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Abstract A new method is proposed to estimate the direction-of-arrival (DOA) based on
uniform linear array sampling and named as sparsity and temporal correlation exploiting
(SaTC-E). By exploiting the structure information of source signals, including spatial sparsity
and temporal correlation of sources, SaTC-E accomplishes DOA estimation with superior
performance via block sparse bayesian learningmethodology and grid refined strategy. SaTC-
E is applicable into time-varying manifold scenario, such as wideband sources, time-varying
array, provided that the array manifold matrix is determinable. It has improved performance
with some other merits, including superior resolution, requirement for a few snapshots, no
knowledge of source number, and applicability to spatially and temporally corrected sources.
Real data tests and numerical simulations are carried out to demonstrate the advantages of
SaTC-E.

Keywords Direction-of-arrival (DOA) estimation ·Block sparse bayesian learning (BSBL) ·
Temporal correlation · Spatial joint sparsity · Grid refined strategy

1 Introduction

Direction-of-arrival (DOA) estimation based on antenna array is an attractive issue in array
signal processing and plays an important role in the application of radar, sonar, wireless
communication, radio-astronomy. A number of high resolution methods have sprung up
during the past years. As a representative of the classical super-resolution algorithms, the
multiple signal classification (MUSIC; Schmidt 1986) has been used very widely. However,
the performance of MUSIC deteriorates significantly with only a few snapshots or in the
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presence of correlated sources. In addition, it always requires the prior information about the
number of sources, which is rarely practicable in the application.

Recently, thanks to the development of sparse signal recovery (Candes et al. 2006; Donoho
2006; Baraniuk 2007), many sparsity-based methods have been proposed to estimate the
DOA (Malioutov et al. 2005; Hyder and Mahata 2010; Guo et al. 2010; Kim et al. 2012;
Zhu and Chen 2015; Northardt et al. 2013; Du and Cheng 2014; Liu et al. 2012; Carlin
et al. 2013), including �1 mixed-norm minimization approach (Malioutov et al. 2005; Hyder
and Mahata 2010; Guo et al. 2010; Kim et al. 2012; Zhu and Chen 2015; Northardt et al.
2013; Du and Cheng 2014), and sparse bayesian learning (SBL) (Tipping (2001); Wipf
et al. (2011)) technique. It has been demonstrated that most of the sparsity-based methods
are adaptive to many scenarios, including closely spatial sources, a few snapshots, spatially
correlated sources, and no requirement of source number (Malioutov et al. 2005). However,
these methods mainly focus on the spatial sparsity but rarely take the temporal information
of sources into account, whereas the temporal correlation exists universally in the practical
applications. In this paper, we propose a newmethod called sparsity and temporal correlation
exploiting (SaTC-E) based on the block sparse bayesian learning (BSBL) framework (Zhang
and Rao 2011, 2013), which can exploit and self-adaptively learn the temporal correlation
among the snapshots of each source to improve the performance of DOA estimation.

The original BSBL algorithm (Zhang and Rao 2011) has been successfully applied for
multi-task learning (Wan et al. 2012) and wireless telemonitoring of fetal ECG (Zhang
et al. 2013a, b). However, the performance of BSBL is very poor for DOA estimation,
because the sensing matrix is determined by the specific array system and the discretiza-
tion of bearing-space. BSBL has to discretize the bearing-space and assumes the sources
lie on the bearing-grid, and yet the true sources are usually not located in this dis-
cretized grid. In particular, a large grid-interval leads to serious error of DOA estimation
because of off-grid effect, while a small grid-interval results in strong column-coherence
of the sensing matrix. To deal with this issue, we introduce a grid refined strategy in
this paper. This strategy is made up of coarse and refined estimation stages. At the
coarse stage, the grid-interval is relatively large and a local scope covering the DOA of
sources is estimated by using a modified BSBL algorithm. Then at the refined stage,
1-D (one-dimensional) searching with fine grid-interval is implemented in the scope esti-
mated previously to find the exact DOA. The processing technique at the refined stage
keeps away from sparse signal recovery, so that the strong coherence of the refined sens-
ing matrix does not destroy the performance of DOA estimation. Our criterion of grid
refined strategy is to minimize the identical cost function derived from the BSBL method-
ology both at the coarse and refine stages (by using different mathematical tools), which is
quite different from Malioutov et al. (2005), Northardt et al. (2013). In Liu et al. (2012),
independent relevance vector machine-DOA (iRVM-DOA) algorithm employs SBL per-
spective and grid refined strategy as well, but it neglects the temporal information of
sources.

The proposed method has many advantages, such as improved resolution, requirement of
only a few snapshots, and no requirement of source number. Furthermore, it is adaptive to
temporally and spatially correlated sources, as well as being applicable to any time-varying
manifold scenario, provided that the manifold matrix is determinable, such as wideband
sources and time-varying array.

The rest of this paper is organized as follows. In Sect. 2, we formulate the problem of
DOA estimation and describe the main contributions of this paper briefly. In Sect. 3, we
propose a new method called SaTC-E for narrowband DOA estimation, which can exploit
the spatial sparsity and temporal correlation of sources. In Sect. 4, we generalize SaTC-E for
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time-varying manifold scenario as long as the manifold matrix is determinable. In Sect. 5,
real data tests and numerical simulations are presented to verify the performance of SaTC-E.

The notations in this paper are introduced as follows: IL denotes the identity matrix with
size L × L , and I stands for the identity matrix, of which the dimension can be determined
from the context.Ai · andA· j are the i th row and the j th column of the matrixA, respectively.
Ai j is the element of A in the i th row and j th column. A ⊗ B reprensents the Kronecker
product of matrices A and B. vec (A) denotes the vectorization of A by stacking its columns
one by one into a column-vector.AT andAH are the transpose and the conjugate transpose of
A, respectively. āmeans the conjugate of the complex vector a. Toep(a) denotes the M × M
Hermitian Toeplitz matrix determined by its first column a.

2 Problem formulation

In this section, we formulate the problem of DOA estimation and present the main contribu-
tions of our work. The narrowband and stationary sources are taken into account.

Assume that K far-field narrowband sources impinge on anM-sensor array fromdirections
θ = [θ1, . . . , θK ]T , and the inter-sensor spacing is half thewavelength of the incident signals.
The array output at snapshot t is represented as

y (t) = A (θ) s (t) + n (t) , t = 1, 2, . . . , L , (1)

where L denotes the number of snapshots, s (t) = [s1 (t) , . . . , sK (t)]T is the signal vector of
sources, and n (t) is the zero-mean additive complex white Gaussian noise with covariance
matrix Rn = σ 2I and σ 2 unknown. The noise is uncorrelated with sources. The array
manifold matrix A (θ) is represented as,

A (θ) = [a (θ1) , . . . , a (θK )] , (2)

where a (θk) = [
e− j2π f0τ1,k , . . . , e− j2π f0τM,k

]T
is the kth steering vector, and f0 denotes the

carrier frequency. τm,k related to θk is the propagational time-delay of the kth source between
the reference and the mth sensor.

The purpose of DOA estimation is to estimate the directions θ using the given observation{
y (t)

}L
t=1 and the formulation of matrix A (θ). The main contributions of this paper are

listed as follows:

• We exploit the spatial joint sparsity of all sources and the temporal correlation in each
source simultaneously to estimate DOA without any parameter tuning and knowledge of
source number.

• After coarse estimation, we implement a local 1-D searching at the refined stage to
minimize the cost function derived consistently fromBSBLmethodology. This procedure
reduces the error of DOA estimation caused by off-grid effect and strong coherence of
the manifold matrix.

• We generalize the proposed method for any time-varying manifold scenario, provided
that the array manifold matrix has a determinable formulation.
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3 Narrowband DOA estimation based on spatial sparsity and temporal
correlation

To cast the addressed DOA estimation as a problem of sparse signal recovery, we present the
sparse representation of (1) firstly, and then propose an efficient method for DOA estimation.
Thismethod can capture the structure information of source signals and improve the accuracy
of DOA estimation using a grid refined strategy.

3.1 Sparse representation and temporal correlation

Since the sources are spatially sparse, the potential bearing-space can be discretized to form
a bearing-grid Θ = [ϑ1, . . . , ϑN ]T (N � K ), which covers the true directions θ . The array
output (1) can be rewritten as a sparse linear combination of the steering vectors,

y (t) = � (Θ) x (t) + n (t) , t = 1, 2, . . . , L , (3)

where x (t) ∈ C
N×1 is a zero-padded version of s (t) from θ to Θ , that is, if ϑi = θk ∈ θ ,

then xi (t) = sk (t) �= 0; otherwise, xi (t) = 0. Therefore, x (t) has only K (� N ) nonzero
elements. � (Θ) ∈ C

M×N is a corresponding extension of the manifold matrix A (θ), that is

� (Θ) = [a (ϑ1) , . . . , a (ϑN )] , (4)

where a (ϑk) = [
e− j2π f0 τ̃1,k , . . . , e− j2π f0 τ̃M,k

]T
with τ̃1,k related to ϑk . Since the cardinal-

ity of Θ is usually much larger than the number of sensors, i.e., N � M , � (Θ) is an
overcomplete dictionary.

Since the true directions are rarely located in the spatial grid Θ exactly, (3) is not an
accurate extension of (1). However, the processing of sparse signal recovery based on (3)
will be always feasible with some recovery error, while how to reduce the error of DOA
estimation caused by off-grid effect is another assignment we will study in the following
section. Therefore, the model error in (3) is skipped over.

In the following we present the BSBL model (Zhang and Rao 2011) for DOA estimation.
The array output (3) with L snapshots is represented as a multiple measurement vectors
(MMV) model (Eldar and Mishali 2009)

Y = �X + N, (5)

where Y = [
y (t1) , . . . , y (tL)

] ∈ C
M×L , X = [x (t1) , . . . , x (tL)] ∈ C

N×L , � = � (Θ),
and N = [n (t1) , . . . ,n (tL)] ∈ C

M×L . For stationary sources, the supports of all columns
in X are identical, so that X has only K nonzero rows and each row Xi · denotes a potential
source from direction ϑi . As the sources are stochastic and temporally correlated, that is, the
source signal at the time t is related to the signal at the last time t − 1, we assume that each
row Xi · has a parameterized Gaussian distribution

p (Xi ·; γi ,Bi ) ∼ CN (0, γiBi ) , i = 1, 2, . . . , N (6)

with parameters γi and Bi to be estimated. Obviously, γi is a parameter controlling the row-
support of X, that is, if γi = 0, then Xi · is a zero vector and there is no source from direction
ϑi ; otherwise, Xi · �= 0 and there is a source from ϑi . Bi ∈ R

L×L is a Hermitian matrix that
captures the correlation among the elements in Xi ·, and can be interpreted as a covariance
matrix ofXi · up to a constant factor γi . Obviously, the temporal correlation of source signals
is characterized by matrix Bi . The estimate of {γi } is what we need for DOA estimation, that
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is, by finding the peaks of
{
γi
}
we can get the DOA estimation according to the indices of

those peaks.
For convenience of computing the temporal correlation of sources, (5) is transformed to

a single measurement vector (SMV) model as follows,

z = �w + ε, (7)

where z = vec
(
YT
) ∈ C

ML×1, � = � ⊗ IL ∈ C
ML×NL , w = vec

(
XT
) ∈ C

NL×1, and

ε = vec
(
NT
) ∈ C

ML×1. Consequently, w = [
wT
1 , . . . ,wT

N

]T
is a block-sparse vector with

wi = XT
i · .

Under the assumption that the sources are spatially uncorrelated, the prior distribution of
w in (7) is also a Gaussian distribution,

p (w; {γi ,Bi }) ∼ CN (0,�0) (8)

with the covariance matrix �0 = diag
[
γ1B1, . . . , γNBN

]
.

Assume that the noises are mutually independent and Ni j ∼ CN (
0, σ 2

)
, then the condi-

tional distribution of z in (7) is

p
(
z|w; σ 2) ∼ CN (

�w, σ 2I
)
. (9)

According to the Bayes rule, the posterior PDF of w is expressed as

p
(
w| z; {γi ,Bi }, σ 2)

= (2π)−
NL
2 |�w|− 1

2 e

{
− 1

2 (w−μw)H�w
−1(w−μw)

}

, (10)

then obviously, p
(
w| z; {γi ,Bi }, σ 2

) ∼ CN (μw,�w) with

Σw =
(
σ−2�H� + �0

−1
)−1

,

μw = �0�
H
(
σ 2I + ��0�

H
)−1

z. (11)

As we mentioned above, the final task remains on the estimate of parameters {γi }. We
achieve the estimate of {γi } bymaximizing p

(
z; {γi ,Bi }, σ 2

)
, and find the remarkable peaks

in the estimate γ̂ of γ = [
γ1, . . . , γN

]T which indicates the DOA of the incident sources.
In Zhang and Rao (2011), the authors employed expectation–maximization (EM) technique
(Dempster et al. 1977) to learn {γi ,Bi } and σ 2. Before estimating these parameters, they
supposed Bi = B(i = 1, 2, . . . , N ) to avoid the overfitting problem. The learning rules for
γi ,B and σ 2 are presented as (Zhang and Rao 2011)
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(k+1) =
((

�(k)
)−1 +

[(
σ 2)(k)

]−1
�H�

)−1

,

X(k+1) = �(k)�H
((

σ 2)(k)I + ��(k)�H
)−1

Y,

γi
(k+1) = 1

L

(
X(k+1)

)

i ·

(
B(k)

)−1(
X(k+1)

)H

i · +
(

(k+1)

)

i i
,

B(k+1) = 1

N

N∑

i=1

(
�

(k)
w

)i i +
(
μ

(k)
w

)i((
μ

(k)
w

)i)H

γi (k+1)
,

(
σ 2)(k+1) =

∥
∥
∥z − �μ

(k)
w

∥
∥
∥
2

2
+ (σ 2

)(k) [
NL − tr

(
�

(k)
w �−1

0

)]

ML
, (12)

where � = diag (γ1, . . . , γN ),
(
�

(k)
w

)i i
denotes the i th principal diagonal block with size

L × L in the previous estimate of �w, and
(
μ

(k)
w

)i
is the i th block-subvector with size

L × 1 in the previous estimate of μw. The iteration procedure for updating γi ,B and σ 2 will
continue until a predefined criterion is satisfied. For example, if the k + 1th iteration satisfies∥∥γ (k+1) − γ (k)

∥∥
2/
∥∥γ (k)

∥∥
2 ≤ δ where δ is a small enough positive threshold, the iteration is

over. The details of the derivation for the above learning rules refer to Zhang and Rao (2011).
We observe that the quadraticMahalanobis distance (MD)measure ofXi ·,Xi ·B−1Xi ·H , is

applied for the learning rule of γi , while the Euler distance (ED)measure is used for parameter
estimation in iRVM-DOA algorithm (Liu et al. 2012). The MD measure can capture the
correlations among the elements of Xi ·, while the ED measure cannot. Theorem 1 in Zhang
and Rao (2011) has verified that regardless of the choice of Bi , the global minimum of the
cost function L ({γi } ,Bi , σ ) (see (15)) always leads to the true sparse solution in noiseless
case. Supported by this fact, assuming Bi = B, i = 1, 2, . . . , N is reasonable. In the rest of
this paper, B is parameterized as (Zhang and Rao 2013)

B = Toep
([

1, b, b2, . . . , bL−1
])

. (13)

As we know, the accuracy of γ̂ is the core of DOA estimation. However, the accuracy of
noise variance estimation σ̂ 2 will affect the accuracy of γ̂ significantly. Unfortunately, the
estimate method of σ 2 based on learning rule (12) is not effective enough. Instead of (12),
we use the specific maximum likelihood estimator (MLE) of σ 2 given as (Stoica and Nehorai
1989)

σ̂ 2 = 1

ML
tr

[
YH

(
I − Â

(
ÂH Â

)−1
Â
)
Y
]

, (14)

where Â =
[
a
(
ϑ̂k1

)
a
(
ϑ̂k2

)
. . . a

(
ϑ̂kh

)]
, and ϑ̂ki is the estimate of DOA corresponding to

the i th peak of γ̂ .

3.2 Grid refined strategy associated with cost function

In this subsection, a grid refined strategy is presented to mitigate the error of DOA estimation
caused by off-grid effect. This strategy includes the coarse and refined estimation stages.
At the coarse stage with relatively large grid-interval, we learn γ̂ by EM iteration (12),
followed by finding the peaks of γ̂ . Then at the refined stage with fine grid-interval, the
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DOA is estimated via local 1-D searching around the bearing-scopes corresponding to the
peak-indices of γ̂ obtained at the coarse stage.

The EM technique at the coarse stage is essentially equivalent to minimizing the cost
function (Zhang and Rao 2011)

L ({γi },B, σ ) = log |�| + zH�−1z (15)

with � = σ 2I + ��0�
H . At the refined stage, we aim to minimize the cost function (15)

consistently with a fine grid-interval as well. The procedure of the refined stage is derived as
follows.

Let � = � ⊗ IL , � = [a (ϑ1) , . . . , a (ϑN )], and �0 = � ⊗ B. The matrix � can be
represented as

� = σ 2I +
N∑

i=1

γia (ϑi ) aH (ϑi ) ⊗ B. (16)

In order to facilitate the DOA of the kth source, � is approximated by

� ≈ �−k + γ̃ka
(
ϑ̃k

)
aH
(
ϑ̃k

)
⊗ B, (17)

where �−k = σ 2I+
N∑

i=1,i �=k,k′
γia (ϑi ) aH (ϑi ) ⊗B. γi (i �= k, k′, k′ = k − 1 or k′ = k + 1),

B and σ 2 have been learned previously at the coarse stage. γ̃k and ϑ̃k are the parameters to
be estimated.

As we mentioned, we calculate γ̃k and ϑ̃k by minimizing the cost function L ({γi },B, σ )

approximately, that is, { ˆ̃γ k,
ˆ̃
ϑk

}
= argmin

γ̃k ,ϑ̃k∈Θk

{
L
(
γ̃k, ϑ̃k

)}
, (18)

where

L
(
γ̃k, ϑ̃k

)
= log

∣∣∣�−k + γ̃ka
(
ϑ̃k

)
aH
(
ϑ̃k

)
⊗ B

∣∣∣

+ zH
(
�−k + γ̃ka

(
ϑ̃k

)
aH
(
ϑ̃k

)
⊗ B

)−1
z, (19)

andΘk denotes the searching scope for the kth source. In this paper, we setΘk =
[
ϑk, ϑ̂k

]
or

Θk =
[
ϑ̂k, ϑ̄k

]
, where ϑk and ϑ̄k are the adjacent directions of DOA estimation ϑ̂k obtained

previously according to the peaks of γ̂ learned at the coarse stage. We repeat (18) for all
ϑ̂k, k = 1, 2, . . . , K .

To solve (18), the alternating minimization strategy (AMS) on γ̃k, ϑ̃k is utilized. Firstly,

the partial derivatives of L
(
γ̃k, ϑ̃k

)
with respect to (w.r.t.) γ̃k and ϑ̃k are calculated as

∂L
(
γ̃k, ϑ̃k

)

∂γ̃k
=

rB∑

i=1

[
a
(
ϑ̃k

)
⊗ uBi

]H
V
[
a
(
ϑ̃k

)
⊗ uBi

]
,

∂L
(
γ̃k, ϑ̃k

)

∂ϑ̃k
= γ̃k tr

{
V
[
a
(
ϑ̃k

)
dH
(
ϑ̃k

)
⊗ B

]}

+γ̃k tr
{
V
[
d
(
ϑ̃k

)
aH
(
ϑ̃k

)
⊗ B

]}
, (20)
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Algorithm 1: Refined DOA Estimation

Step 1: Give desired precision Δϑr ; set k = 1.

Step 2: Give initial values γ̃
(0)
k , ϑ̃(0)

k , and Θk according to the coarse estimation.

Step 3: Compute γ̃
(i+1)
k by solving

rB∑

i=1

[
a
(
ϑ̃

(i)
k

)
⊗ uBi

]H
Vi

[
a
(
ϑ̃

(i)
k

)
⊗ uBi

]
= 0

via the nonlinear least squares method (NonLSM), where

Vi = W−1
i − W−1

i zzHW−1
i ,

Wi = �−k + γ̃
(i)
k a

(
ϑ̃

(i)
k

)
aH

(
ϑ̃

(i)
k

)
⊗ B.

Step 4: Compute ϑ̃
(i+1)
k by local searching in Θk with resolution Δϑr , that is,

ϑ̃
(i+1)
k = argmin

ϑ̃k∈Θk

∣∣∣
∣∣

∂L
(
γ̃

(i+1)
k ,ϑ̃k

)

∂ϑ̃k

∣∣∣
∣∣
.

Step 5: If ϑ̃
(i+1)
k = ϑ̃

(i)
k , we get ˆ̃

ϑk = ϑ̃
(i+1)
k , k = k + 1, go to Step 6;

otherwise, i = i + 1, return to Step 3.

Step 6: If k < K , return to Step 2; otherwise, the algorithm ends.

where V = W−1 −W−1zzHW−1,W = �−k + γ̃ka
(
ϑ̃k

)
aH
(
ϑ̃k

)
⊗B, B =

rB∑

i=1
uBi
(
uBi
)H

,

and uBi is the product of the i th singular value and the corresponding eigenvector of B.

rB = rank (B), and d
(
ϑ̃k

)
= ∂a

(
ϑ̃k

)
/∂ϑ̃k . The detail for these derivations is presented in

the Appendix1. Based on (20), the procedure for the refined DOAs estimation is shown as
in Algorithm 1.

It is obvious that if the spatial grid-interval Δϑc at the coarse stage is small enough, e.g.,
Δϑc = 1◦, then the scope we search is only KΔϑc and much smaller than the whole space
[−90◦, 90◦]. Therefore, when the proposed method can mitigate the error of DOA estimation
resulted by off-grid effect, it reduces the computational cost of the original BSBL algorithm
as well. Meanwhile, since the refined estimation keeps away from the processing of sparse
signal recovery, its performance has not been destroyed by the strong coherence among the
refined steering vectors.

Remark 1 The iRVM-DOA algorithm in Liu et al. (2012) also employs the ideal of SBL
(but not BSBL) and grid-refinement to estimate DOA and has an excellent performance.
However, there exists a fact that if we set B = IL , the derived algorithm in this work is
exactly equivalent to the iRVM-DOA.

Proposition 1 With σ 2 fixed and B = IL , the updating formula of γi at the coarse stage is
simplified into

γi
(k+1) = 1

L

(
X(k+1)

)

i ·

(
X(k+1)

)

i ·
H +

(

(k+1)

)

i i
, (21)

which is exactly identical to the one used in the iRVM-DOA.

Besides the equivalence at the coarse stage, the equivalence at the refined stage should
also be proved. In fact, we have
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Proposition 2 When B = IL , the objective function at the refined stage (19) is equal to

L̆
(
γ̃k, ϑ̃k

)
= L log

∣
∣
∣�̆−k + γ̃ka

(
ϑ̃k

)
aH
(
ϑ̃k

)∣∣
∣

+ tr

[
YH
(
�̆−k + γ̃ka

(
ϑ̃k

)
aH
(
ϑ̃k

))−1
Y
]

, (22)

with �̆−k = σ 2IM +
N∑

i=1,i �=k,k′
γia (ϑi ) aH (ϑi ), which is the objective function at the refined

stage in the iRVM-DOA.

The proof of Proposition 2 is given in the Appendix2.
These results demonstrate that the proposed method generalizes the iRVM-DOA algo-

rithm, and the latter cannot exploit the temporal correlation in each source while the former
can.

4 Extension to time-varying manifold

In this section, we extend the proposed method to time-varying manifold scenario, such as
wideband sources and time-varying array. In time-varying manifold scenario, the array man-
ifold matrix is associated with time-variable so that the existing sparsity-based methods are
no longer in force for DOA estimation. Fortunately, the array output can be represented as
a block-sparsity model like (7), provided that the manifold matrix at each snapshot is deter-
minable. Therefore, the proposed method is applicable to time-varying manifold scenario.
In this section, wideband sources are considered.

Consider the sources are linear modulated frequency (LFM) signals,

sk (t) = uk (t) e
j2π

(
f0t+ 1

2 Kct2
)

, k = 1, 2, . . . , K , (23)

where uk (t) is the complex amplitude, f0 is the initial frequency, and Kc is the chip rate.
Then the output of the mth sensor is represented as

ym (t) =
K∑

k=1

sk (t) e
j2π

(
1
2 Kcτ

2
mk−t Kcτmk− f0τmk

)

+ nm (t), t = 1, 2, . . . , L , (24)

with noise nm (t).
Based on the spatial discretization described in Sect. 3.1, the array output takes a matrix-

vector form as
y(t) = A(�, t)s(t) + n(t), t = 1, 2, . . . , L , (25)

where y(t) = [y1(t), . . . , yM (t)]T is the array observation at snapshot t , s(t) =
[s1(t), . . . , sN (t)]T is the source signal-vector, and n(t) = [n1(t), . . . , nM (t)]T denotes
the receiving noise. A(Θ, t) is the array manifold matrix at snapshot t , which is denoted as

A(Θ, t) = [a (ϑ1, t) , . . . , a (ϑN , t)] , (26)

with bearing-grid Θ = [ϑ1, . . . , ϑN ]T and steering vector

a (ϑn, t) =
[
1, . . . , e− j2π( f0+Kct)τMn+ jπKcτ

2
Mn

]T
. (27)

Note that A(Θ, t) changes as snapshot t , so (25) is a time-varying manifold model.
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In order to exploit the advantages of the spatial joint sparsity and the temporal correlation,
we reformulate (25) as a block-sparsity model in the following.

Let w denote a stack of vector-blocks sn (t) = [sn (1) , . . . , sn (L)]T (n = 1, 2, . . . , N )

as

w =

⎡

⎢⎢
⎣s1 (1) , . . . , s1 (L)︸ ︷︷ ︸

sT1 (t)

, . . . , sN (1) , . . . , sN (L)︸ ︷︷ ︸
sTN (t)

⎤

⎥⎥
⎦

T

, (28)

Let D[i j] = diag
[
ai j (1) , . . . , ai j (L)

]
, i = 1, 2, . . . M, j = 1, 2, . . . , N , where ai j (t)

stands for the element lying at the i th row and the j th column of A (�, t), then an overcom-
plete dictionary is constructed as

D =

⎡

⎢
⎢
⎢
⎣

D[11] D[12] · · · D[1N ]
D[21] D[22] · · · D[2N ]
...

...
. . .

...

D[M1] D[M2] · · · D[MN ]

⎤

⎥
⎥
⎥
⎦

∈ C
ML×NL (29)

Now the array output (25) with multiple snapshots can be reformulated as a block-sparsity
model

z = Dw + ε, (30)

where z = vec
(
YT
)
with Y = [

y(t1) . . . y(tL)
]
, and ε = vec

(
NT
)
with N

= [n(t1) . . . n(tL)].
Under the assumption that each source sn (t) is Gaussian distributed, i.e., p (sn (t) ; γi ,B)

∼ CN (0, γiB) , i = 1, 2, . . . , N , we have the learning rules (Zhang and Rao 2011) by EM
technique

γi
(k+1) =

tr

[(
B(k)

)−1
((

�̃
(k)
w

)i i +
(
μ̃

(k)
w

)i(
μ̃

(k)
w

)H)]

L
,

B(k+1) = 1

N

N∑

i=1

(
�̃

(k)
w

)i i +
(
μ̃

(k)
w

)i(
μ̃

(k)
w

)H

γi (k+1)
,

(
σ 2)(k+1) =

∥∥∥z − Dμ̃
(k)
w

∥∥∥
2

2
+ (σ 2

)(k) [
NL − tr

(
�̃

(k)
w �0

−1
)]

ML
, (31)

with all the notations similar to the mentioned in Sect. 3. Matrix � in Sect. 3 is replaced by
D here, so that the covariance and mean in (11) become

�̃w =
(
σ−2DHD + �0

−1
)−1

,

μ̃w = �0DH
(
σ 2I + D�0DH

)−1
z. (32)

Remark 2 By setting A(�, t) = �(�), t = 1, 2, . . . , L , it is easy to verify that the learn-
ing rules in time-varying manifold scenario are the generalization of the counterpart for
narrowband scenario, while the latter ones are only used for the fixed manifold model.
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Similarly to narrowband scenario, by following the coarse estimation via EM iteration
(31), we turn into the refined estimation stage. Based on the cost function

L̃ ({γi },B, σ ) = log
∣
∣
∣σ 2I + D�0DH

∣
∣
∣

+ zH
(
σ 2I + D�0DH

)−1
z (33)

and the approximation

�̃ = σ 2I + D�0DH ≈ �̃−k + γ̃kD
[
ϑ̃k

]
BD
[
ϑ̃k

]H
(34)

we have the cost function reformulated as

L̃
(
γ̃k, ϑ̃k

)
= log

∣
∣
∣
∣�̃−k + γ̃kD

[
ϑ̃k

]
BD
[
ϑ̃k

]H ∣∣
∣
∣

+ zH
(

�̃−k + γ̃kD
[
ϑ̃k

]
BD
[
ϑ̃k

]H)−1

z. (35)

where �̃−k = σ 2I +
N∑

n=1,n �=k,k′
γnD [ϑn]BD[ϑn]H and

D [ϑn] =

⎡

⎢⎢⎢
⎣

D[1n]
D[2n]

...

D[Mn]

⎤

⎥⎥⎥
⎦

, n = 1, 2, . . . , N . (36)

The partial derivatives of L̃
(
γ̃k, ϑ̃k

)
w.r.t. γ̃k and ϑ̃k are calculated as

∂ L̃
(
γ̃k, ϑ̃k

)

∂γ̃k
=

rB∑

i=1

(
D
[
ϑ̃k

]
uBi
)H

Ṽ
(
D
[
ϑ̃k

]
uBi
)
,

∂ L̃
(
γ̃k, ϑ̃k

)

∂ϑ̃k
= γ̃k tr

{
ṼD

[
ϑ̃k

]
B
(
F
[
ϑ̃k

])H}

+ γ̃k tr

{
ṼF

[
ϑ̃k

]
B
(
D
[
ϑ̃k

])H}
, (37)

where Ṽ = W̃−1 − W̃−1zzHW̃−1, W̃ = �̃−k + γ̃kD
[
ϑ̃k

]
BD
[
ϑ̃k

]H
and F

[
ϑ̃k

]

= ∂D
[
ϑ̃k

]
/∂ϑ̃k . The procedure for the refined estimation in time-varyingmanifold scenario

is similar to Algorithm 1 for narrowband scenario, so we do not show it again.

Remark 3 Similarly as the discussion in Sect. 3, in time-varyingmanifold scenariowe replace
the learning rule of noise variance σ 2 with the MLE

σ̂ 2 = 1

M

[
zH
(
I − D̂

(
D̂H D̂

)−1
D̂
)
z
]

, (38)

where D̂ =
[
D
[
ϑ̂k1

]
D
[
ϑ̂k2

]
. . .D

[
ϑ̂kh

]]
, ϑ̂ki is the DOA estimation corresponding to the

i th peak of γ̂ , and D
[
ϑ̂k1

]
has an identical form as D [ϑn].

123



194 Multidim Syst Sign Process (2017) 28:183–205

Remark 4 While the learning rules (31) at the coarse stage are proved to be the extension
of that in narrowband scenario, the generalization at the refined stage is obvious in terms of
Proposition 3.

Proposition 3 Let A(�, t) = �(�), we have that the cost function (35) in time-varying
scenario equals to the cost function (19) in narrowband scenario.

In summary, we propose a unified method, which utilizes the spatial sparsity and exploits
the temporal correlation of sources simultaneously, to accomplish the DOA estimation for
any time-varying manifold scenario in this section. This method is called as SaTC-E, which
means exploiting the sparsity and temporal correlation simultaneously.

5 Experiment results

In this section, several experiments are carried out to compare SaTC-E with some classical
algorithms, including MUSIC Schmidt (1986), L1-SVD (Malioutov et al. 2005), iRVM-
DOA (Liu et al. 2012) for narrowband scenario, and two-side correlation transformation
(TCT; Valaee and Kabal 1995), coherent signal-subspace method (CSSM; Wang and Kaveh
1985), wideband iRVM-DOA (WiRVM-DOA; Liu et al. 2012) for wideband scenario. L1-
SVD algorithm is taken as one of the representatives of the sparsity-based methods.

The setups are as follows. For narrowband scenario, the incident sources are two complex
sinusoid signals with carrier frequency f0 = 2.143GHz, while for wideband scenario the
sources are two LFM signals. The center frequency, the bandwidth, and the chip rate of
LFMs are fc = 2.118GHz, B = 50MHz, and Kc = 103 , respectively. The directions of
the incident sources are −6.54◦ and 6.54◦. The uniform linear array (ULA) is considered.
The number of sensors is M = 8, and the inter-sensor spacing is half the wavelength. The
number of snapshots is L . The number of sources is assumed to be known for MUSIC,
TCT, and CSSM. The uniform spatial grids are equipped, and the grid-intervals are set to
Δϑc for SaTC-E, iRVM-DOA and WiRVM-DOA at the coarse stage and Δϑr for MUSIC,
TCT and CSSM, respectively. The searching precision at the refined stage is also set to
Δϑr for iRVM-DOA, WiRVM-DOA and SaTC-E. The stopping criterion of EM iteration
for SaTC-E is

∥∥γ (k+1) − γ (k)
∥∥
2/
∥∥γ (k)

∥∥
2 ≤ δ with δ = 10−4, or that EM iteration achieves

3000 times. If no special mention, the covariance matrix for SaTC-E is calculated as B
= Toep

([
1, b, b2, . . . , bL−1

])
with b = −0.99. L1-SVD is implemented as in Malioutov

et al. (2005).

5.1 Real data tests

In this subsection, we utilize the real data to present the spectra of SaTC-E and the compared
methods and illustrate the performance of SaTC-E. The real data was collected by the antenna
ULA in a microwave black-room. The sampling frequency was 500Msps. Before DOA
estimation, the array output has already been pre-treated with phase correction and amplitude
correction.

Firstly, we compare the performance of SaTC-E using the learning rule of σ 2 with that
using the MLE of σ 2. The sources are wideband LFM signals. Ten snapshots are used. The
spectra are shown in Fig. 1. The spectrum-peaks using the MLE of σ 2 are much sharper than
those using the learning rule of σ 2. The reason is that σ̂ 2 learned from the cost function (33)
is not accurate enough for the specific application of DOA estimation, while the MLE (38)
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Fig. 1 Spatial spectra of SaTC-E using the learning rule and the MLE of σ 2, respectively. The sources are
two LFM signals. The number of snapshots is L = 10

is derived from the spectral analysis of DOA estimation. According to this result, we employ
MLE to estimate σ 2 for SaTC-E in the following experiments.

For narrowband scenario, Fig. 2a plots the spatial spectrum of MUSIC and spectra of L1-
SVD, iRVM-DOA and SaTC-E at the coarse stage. The spectra at the refined stage of SaTC-E
and iRVM-DOA within the local scope are displayed in Fig. 2b, c. The number of snapshots
is L = 20, the grid-intervals areΔϑc = 1◦ andΔϑr = 0.01◦. The peaks of SaTC-E are much
shaper than those of MUSIC and L1-SVD, and thus SaTC-E surpasses MUSIC and L1-SVD.
Meanwhile, SaTC-E has similar performance to iRVM-DOA. The counterparts for wideband
scenario are shown in Fig. 3. The grid-intervals are set to Δϑc = 2◦ and Δϑr = 0.01◦.
Although the number of snapshots used by TCT and CSSM (L = 320) is much larger than
that used by SaTC-E (L = 10), the spectrum of SaTC-E is more remarkable than those of
TCT and CSSM. On the other hand, the spectrum of WiRVM-DOA surfers several false
peaks. The comparison results illustrate that SaTC-E is applicable to DOA estimation both
for narrowband and wideband, even it uses only a few snapshots.

5.2 Numerical simulations

In this subsection, we analyze the statistical performance of SaTC-E. Monte Carlo trials
are carried out to evaluate the statistical performance of the various methods. The statistical
performance is measured by root mean square error (RMSE) of DOA estimation, which is
calculated as

RMSE =
√√√√ 1

K · MC

MC∑

mc=1

K∑

k=1

(
θ̂

(mc)
k − θk

(mc)
)2

, (39)

where MC is the total number of Monte Carlo trials, and θ̂
(mc)
k is the estimate of the true

direction θk
(mc)of the kth source in the mcth trial. 200 independent trials are carried out to

calculate the RMSE.
Before comparing the RMSE, we show the iteration convergence property of γ updated

as (12). Two narrowband sources are considered. The SNR is set to 20dB, and the number
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Fig. 2 a Spatial spectrum of MUSIC and spatial spectra of L1-SVD, iRVM-DOA and SaTC-E at the coarse
stage, and b, c spatial spectra of SaTC-E and iRVM-DOA at the refined stage. The two sources are narrowband.
The number of snapshots is L = 20

of snapshots is L = 20. We repeat 30 trials with 1000 iterations in each trial. The relative
update ratio of γ ,

∥∥γ (k+1) − γ (k)
∥∥
2/
∥∥γ (k)

∥∥
2 , is presented in Fig. 4. The curves indicate that

in each trial, the estimate of γ is approximately convergent with some small perturbations.
Assume that two temporally correlated sources imping on the 8-sensor ULA from direc-

tions−5◦+Δθ and 5◦+Δθ , respectively, withΔθ produced uniformly and randomly within
the spatial scope [−1◦, 1◦]. The grid-intervals are Δϑc = 1◦ and Δϑr = 0.01◦, and thus the
source directions are off-grid usually. Each source is generated as AR(1) process, and thus
the AR coefficient indicates the temporal correlation of this source. In this simulation, the
AR coefficients of two sources in each trial are randomly chosen from [0.8, 1). The RMSEs
of DOA estimation with respect to SNR are presented in Fig. 5. The number of snapshots
is L = 20. The SNR varies from −6 to 20dB with step 2dB. The result shows that the
RMSE of SaTC-E is very close to Cramer–Rao lower bound (CRLB) and performs as well as
iRVM-DOA algorithm when SNR is larger than 0dB. It significantly outperforms L1-SVD
and MUSIC. Both for Fig. 5 and Fig. 6, when SNR is low, e.g., SNR <0dB, the RMSE
of SaTC-E is larger than iRVM-DOA. This is because when the noise dominates the model
error, the temporal correlation modeled by B maybe not accurate enough.
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Fig. 3 a Spatial spectra of TCT and CSSM, and spatial spectra of WiRVM-DOA and SaTC-E at the coarse
stage, and b, c spatial spectra of SaTC-E and WiRVM-DOA at the refined stage. The sources are two LFM
signals. The number of snapshots for TCT and CSSM is L = 320, while the number of snapshots forWiRVM-
DOA and SaTC-E is L = 10
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Fig. 4 The relative update ratio of γ in narrowband scenario. SNR=20dB and L = 20
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Fig. 5 The RMSEs versus the SNR for two temporally correlated sources produced by AR(1) process. The
number of snapshots is L = 20
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Fig. 6 The RMSEs versus the SNR for two complex sinusoid sources. The number of snapshots is L = 20

In the following simulations, we consider a common scenario in array signal processing
that two complex sinusoids sources imping on the 8-sensor ULA. Other parameters are set
as the simulation in Fig. 5. The complex sinusoid signal at time t is represented as

sk (t) = uk (t) exp (2π f0t) , k = 1, 2, (40)

where the amplitude uk (t) obeys a Gaussian distribution with mean 100 and variance 5.
The RMSEs of DOA estimation versus the SNR are shown in Fig. 6. The SNR varies from

−6 to 20dB with step 2dB. The number of snapshots is L = 20. In this simulation, when
SNR is high enough (e.g., SNR exceeds 0dB), the RMSE of SaTC-E is very close to CRLB,
while MUSIC fails in each SNR. In particular, the result in Fig. 6 indicates that SaTC-E
surpasses the other methods including L1-SVD, MUSIC, and iRVM-DOA in middle SNR.
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Fig. 7 The RMSEs versus the number of snapshots. SNR= 0dB

Table 1 The average running time for DOA estimation (in seconds)

SNR (dB) −4 0 4 8 12 16 20

TMSBL 747.94 735.37 704.42 617.93 514.02 468.69 447.76

SaTC-E 7.6137 1.7606 1.7749 1.8829 1.7962 1.6118 1.6270

When SNR is high, e.g., SNR ≥ 10dB in this simulation, SaTC-E significantly outperforms
L1-SVD and MUSIC, and meanwhile it has quite similar performance to iRVM-DOA.

Figure 7 exhibits the curves of RMSE versus the number of snapshots. The number of
snapshots L varies from 5 to 40. SNR is set to 0dB. When L is large, e.g., L > 10 in
this simulation, the RMSE of SaTC-E is smaller than that of iRMV-DOA. Furthermore, the
RMSE of SaTC-E is much smaller than those of L1-SVD and MUSIC all along. The bad
performances at SNR = 9 and 12dB are caused by few outliers among the 200 Monte Carlo
trials. This result demonstrates that SaTC-E has a superior performance of DOA estimation
even uses a few snapshots.

Finally, we illustrate numerically that our method SaTC-E can reduce the computational
complexity of BSBL proposed in Zhang and Rao (2011) for the problem of DOA estimation.
TMSBL (Zhang and Rao 2011) is utilized as the original BSBL algorithm. The sources are
produced as (40), the number of snapshots are L = 20, and the SNR varies from −4 to
20dB with step 4dB. The coarse grid-interval for SaTC-E is Δϑc = 2◦ and the refined
one is Δϑr = 0.1◦. The grid-interval for TMSBL is Δϑ = 0.1◦, too. This experiment is
implemented in Matlab v.7.8.0 on a PC with a Window XP system and a 4GHz CPU. The
average running times of SaTC-E and TMSBL over 200 trials are presented in Table 1.
The data in Table 1 indicates that SaTC-E is much faster than TMSBL as our expectation.
In addition, we find that TMSBL almost can not recover the power γ , especially in low
SNR, because of the serious correlation between the adjacent steering vectors. Consequently,
TMSBL does no longer work for DOA estimation, while SaTC-E has improved performance
with much higher efficiency.
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6 Conclusion

A newmethod called SaTC-E has been proposed to estimate DOA for time-varying manifold
scenario, which treats the scenario of narrowband stationary sources as a special case. SaTC-
E exploits the spatial joint sparsity and temporal correlation of sources simultaneously via
the BSBL methodology. In order to enhance the adaptation of BSBL algorithm to DOA
estimation, SaTC-E utilizes the MLE of noise variance to take the place of the learning
rule used in original BSBL algorithm. Meanwhile, it establishes a grid refined strategy to
mitigate the estimate error caused by off-grid effect and reduce the computational complex of
BSBLwith improved performance. SaTC-E has somemerits, including improved resolution,
requirement of a few snapshots, no prior knowledge of source number, and applicability to
spatially and temporally correlated sources. Real data tests and numerical simulations have
been implemented to demonstrate the superiority of SaTC-E.

Appendix 1

The detail for the derivatives (20) is presented as follows.

LetW = �−k + γ̃ka
(
ϑ̃k

)
aH
(
ϑ̃k

)
⊗ B, and the derivatives are expressed as

∂L
(
γ̃k, ϑ̃k

)

∂γ̃k
= ∂ ln |W|

∂γ̃k
+ ∂zHW−1z

∂γ̃k

=
〈
∂ ln |W|

∂W
,
∂W
∂γ̃k

〉
+
〈
∂zHW−1z

∂W
,
∂W
∂γ̃k

〉
,

∂L
(
γ̃k, ϑ̃k

)

∂ϑ̃k
= ∂ ln |W|

∂ϑ̃k
+ ∂zHW−1z

∂ϑ̃k

=
〈
∂ ln |W|

∂W
,
∂W

∂ϑ̃k

〉
+
〈
∂zHW−1z

∂W
,
∂W

∂ϑ̃k

〉
.

Employing the matrix differential formulas that

∂ ln |W|
∂W

= W−1,

∂W
∂γ̃k

= a
(
ϑ̃k

)
aH
(
ϑ̃k

)
⊗ B,

∂W

∂ϑ̃k
= γ̃k

(
a
(
ϑ̃k

)
dH
(
ϑ̃k

)
+ d

(
ϑ̃k

)
aH
(
ϑ̃k

))
⊗ B,

∂zHW−1z
∂W

= −W−1zzHW−1,

where W is a conjugated symmetrical matrix, and d
(
ϑ̃k

)
= ∂a

(
ϑ̃k

)
/∂ϑ̃k , and let V =

W−1 − W−1zzHW−1, we have
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∂L
(
γ̃k, ϑ̃k

)

∂γ̃k
=
〈
V, a

(
ϑ̃k

)
aH
(
ϑ̃k

)
⊗ B

〉

= tr
{
(V)

[
a
(
ϑ̃k

)
aH
(
ϑ̃k

)
⊗ B

]}
,

∂L
(
γ̃k, ϑ̃k

)

∂ϑ̃k
= γ̃k

〈
V,
(
a
(
ϑ̃k

)
dH
(
ϑ̃k

)
+ d

(
ϑ̃k

)
aH
(
ϑ̃k

))
⊗ B

〉

= γ̃k tr
{
V
[(

a
(
ϑ̃k

)
dH
(
ϑ̃k

))
⊗ B

]}

+ γ̃k tr
{
V
[(

d
(
ϑ̃k

)
aH
(
ϑ̃k

))
⊗ B

]}
.

In terms of the singular value decomposition (SVD), B can be rewritten as

B =
rB∑

i=1

uBi
(
uBi
)H

with rB = rank (B) and uBi being the product of the i th singular value and the associated
eigenvector of B, So that

∂L
(
γ̃k, ϑ̃k

)

∂γ̃k
= tr

{

V

[

a
(
ϑ̃k

)
aH
(
ϑ̃k

)
⊗

rB∑

i=1

uBi
(
uBi
)H
]}

=
rB∑

i=1

tr

{
V
[(

a
(
ϑ̃k

)
⊗ uBi

)(
aH
(
ϑ̃k

)
⊗
(
uBi
)H)]}

=
rB∑

i=1

[
a
(
ϑ̃k

)
⊗ uBi

]H
V
[
a
(
ϑ̃k

)
⊗ uBi

]
.

The derivation is accomplished.

Appendix 2

Proof of Proposition 2 when B = IL , we get �−k = �̆−k ⊗ IL , and then L
(
γ̃k, ϑ̃k

)
can be

rewritten as

L
(
γ̃k, ϑ̃k

)
= log

∣∣∣
(
�̆−k + γ̃ka

(
ϑ̃k

)
aH
(
ϑ̃k

))
⊗ IL

∣∣∣

+ zH
((

�̆−k + γ̃ka
(
ϑ̃k

)
aH
(
ϑ̃k

))
⊗ IL

)−1
z,

and the first term of L
(
γ̃k, ϑ̃k

)
equals to the first term of L̆

(
γ̃k, ϑ̃k

)
, because

log
∣∣∣
(
�̆−k + γ̃ka

(
ϑ̃k

)
aH
(
ϑ̃k

))
⊗ IL

∣∣∣

= log

(∣∣∣�̆−k + γ̃ka
(
ϑ̃k

)
aH
(
ϑ̃k

)∣∣∣
L |IL |M

)

= log
∣∣∣�̆−k + γ̃ka

(
ϑ̃k

)
aH
(
ϑ̃k

)∣∣∣
L

= L log
∣∣∣�̆−k + γ̃ka

(
ϑ̃k

)
aH
(
ϑ̃k

)∣∣∣ .
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LetQ =
(
�̆−k + γ̃ka

(
ϑ̃k

)
aH
(
ϑ̃k

))−1
, and write the array output matrixY as the form

of

Y =

⎡

⎢
⎢
⎢
⎣

y1
y2
...

yM

⎤

⎥
⎥
⎥
⎦

∈ C
M×L , yi = [yi1 yi2 . . . yi L ] ∈ C

1×L ,

so that zT = [
y1 y2 . . . yM

] ∈ C
1×ML . The second terms of L

(
γ̃k, ϑ̃k

)
and L̆

(
γ̃k, ϑ̃k

)
can

be calculated, respectively, as

zH
((

�̆−k + γ̃ka
(
ϑ̃k

)
aH
(
ϑ̃k

))
⊗ IL

)−1
z

= zH (Q ⊗ IL) z

=
M∑

i=1

M∑

j=1

qi j ȳiyTj ,

tr

(
YH
(
�̆−k + γ̃ka

(
ϑ̃k

)
aH
(
ϑ̃k

))−1
Y
)

= tr
(
QYYH

)

=
M∑

i=1

M∑

j=1

qi jy jyHi .

Because of y jyHi =
L∑

k=1
y jk ȳik = ȳiyTj , we have

zH
((

�̆−k + γ̃ka
(
ϑ̃k

)
aH
(
ϑ̃k

))
⊗ IL

)−1
z

= tr

(
YH
(
�̆−k + γ̃ka

(
ϑ̃k

)
aH
(
ϑ̃k

))−1
Y
)

,

and thus Proposition 2 is proved. �
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