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Abstract Combined the advantages of time-frequency separation of complex shearlet (CST)
with the feature of guided filtering, a new image fusion algorithm based on CST domain and
guided filtering is proposed. Firstly, CST is utilized for decomposition of the source images.
Secondly, two scale guided filtering fusion rule is applied to the low frequency coefficients.
Thirdly, larger sum-modified-Laplacian with guided filtering fusion rule is applied to the
high frequency coefficients. Finally, the fused image is gained by the inverse CST. The algo-
rithm can not only preserve the information of the source images well, but also improve the
spatial continuity of fusion image. Experimental results show that the proposed method is
superior to other current popular ones both in subjective visual and objective performance.
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1 Introduction

Generally, image fusion can be divided into three levels in ascending order: pixel level fusion,
feature level fusion and decision level fusion (Pajares and Cruz 2004). In this paper, we focus
on pixel-level fusion technique. Image fusion methods based on pixel-level can be divided
into two categories: spatial domain algorithms and transform domain algorithms. The spatial
domain algorithms mainly include weighted average (Liu et al. 2015), principal component
analysis (Jia 1998) and so on. The transform domain algorithms are mainly based on the
wavelet domain and multi-scale geometric transform domain, such as image fusion algorithm
based on wavelet domain proposed in Pajares and Cruz (2004), image fusion algorithm based
on contourlet transform (CT) proposed in Zhang and Guo (2009), Liu et al. (2011), Qu et al.
(2009), and image fusion algorithm based on non-subsampled contourlet transform (NSCT)
and pulse couple neural network (PCNN) proposed in Qu et al. (2008). In order to obtain
a good image fusion effect, fusion algorithm needs to satisfy three characteristics. Firstly,
fused image requires retaining the most information of the source images. Secondly, artificial
textures should not be introduced to fused image, which means that fused image should have
spatial smoothness. Finally, fusion algorithm should have robustness so that it can be applied
to different source images. Currently, the transform domain algorithm cannot only capture
details of the source images, but also suit different source images, so it is the mainstream of
current fusion algorithm.

The image fusion algorithm based on wavelet transform plays an important role in tra-
ditional transform domain image fusion algorithms. But the traditional discrete wavelet
transform (DWT) cannot represent image optimally and do not hold the feature of trans-
lation invariant. In order to better represent two-dimensional image which contains line or
surface singularities, many scholars have put forward a number of methods. CT proposed in
Do and Vetterli (2005) is one of the most influential transforms. Because CT is computation-
ally simple and can represent images sparsely, it has been widely applied to image fusion
algorithms, such as in Zhang and Guo (2009), Liu et al. (2011), and Qu et al. (2009). How-
ever, using CT for image decomposition will generate frequency aliasing and translational
variability (Eslami and Radha 2004). The wavelet-contourlet proposed in Eslami and Radha
(2004) has achieved good effect in the field of image processing by using DWT overcome
the effect of frequency aliasing in scale decomposition. However, due to the downsampling
in the processing of scale decomposition and directional decomposition, wavelet-contourlet
transform is not translation invariant. Then in Cunha et al. (2006), the authors put forward
a method to construct NSCT by utilizing the non-subsampled Laplacian transform and non-
subsampled directional filter. Although NCST has translation invariance and can overcome
the pseudo Gibbs phenomena, the redundancy of transform (which increases rapidly as scale
increases) leads to complex computation. NSCT does not comply with multi-resolution the-
ory and cannot conduce to mathematical theory analysis.

Recently, Guo and Labate constructed shearlet transform (ST) by an affine system with
composite dilations, which can sparsely represent an image and produce optimal approxima-
tion (Easley et al. 2008; Kutyniok et al. 2011; Lim 2010). Compared to CT and NSCT, ST
fits tight frame theory, has strict mathematical derivation, and its sampled directional filter
does not produce a pseudo-Gibbs phenomenon caused by sampling Easley et al. (2008). In
addition, its discrete form is very easy to implement and the computational complexity is
greatly reduced. Therefore ST has also been widely applied to image fusion. For example,
the adaptive fusion algorithm based on ST was proposed in Miao et al. (2011), a region
saliency fusion algorithm based on ST domain was proposed in Miao et al. (2011), the image
fusion algorithm based on ST and PCNN was proposed in Geng et al. (2012). Among them,
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the algorithm was proposed in Geng et al. (2012) has achieved good results. However, these
algorithms can neither overcome the shortcoming of translation invariance of ST nor solve
the second problem of image fusion; in other words it fails to make effective use of the spatial
continuity of image.

In order to overcome the two shortcomings mentioned above, we adopt the CST proposed
in Liu et al. (2013, 2014) to do transform domain analyzing, and utilize the idea of fusion
algorithm based on two scale guided filtering proposed in Li et al. (2013) to enhance spatial
continuity of fusion image based on transform domain. CST is constructed by dual-tree com-
plex wavelet Kingsbury (1999) and shear directional filter. Compared to the non-subsampled
shearlet transform (NSST), it realize shift invariance with limited redundancy, which results
in accelerating computational speed and enhancing the number of directional decomposition
of high frequency coefficients to get more sparse representation of the image than other multi-
scale geometric transform (Liu et al. 2013, 2014). So CST is used to decompose images in our
method. After getting the fused maps of high-frequency coefficients, unlike other transform
domain fusion algorithms, we take the following steps instead of directly taking it through
the weighted sum to obtain fused image. Firstly, guided filtering which is edge preserving
filtering is imported to increase the spatial continuity of fused maps of high-frequency coef-
ficients. Secondly, two scales guided filtering fusion algorithm proposed in Li et al. (2013)
is used to fuse low frequency coefficients. Finally fused image is obtained by inverse CST.
In this paper, the properties of shift invariant of CST are utilized to overcome pseudo-Gibbs
phenomenon of the fused image. Through the guided filtering, the spatial smoothness of
fused image is enhanced too. As both of CST and guided filtering having low computational
complexity, the whole algorithm has low computational complexity. Compared the proposed
algorithm to the fusion algorithms proposed in Que et al. (2009, 2008), Miao et al. (2011),
Geng et al. (2012) and Li et al. (2013), experimental results demonstrate that visual effect
has been significantly improved, and the objective evaluation criteria has been improved as
well.

This paper is organized as follows. In Sect. 2, the construction of CST is reviewed. In
Sect. 3, the working principle of the guided filtering in keeping the edge is introduced. In
Sect. 4 the proposed image fusion algorithm is described. In Sect. 5, we demonstrate the
feasibility of the proposed algorithm through experimental analysis. In the last section, we
summarize the advantages and disadvantages of the algorithm.

2 Complex shearlet transform

2.1 The construction of CST

Forany (£§1,&) € R, j > 0,1 =—2/,2/ —1andk € R%, d = 0, 1, the Fourier transform
of the ST can be expressed as:

~(d ﬂ 9 d _ . —ip—I
P\ &) =27V (272g) WY (g e 2misa B (M
where V (2_2j & ) is the Fourier coefficient of the multi-scale analysis, W;ﬁ), d=0,1isa

window function which denotes multi-direction decomposition. So the ST of f € L%(R%)
can be computed by:

(rvif)=2% [ 7@V (g wigemen s g @
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A new image representation method named CST based on the summarization of the advan-
tages of dual tree complex wavelet transform (DTCWT) and ST is proposed in (Liu et al. 2013,
2014). CST is implemented as follows. Given an image f € L*(R?), let f [k1, k2] denote
its 2D discrete Fourier transform coefficients. Brackets [e, ] denote arrays of indices, and
parentheses (e, ) denote function evaluations. Instead of Laplace transform, DTCWT is used
to compute f (&1,&6)V (2—21 £,272 52) at j-th scale. Then, we can decompose the father
sub-band coefficient f, - [n1, n2] into a low-pass sub-band coefficients fa] [n1, ny] and six
high-pass sub-band coefficients f 5{(6) (6 =1 ~ 6denotes different directions,N;? =2-/tIN

and N}j = 27/ N are the size of fa] [n1, ny] and fdj(e)[nl, ny] at j-th scale respectively).
Let $ p represent the discrete Fourier transform of the delta function in the pseudo-polar
grid, and ¢;, denote the mapping function from the Cartesian grid to the pseudo-polar grid.

Then, we can calculate the CST coefficients f j(e)[n 1, nz]ﬁ)} ;[n1, n2] in the Cartesian grid
(Liu et al. 2014), where

b [n1.n2] = ¢! (SP [, nal W [Zjnz B l]) v

where W is a frequency-based Meyer window function. After calculating f j(e) [n1, nz]ﬁ)i /
[n1, n2], the inverse Fourier transform is used to obtain the coefficients of CST. Original
image can be reconstructed perfectly through simple sum (Liu et al. 2013, 2014). CST is
described as follows (Liu et al. 2014):

N 2/-1
DSTy(f) = fN+ D D flxw}, “

Jj=01=—2Jj

Because DTCWT is translational invariant, CST is also translational invariant through trans-
lational invariant shear directional filter (Liu et al. 2014). In addition, DTCWT can produce
six high-pass sub-bands. After directional filter is applied to each high-pass sub-band, the
coefficients of CST are sparser and more conductive for image fusion.

2.2 The performance of CST in image fusion

To verify the effect of CST, ST in fused algorithm based on regional variance in ST domain
(ST-RV) in Miao et al. (2011) is replaced by CST (called CST-RV) to fuse common multi-
focus fusion test images. Because the fusion rules are the same in ST-RV and CST-RYV, the
fusion effect just depends on the contribution of CST and ST. In the experiment, all the
decomposition scale is 4, and the directions in every scale are [6 10 10 8]. Figure 1a, b are
classical multi-focus fusion images. The size of both images is 512 x 512. The fused images
and difference images (fused images minus the source image) are shown in Fig. 1c-h.

The difference images by fused image minus sources images can highly indicate how many
information of sources images are got by fused algorithm. In general, the more information it
keeps, the better the algorithm is. The blur edge which is marked by rectangle in Fig. 1d, e is
caused by the pseudo Gibbs effect. This obviously reduces the visual effect of image fusion.
For clearly showing the performance of CST, the region marked by rectangle is amplified in
Fig. 2.

Comparing Fig. 2a, b, we can find that CST-RV can retain more textures in the fused
image. Figure 2c, d show that CST-RV can effectively suppress artificial texture in the fused
image. What is more, CST is computationally efficient enough to work as a tool in image
fusion. The computational complexity of operation of CST is about twice of the ST (the time
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Fig. 1 The performance of CST. a Right focus image, b left focus image, ¢ fused by ST-RV, d difference
image of (c) minus (a), e difference image of (c) minus (b), f fused by CST-RV, g difference image of (f)
minus (a), h difference image of (f) minus (b)

(a) (b) (c) (d)

Fig. 2 Enlarged images of rectangles marked in Fig. 1. a Enlarged image of above rectangle in Fig. 1d, b
enlarged image of above rectangle in Fig. 1g, ¢ enlarged image of rectangle in Fig. le, d enlarged image of
rectangle in Fig. 1h

complexity of CST and ST are all O(N log N); Liu et al. 2014). But it is much lower than
NSST (Liu et al. 2014), and is the one- K th of ST with cycle spinning. K denotes the number
of spinning.

3 Guided filtering

Recently, the research of edge preserving guided filtering has become a hotspot in image
processing (He et al. 2013; Farbman et al. 2008). The guided filtering (He et al. 2013),
the latest weighted least squares filtering (Farbman et al. 2008) and other edge-preserving
smoothing filtering can do image filtering without blurring strong edges and hence they avoid
introducing artificial texture in the process of filtering. The guided filtering is a linear edge-
preserving filtering algorithm and its computation time does not depend on the size of filtering
kernel. Therefore it can be well applied in the field of image processing. Compared to other
edge preserving filtering algorithms, the guided filtering is very fast (its time complexity is O
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(n) He et al. 2013), and it is easily applied to image fusion (details see Li et al. 2013). Hence
guide filtering is selected to enhance the spatial continuity in our image fusion algorithm.

3.1 The construction of guided filtering

The process of using the guided filtering involves a guidance image /, an input image p which
needs filtering, and an output image . Image /and p can be identical. The key assumption
of the guided filtering is a local linear model between the guidance / and the filtering output
q:

qgi =arli +br, VY i€ w (5)

where i is pixel index, ax, by are some linear coefficients, and wy is a local square window
of radius (2r + 1) centered at the pixel k in the guidance image /.

Then the image filtering problem of edge preserving is converted into the optimal problem
of minimizing the difference between ¢ and p and satisfying the linear condition in (5) at
the same time. That is:

E(ai, by) = Z ((akli + b — pi)? + 8”1%) ©
IEwg

Here ¢ denotes a regularization parameter (fuzzy parameter). The solution to formula (6) can
be given by linear regression (Draper and Smith 1981).

\]?\ icw lipi — 1k Pk
a = : !
(o + &

by = pr — akpk ®)

Here, ) and okz denote the mean and variance of / in local window wy, |w| is the number
of pixels in wy, and py is the mean of p in w.

In order to keep the value of ¢; invariant when it is computed in different windows, after
working out a; and by for all patches wy in the image, we use average filter to average all the
possible values in local window. That is:

gi=— > (arli +by) = al; + b ©)

|w| kiiewy

where @; and b; denote the mean of a; and by, in local window wy, namely

_ 1 - 1

ap = m kew: ag, bi = m kew: Dy (10)
For simplicity, this paper use G, .(p, I) to denote guided filtering. Here, r denotes the size
of filter kernel, p denotes the input image, and / denotes the guidance image.

3.2 The performance of guided filtering in image fusion

In multi-focus image fusion, spatial distorting is most likely to occur in the junction of clear
part and the blur part of the source images. To describe the action of guided filtering clearly,
we consider an extreme case that a clear image is split to two half images such as Fig. 3a,
b. In these images, one half has a very clear image and the other half image is very blur
(the values of these pixels are all the same to 0). We can observe that guided filtering can
heavily improve the spatial continuity by surveying the difference images. The fused method
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Fig. 3 The performance of guided filtering. a Left original image, b right original image, ¢ fused image
using CST-SML, d difference image of (c) minus (a), e difference image of (c) minus (b), f fused image using
GF-CST-SML, g difference image of (f) minus (a), h difference image of (f) minus (b)

is our method called CST-SML-GF and CST-SML (remove the step of guided filtering in our
method), and the decomposition parameters of CST are the same as before. Figure 3a is the
left half image, while Fig. 3b is the other half image. Fused images and difference images
(fused images minus the source image) are shown in Fig. 3c—h.

Comparison of Fig. 3d, g shows that CST-SML-GF has better spatial continuity. The fused
image by CST-SML-GF has little texture and shadow region in the bottom near the diagonal
and diagonal left relatively smooth. This performance fully shows that guided filtering can
be used to enhance the spatial continuity and suppress artificial texture of fused image. From
Fig. 3e, h, we can get the same conclusion.
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4 Image fusion algorithm based on CST domain with guided filtering

CST which is translational invariant is utilized to decompose images. It can suppress the
pseudo Gibbs effect well without increasing computational complexity. In image fusion, using
region energy fused rules to select coefficients at clear parts has good fusion results. Because
the human visual system is sensitive to the image edge, direction and texture information
instead of a single pixel, the fused rules based on regional energy can satisfy the visual system
well. SML proposed in Qu et al. (2009) is a better regional energy function. Compared to
other measurements such as, energy of gradient (EOG), spatial frequency (SF), tenengrad,
energy of Laplace (EOL), SML can represent the image focusing degree effectively, and SML
also has a good effect in selecting the high-frequency coefficients. Combined SML with the
context in Sects. 2 and 3, a new fusion method is proposed. Without losing of generality, we
suppose that A and B are two images with different focuses to be fused, F is the resulting
fused image. Obviously it is easy to extend to multiple image fusion. The proposed image
fusion algorithm is described as follows.

Firstly, CST is used to decompose image A and B, and decomposition coefficients are
Si"d (k) and Sgd (k). Generally, the coefficients of CST are Sk (k), where | and d denote
the scale and direction of decomposition respectively. When [ is zero, S"-¢(k) denote the
low frequency coefficients, and otherwise they denote the high frequency coefficients. Let k
denote the position of pixel, so SML at pixel & is defined as follows (Qu et al. 2009):

smL (k) = [ML“‘(:’)]2 (11)

i€wy
where wy denotes a rectangular window centered at the pixel k, leti = (x, y), then:

MLl’d(x, y) = |2Sl’d(x, y) — Sl’d(x — step, y) — Sl’d(x + step, y)|
+ 128 (x, y) — S (x, y — step) — S (x, y +step)]  (12)

where step denotes a variable spacing between pixels. Generaly, step equals to 1.

Secondly, for the low frequency coefficients Sg‘d(k) and Sg‘ (k), dual scale guided filter-
ing fusion rule proposed in Li et al. (2013) is applied to fuse them. The proposed method in
Lietal. (2013) utilizes the average filter to get the two-scale representations, which is simple
and effective. More importantly, the guided filtering is used in a novel way to make full use
of the strong correlations between neighborhood pixels for weight optimization. Approxi-
mate information of image is constructed by the low frequency coefficients, so applying the
algorithm can get a better fusion effect and greatly increase the spatial continuity of image.
We call this fusion rule GFF, and we refer to Li et al. (2013) for details on fusion algorithm.
That is,

$p k) = GFF (55 k). 53 ) (13)

Thirdly, the larger SML with guided filtering fusion rule is applied to high frequency coeffi-
cients Si{d (k) and Sgd (k) (I is larger than zero). Applying (11) to high frequency coefficients,
we can get SMijld (k) and SMLléd (k). Two matrixes mapA and mapB whose size is as same
as the high frequency coefficients are initialized to zeros. The two matrixes are calculated by
(14).

0 SMLL (k) > SMLY (k)

1d 1d , mapB(k) =1 —mapA(k) (14)
1 SML," (k) < SMLy" (k)

mapA (k) = [
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csT. Coefficients Average
Image A - Weighted with
High-Frequency Guided Filtering
Coefficients
Fused Inverse, Fused
Low-Frequency Coefficients| CST image
Coefficients
Image B CST_ SML Max with
High-Frequency Guided Filtering
Coefficients

Fig. 4 Framework of image fusion algorithm based on CST domain with guided filtering

Certainly, in order to enhance the spatial continuity of high frequency coefficients, guided

filtering is used to filter mapA and mapB by the guided image SIIL" and Sgd, as shown in (15).

mapA = G, ¢ (mapA, Siid) , mapB = G, (mapB, Sg’d) (15)

Then mapA and mapB should be normalized. The fused high frequency coefficients S}’d (k)
can be obtained by the following formula.

Sk (k) = mapA x S (k) + mapB x S (k) (16)

Finally, the fused image F is obtained by fused low frequency coefficients S%d(k) and the

fused high frequency coefficients Sﬁgd (k) through inverse CST (Since the CST coefficients
of fused image constructed by the original CST coefficients of image A and image B are also
complex number, we can get the fusion image by inverse CST). In conclusion, the framework
of the proposed fusion algorithm is shown in Fig. 4.

5 Experimental results
5.1 Experiment setups

To verify the effect of our algorithm, we analyze the comparison of our algorithm with other
fusion algorithms. The proposed fusion method has been evaluated on five pairs are shown
in Fig. 5, which are publicly available online (http://www.imagefusion.org). The size of all
images is 512 x 512.

Image standard deviation (Std), average gradient (Avg), QAB/F metric (Qu et al. 2009),
mutual information (MI) (Li et al. 2013) and spatial frequency (SF) (Li et al. 2013) are
employed as objective criteria. Std and Avg reflect the energy concentration of image, Q*B/F
measures the amount of edge information transferred from the source images to fused images,
MI essentially computes how much information that is transferred to fused image, and SF
measures the overall activity of image spatial domain, which can reflects the ability of image
expression on tiny details contrast. The larger five index values are, the clearer fused image
we get, the better fusion performance a method has.

In the experiment, the decomposition level of CST is 4 as well, with 6, 10, 10, 18 direc-
tional, and the parameters of the high frequency fusion rule proposed in this paper are set
as r = 3,¢ = 1. The comparison fusion algorithms are as follows: the fusion method of
choosing larger SML based on CT proposed in Qu et al. (2009) (CT-SML), the fusion method
based on NSCT and PCNN proposed in Qu et al. (2008) (NSCT-PCNN), the adaptive fusion
algorithm based on ST proposed in Miao et al. (2011) (ST-AF), the fusion method based
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3

Fig. 5 Test images for fused algorithm. a, f are images of “Clock” with different focus. b, g are images
of “Airplane” with different focus. ¢, h are of “Remote sensing” with different sensor. d, i are images of
“Navigation” with different sensor. e, j are “Medical” of CT and MRI

on ST and PCNN proposed in Geng et al. (2012) (ST-PCNN), and the fusion method based
on two scale guided filtering proposed in Li et al. (2013) (GFF). Default parameters in the
shared source codes are used in these fused methods. To verify the effect of each part of
our algorithm, fused method based on Guided filtering in ST domain (ST-GF) and fused
method based on Guided filtering in DTCWT domain (DWCWT-GF) are also compared to
our method (CST-SML-GF). In the experiment, the decomposition scale of DTCWT is 4.

5.2 Results on multi-focus images

Multi-focus image fusion is very important in image fusion. Figure 5a, f show a pair of images
called “Clock”. The eight methods above are utilized to fuse this pair of images respectively.
The fused images and difference images (fused images minus the source image) are shown
in Fig. 6a—x.

Comparing the top left corner and the area around number 8 of the large clock in fused
images, we see that the proposed method which uses image spatial continuity can avoid
introducing some artificial texture into the fused image which exists in CT-SML, NSCT-
PCNN, ST-AF, ST-PCNN, ST-GF and DTCWT-GF. While the proposed method is poorer
in these areas compared with the GFF, obviously the gray level is clearer, which can be
seen from the difference images. This is mainly because we introduce the CST for scale
decomposition to utilize its good time-frequency localization characteristic to improve the
image gray layering and clarity. Overall, comparison of the difference image shows that the
proposed algorithm has the best visual appearance, the least resulting artificial textures and
it also has a significant suppression of artificial textures, which is mainly due to preserving
the spatial continuity by using guided filtering.

Besides the subjective visual appearance, the five objective criteria mentioned above are
used to investigate the performance of different transform methods. From Table 1, we can
see that the proposed algorithm is the highest in all the criteria, which fully shows that the
proposed algorithm does not only consider the information of two differently focused images,
but also fully retain the spatial information of both. The highest Q“B/F and SF show that our
method improves the ability of preserving image information and edge information. Because
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(@ (r) (s) ® W  ® W (x)

Fig. 6 Fusion results using “Clock” images. a-h are the fused images by using CT-SML, NSCT-PCNN,
ST-AF, ST-PCNN, GFF, ST-GF, DTCWT-GF and CST-SML-GF. (i, q), (j, r), (k, s), (1, t), (m, u), (n, v), (o,
w) and (p, x) are difference images (fused images minus Fig. 5a, f)

Table 1 Objective criteria by each fused method in the fusion of Fig. 6

The fusion methods Std Avg QAB/F MI SF

CT-SML 41.1849 0.0112 0.6783 6.7086 8.0840
NSCT-PCNN 40.6143 0.0110 0.6775 7.4948 7.9091
ST-AF 40.8756 0.0112 0.6670 6.7204 8.0705
ST-PCNN 40.3870 0.0111 0.6900 6.7927 8.0202
GFF 40.4602 0.0111 0.7157 7.3364 8.0058
ST-GF 40.8594 0.0110 0.6902 7.5035 7.9173
DTCWT-GF 40.8514 0.0110 0.6861 7.3106 7.9205
CST-SML-GF 41.8595 0.0112 0.7275 7.8925 8.0842

The bold can show the best objective criteria

guided filtering in the transform domain is enhances spatial continuities which help the fused
method can preserve more texture and spatial information of source images, the proposed
algorithm has highest MI.

Next test images are Fig. 5b, g which are airplane images with different focus. The eight
methods above are utilized to fuse this pair images respectively. The fused images and
difference images are shown in Fig. 7a—x.

Comparison of the area around the head and tail of the two airplanes in fused images
shows that the proposed method overcomes introducing some artificial texture into the fused
image by using image spatial continuity which exists in CT-SML, NSCT-PCNN, ST-AF, ST-
PCNN, GFF, ST-GF and DTCWT-GF. The difference images which the fused image obtained
by each method minus Fig. 5b, g also show that our method is better than others. It shows
that the proposed algorithm has the best visual appearance and the least resulting artificial
textures, which means that the proposed algorithm has a significant suppression of artificial
textures.
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(a) (b) (c) (d) (e) () (® (h)

Fig. 7 Fusion results using “Airplane” images. a-h are the fused images by using CT-SML, NSCT-PCNN,
ST-AF, ST-PCNN, GFF, ST-GF, DTCWT-GF and CST-SML-GE. (i, q), (j. r), (k, s), (1, t), (m, u), (n, v), (o,
w) and (p, x) are difference images (fused images minus Fig. 5b and g)

Table 2 Objective criteria by each fused method in the fusion of Fig. 7

The fusion methods Std Avg QAB/F MI SF

CT-SML 56.7416 0.0261 0.7939 5.3533 18.8566
NSCT-PCNN 56.3129 0.0261 0.7937 5.3227 18.7903
ST-AF 56.0713 0.0260 0.7872 47371 18.7271
ST-PCNN 54.8607 0.0256 0.7793 5.0406 18.4354
GFF 56.8756 0.0261 0.7975 5.4177 18.8529
ST-GF 56.8675 0.0261 0.7973 5.5714 18.8488
DTCWT-GF 56.7965 0.0259 0.7949 5.5685 18.6748
CST-SML-GF 56.8756 0.0261 0.7988 5.5735 18.8576

The bold can show the best objective criteria

The five objective criteria above are used to investigate the performance of different
transform methods. As shown in Table 2, the proposed algorithm has the highest objective
criteria.

5.3 Results on remote sensing and navigation images

Next, our method is tested on remote sensing and navigation images. Figure 5c, h and d, i are
typical test images. CT-SML, NSCT-PCNN, ST-AF, ST-PCNN, GFF, ST-GF and DTCWT-
GF are applied to the two pair images respectively. The fused images and difference images
are shown in Figs. 8a—x and 9a—x.

Figure 8 shows that the proposed method suppresses artificial texture of fused image
which exists in others methods. Similarly, difference images show that the proposed method
is better than others.
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Fig. 8 Fusion results using “Remote sensing” images. a—h are the fused images by using CT-SML, NSCT-
PCNN, ST-AF, ST-PCNN, GFF, ST-GF, DTCWT-GF and CST-SML-GF. (i, q), (j, r), (k, s), (1, t), (m, u), (n,
v), (0, w) and (p, x) are difference images (fused images minus Fig. 5c, h)

(@ (1) s) © (@ ) W ®

Fig.9 Fusion results using “Navigation” images. a—h are the fused images by using CT-SML, NSCT-PCNN,
ST-AF, ST-PCNN, GFF, ST-GF, DTCWT-GF and CST-SML-GE. (i, q), (j, r), (k, s), (1, t), (m, u), (n, v), (o,
w) and (p, x) are difference images (fused images minus Fig. 5d, i)

Comparing the clarity of navigation and the area around the stones in the river in fused
images in Fig. 9, we can see that the proposed algorithm and GFF have the best visual
appearance. Similarly, the difference images show that the proposed method is better than
others. It shows that the proposed algorithm is also suitable for fusing remote sensing and
navigation images.
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Table 3 Objective criteria by each fused method in the fusion of Fig. 8

The fusion methods Std Avg QAB/F MI SF

CT-SML 22.3367 0.0143 0.5807 3.3400 10.3032
NSCT-PCNN 21.3312 0.0137 0.6380 42417 9.8478
ST-AF 21.7066 0.0146 0.6112 3.5579 10.6325
ST-PCNN 21.8665 0.0146 0.6005 3.6088 10.6906
GFF 20.7646 0.0134 0.6180 3.9427 9.6821
ST-GF 21.5162 0.0136 0.6174 3.6288 9.8271
DTCWT-GF 21.6604 0.0134 0.6157 3.9273 9.6781
CST-SML-GF 227151 0.0147 0.6638 4.6152 10.7150

Table 4 Objective criteria by each fused method in the fusion of Fig. 9

The fusion methods Std Avg QAB/F MI SF

CT-SML 50.8261 0.0238 0.6342 1.8244 17.1938
NSCT-PCNN 50.3312 0.0237 0.6280 2.2417 16.8478
ST-AF 55.6532 0.0239 0.5599 2.2981 17.2400
ST-PCNN 53.1247 0.0213 0.5194 2.4512 15.3323
GFF 56.7465 0.0227 0.6613 2.0999 16.3669
ST-GF 54.9362 0.0238 0.6640 1.5554 17.1744
DTCWT-GF 56.5303 0.0238 0.6461 2.5408 17.1247
CST-SML-GF 56.8418 0.0239 0.6966 2.5420 17.2381

The bold can show the best objective criteria

From the objective criteria shown in Tables 3 and 4, we find the proposed algorithm has
the highest objective criteria. So again it demonstrates that it is suitable for remote sensing
and navigation images fusion.

5.4 Results on medical images

Finally, our method is tested on medical images. Figure Se, j are medical images test sets.
CT-SML, NSCT-PCNN, ST-AF, ST-PCNN, GFF, ST-GF and DTCWT-GF are applied to this
pair images respectively. The fused images and difference images are shown in Fig. 10a—x.
Comparing the fused images of each algorithm, we can see the proposed fusion algorithm
and ST-AF, ST-PCNN, GFF, DTCWT-GF have better visual appearance. These algorithms
preserve the texture information of source images well. Similarly, comparing the difference
images which the fused image obtained by each method minus Fig. Se, j respectively, we can
see although the proposed method is worse than GFF and DTCWT-GEF, it is better than other
algorithms. It shows that the proposed algorithm doesn’t have the best fusion effect, but it
can still be used in the application of the medical image fusion. From the objective criteria
shown in Table 5, the proposed algorithm also has the highest objective criteria. Though our
method’s subjective visual performance is worse than GFF and DTCWT-GEF, its objective
performance is the best. For further research, our method can be applied to medical image.
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Fig. 10 Fusion results using “Medical” images. a-h are the fused images by using CT-SML, NSCT-PCNN,
ST-AF, ST-PCNN, GFF, ST-GF, DTCWT-GF and CST-SML-GF. (i, q), (j, r), (k, s), (1, t), (m, u), (n, v), (o,
w) and (p, x) are difference images (fused images minus Fig. Se, j)

Table 5 Objective criteria by each fused method in the fusion of Fig. 10

The fusion methods Std Avg QAB/F MI SF

CT-SML 27.4671 0.0255 0.5901 1.6195 9.1569
NSCT-PCNN 24.3072 0.0245 0.5254 1.1221 8.7962
ST-AF 29.8417 0.0269 0.7248 2.6951 9.7923
ST-PCNN 27.5633 0.0261 0.6761 2.2828 9.5430
GFF 29.9454 0.0250 0.7433 3.2586 8.9935
ST-GF 29.2278 0.0260 0.7414 2.3933 9.3573
DTCWT-GF 29.2706 0.0249 0.7152 3.4216 8.9500
CST-SML-GF 29.9976 0.0269 0.7799 3.4216 9.7923

The bold can show the best objective criteria

In terms of the visual appearance and objective criteria of the above five categories of fused
image, although the proposed algorithm’s visual appearance is slightly poorer than GFF in
medical image fusion, but in other types of image fusion it occupies great advantages. The
proposed fusion algorithm can not only preserve the detail information of source image
effectively, but also suppress the artificial textures in fused images, and most importantly, it
is robust for different types of image fusion. In general, the proposed algorithm is a fairly
good and worth extending algorithm for image fusion.

6 Conclusions

This paper presents an image fusion algorithm based on CST with guided filtering. The new
algorithm uses the guided filtering to enhance the spatial characteristics of fused image based
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on CST domain. It not only makes full use of the excellent time-frequency characteristics of
CST, but also uses the energy function in frequency domain to smooth image so that the spatial
continuities of fused image are greatly enhanced. Experimental results demonstrate that the
proposed method is better than the current popular image fusion algorithms mentioned above
in terms of both visual appearance and objective criteria. Moreover, the algorithm is robust
for different types of image fusion. The next research direction will be to choose a more
adaptive parameter to get better results because the parameters of the guided filtering have
great influence on fusion effect.
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