less than 70ms.

4 Fading channel estimation modelling

The channel transfer function H (k) of fading channels in Eq. (1) is assumed to maintain
a constant in a frame (Sarma and Mitra 2013), i.e. H (k) = H . A frame’s input-output
relationship is
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Fig. 6 The generalization performance of ELM in PL prediction
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Fig. 7 Number of train/test data of ELM in PL prediction

r (k) = Hs (k) + w (k) , k = 1, 2, . . . , N (13)

The actual H and w(k) is unknown to the receiver.
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Fig. 8 The BER of Rayleigh fading channel with Ĥ estimated by ELM and BP algorithm

The Rayleigh multi-path fading channel assumes that the delay power profile and the
Doppler spectrum of channel are separate. The channel with normalized power is given by

H (k) = 1√
2

[
nc (k) + jns (k)

]
(14)

where nc and ns are the phase and quadrature branches of the baseband signal in Gauss
process.

Since BPSK modulation is employed in the model in Fig. 1, the transmit signal s (k) is
real. Rayleigh channel H is a complex variable so that the receive signal r (k) is complex
too. Considering the data sets in ELM and BP algorithms xi ∈ Rn, ti ∈ Rm , the estimation
of H should be divided into real and imaginary parts.

If we set up the data sets in SLFN as ℵ1 = { (r (k) ,Re (H))| k = 1, 2, · · · , N } and ℵ2 =
{ (r (k) , Im (H))| k = 1, 2, · · · , N }. As shown in Fig. 3c, the estimated channel transfer
function is

Ĥ = 1

N

N∑

k=1

Ĥ (k) = 1

N

N∑

k=1

[
Re

(
Ĥ (k)

)
+ Im

(
Ĥ (k)

)]
(15)

Figure 8 shows the ability of SLFN to capture the time-varying characteristic of fading
channel. When Rayleigh pattern is applied, SLFN shows an inability to deal directly with
the time-varying nature. The BER performance of ELM estimation is around 0.45, which is
similar to random decision, whereas the BER performance of BP estimation is even worse.
This is due to the receive signal r (k) affected by three Gaussian random variables, nc (k),
ns (k) and w (k). Thus, we draw a conclusion that blind modelling is not suit for fading
channel estimation base on SLFN architectures.
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Fig. 9 The structure of ELM
estimator in fading channel
estimation

In order to narrow the estimation down, pilot signals are used in fading channel estimation
to provide reference channel transfer function H̃ , and it can be calculated by

H̃ = 1

Np

−1∑

k=−Np

r (k) s (k) (16)

4.1 Fading channel estimation based on ELM

Our proposed ELM estimator’s structure at receiver end is shown in Fig. 9. As Fig. 3, the
transmitter in fading channel inserts pilot symbols in frames’ headers to trace the time-varying
characteristic of channel.

In Fig. 9, ELM estimator of channel transfer function H is divided into real and imag-
inary parts. The reference channel transfer function H̃ is used to estimate the error of

channel transfer function ΔH , i.e. the data sets are ℵ1 =
(
Re

(
H̃

)
,Re (ΔH)

)
and

ℵ2 =
(
Im

(
H̃

)
, Im (ΔH)

)
. Thus, the estimation value is given by

Ĥ = H̃ + ΔH (17)

After the receiver receiving a frame, the procedure of ELM estimator is stated as follows:

(1) Calculate the reference channel transfer function H̃ in Eq. (16).

(2) Assign real testing set
{(

Re
(
H̃

)
,Re (ΔHi )

)∣∣∣ i = 1, 2, · · · , N
}
and imaginary testing

set
{(

Im
(
H̃

)
, Im (ΔHi )

)∣∣∣ i = 1, 2, · · · , N
}
.

(3) RunELMalgorithmandobtain the estimationof channel transfer function Ĥ = H̃+ΔHi .
(4) Count BER and decide whether or not to adjust the number of pilot symbols.

4.2 Simulation results

We use ELM and BP algorithms to estimate channel transfer function H . The number of
hidden neurons of SLFN is set at 10 and average 3000 packets have been conducted for
two algorithm for comparison. The simulation results are shown in Table 3. ELM estimator
spends less than 8ms on training and 6 ms on testing. In contrast, BP estimator needs at
least 42 s to complete the training process and 30ms to perform the testing procedure. For
the same reason in PL prediction, BP algorithm also could not be applied to fading channel
estimation for high speed scenarios. In addition, both SNR and the number of pilot symbols
determine estimation accuracy. ELM shows a higher accuracy than BP when SNR is 0 dBm.
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Table 3 Performance comparison for learning algorithms in fading channel estimation

Algorithms Training Testing Pilot symbols SNR

Time (s) RMS Time (s) RMS

ELM 0.0078 0.0508 0.0043 0.0615 1 0

BP 43.4310 0.1272 0.0396 0.1192 1 0

ELM 0.0044 0.0074 0.0034 0.0080 1 20

BP 43.8050 0.0514 0.0372 0.0008 1 20

ELM 0.0054 0.0506 0.0061 0.0429 2 0

BP 42.6190 0.1294 0.0312 0.0807 2 0

ELM 0.0070 0.0073 0.0039 0.0055 2 20

BP 58.5160 0.0485 0.0369 0.0006 2 20

Fig. 10 BER performance of estimators versus SNR with 1 pilot symbol

The result is quite opposite when SNR is 20 dBm. It implies that ELM estimator is more
suitable for fading modelling with deteriorated channel condition.

Figures 10 and 11 show the BER performance of estimators versus SNR, which is counted
3000 BPSK frames at every SNR value. Both figures indicate that the performance of ELM
with SLFN architecture in Fig. 9 is as good as that of BP estimator, although their RMS is
different in Table 3. In the range of SNR, the performance of SLFN estimators is better than
pilot-based algorithm. The BER gap between ELM/BP algorithm and the known channel that
the receiver uses ideal channel estimation decreases as the increase of the number of pilot
symbols. In Fig. 10, the performance of BP estimator is even better than that of the known
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Fig. 11 BER performance of estimators versus SNR with 2 pilot symbols

channel when SNR is larger than 15 dBm. As shown in Fig. 11, although the implementation
of ELM estimator is quite than BP, the improvement of ELM performance is much stable.

Therefore, both ELM andBP estimators show the effectiveness of SLFN in fading channel
modelling. Due to learning speed, ELM algorithm is more practical in the real scenarios with
high mobility.

5 Conclusion

In this paper, fading channel modelling based on single-hidden layer feedforward neural
networks is proposed for the scenarios with high mobility. In large-scale attenuation, the
ELM estimator for the prediction of path loss exponent is developed, whose experimental
results show that ELM run 8000 times fast than BP learning algorithm and its testing error
is acceptable. In small-scale variation, the SLFN architecture based on ELM algorithm for
the estimation of fading channel transfer function is provided, and simulation results shows
ELM with fast learning speed has the same effectiveness as BP algorithm.
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