
Multidim Syst Sign Process (2015) 26:985–999
DOI 10.1007/s11045-015-0335-6

Decentralized string-stability analysis for heterogeneous
cascades subject to load-matching requirements

Laven Soltanian1,2 · Michael Cantoni1

Received: 14 October 2014 / Revised: 13 May 2015 / Accepted: 3 June 2015 /
Published online: 17 June 2015
© Springer Science+Business Media New York 2015

Abstract A heterogeneous cascade of stable linear time-invariant subsystems is studied
in terms of the spatial and temporal propagation of boundary conditions. The particular
context requires constant spatial boundary conditions to be asymptotically matched by the
interconnection signals along the string (e.g., to match supply to demand in steady state).
Furthermore, the transient response associated with a step change in the spatial boundary
condition must remain bounded across space in a string-length independent fashion. With
this in mind, an infinite cascade abstraction is considered. A corresponding decentralized
string-stability certificate for the desired behaviour is established in terms of the subsystem
H∞ norms, via Lyapunov-type analysis of a two-dimensional model in Roesser form. Veri-
fication of the certificate implies uniformly bounded interconnection signals in response to
the following system inputs: (i) a square-summable (across space) sequence of initial con-
ditions; and (ii) a uniformly-bounded (across time) finite-energy input applied as the spatial
boundary condition (e.g., finite duration on-off pulse). The decentralized nature of the certifi-
cate facilitates subsystem-by-subsystem design of local controllers that achieve string-stable
behaviour overall. This application of the analysis is explored within the context of a scalable
approach to the design of distributed distant-downstream controllers for the sections of an
automated irrigation channel.
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1 Introduction

Aspects of temporal and spatial stability are investigated for infinite cascades of stable linear
time-invariant (LTI) systems. Specifically, interconnections of the kind shown in Fig. 1 are
studied. Such models arise in various application domains, such as vehicle platoons (Levine
and Athans 1966; Chu 1974; Ioannou and Chien 1993; Darbha and Hedrick 1996; Eyre et al.
1998; Seiler et al. 2004; Klinge and Middleton 2009; Knorn 2013), air traffic control (Weitz
2011; Arneson and Langbort 2012), supply chains (Huang et al. 2007; Disney et al. 2004),
and automated irrigation channels (Cantoni et al. 2007; Soltanian and Cantoni 2013), for
example.

In Fig. 1, the interconnection signal ui+1 at the output of subsystem i ≥ 0 is related
to the interconnection signal ui at the corresponding input, according to an LTI dynamic
input–output relationship ui+1 = Giui . The corresponding spatial boundary condition is
u0 = d(t), where d(t) is a time-dependent input signal. The constant value w(i) is an
input associated with non-zero initialization of a state-space realization for Gi . As such, the
sequence {w(0), w(1), . . .} constitutes a space-dependent temporal boundary condition for a
state-space realization of the cascade. An important aspect of such system interconnections
is the unidirectional propagation of information in both space, from right to left as shown in
Fig. 1, and in time.

Many papers in the literature consider the propagation of boundary disturbances and/or
initial conditions along a chain or string of dynamical subsystems. Earlywork in this direction
was carried out within the context of optimal error control for a platoon of vehicles (Levine
and Athans 1966). In Chu (1974), “stability of a string” is defined in terms of requiring
bounded position error fluctuations that also tend to zero in steady state, in response to
bounded initial conditions for all vehicles. See Knorn (2013) for a recent overview of various
definitions of string-stability.

In this paper, cascades of the kind described above are studied from the perspective of L2-
to-L∞ string-stability. That is, in terms of desiring uniformly bounded, across time and space,
interconnection signals in response to bounded finite-energy spatial and temporal boundary
conditions. Limiting attention to finite-energy boundary conditions is motivated by the finite
duration of typical spatial boundary inputs and the finite extent of cascades in practice. The
infinite cascade abstraction is nonetheless relevant, as uniformity requirements within such a
context translate to time- and space-horizon independent bounds, which is important within
the context of long chains.

The main result is a decentralized L2-to-L∞ string-stability certificate applicable to het-
erogeneous cascades, subject to the requirement that constant spatial boundary conditions
are asymptotically matched by the interconnection signals along the chain of subsystems.
This is motivated by the operation of automated irrigation channels, where a steady-state
objective at each flow regulating structure is to match the downstream load, as may also arise
in other application domains. The string-stability certificate involves verification of the loca-
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Fig. 1 Cascade of heterogeneous dynamical systems
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tion independent property that the H∞ norm of the interconnection-signal transfer function
of each subsystem is no greater than unity. This is more amenable to design and synthesis
than impulse-response based certificates, which ensure a related but more stringent string-
stability property (Soltanian and Cantoni 2013; Soltanian 2014). The main result extends
earlier work reported in Knorn (2013), Knorn and Middleton (2013), where the stability
of homogeneous platoons of vehicles are studied in a similar fashion, via Lyapunov-based
stability analysis (see e.g. Du and Xie 2002) of a two-dimensional (2-D) Roesser model for
the cascade, although an analog of the steady-state matching requirement is not considered
explicitly therein.

The main result is also distinct from similar conditions in the literature in that the
corresponding H∞-norm bound condition is non-strict, as required to accommodate the
aforementioned steady-state matching requirement, unlike the strict norm-bound conditions
presented in Shaw and Hedrick (2007), Darbha and Hedrick (1996), Dabkowski et al. (2012)
for various notions of string stability. It is interesting to note that the non-strict certificate
developed here is necessary for the different notion of string stability considered in Pep-
pard (1974). Indeed, this observation is presented in Peppard (1974) as a motivation for
using bi-directional information exchange in vehicle platoons, as it is not possible to achieve
the necessary condition with uni-directional information flow. Bi-directional information
exchange would be disadvantages within the context of irrigation channels, and other dis-
tribution networks, in view of the typically limited availability of downstream storage. It is
also of note that results of the kind considered in Lestas and Vinnicombe (2006), which are
also applicable to interconnections of heterogeneous subsystems, do not directly yield the
uniform L∞ bounds on the system response to boundary conditions, as required here.

The decentralized nature of the string-stability certificate developed in this paper can
facilitate the design of cascades on a subsystem-by-subsystem basis. This scalability aspect
of the result is exploredwithin the context of so-called distributed distant-downstream control
architectures for automated irrigation channels. Within this context, it is desirable from an
engineering perspective for each distributed component of the controller to be designed
using only the model of the corresponding section of the channel dynamics. This can be
advantageous in terms of the tractability of systematic approaches to controller synthesis and
system maintainability.

The paper is structured as follows. Section 2 sets some basic notation and preliminary
technical results. A 2-D Roesser model is then developed for a heterogeneous cascade in
Sect. 3. The main L2-to-L∞ string-stability analysis results, including the aforementioned
decentralized certificate, are presented in Sect. 4. Section 5 contains an application of the
analysis within the context of irrigation channel control-system design. Some final remarks
are provided in a concluding section.

2 Notation and preliminaries

The symbol Z+ denotes the subset {i ∈ Z : i ≥ 0} of the integers Z, R+ denotes the subset
{t ∈ R : t ≥ 0} of the real numbers R, and C− denotes the subset {z ∈ C : �(z) < 0}
of the complex numbers C = {α + jβ : α, β ∈ R}, where �(z) denotes the real part α

of z = α + jβ and j :=√−1. The symbol Rn denotes the linear space of column vectors
with n real-valued entries. Fp×m denotes the linear space p-row-by-m-column matrices with
entries in F ∈ {R,C}. A superscript ∗ denotes the (complex conjugate) transpose of a matrix
or column vector considered as an n × 1 matrix.
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Given a vector x = (x1, . . . , xn)∗ ∈ R
n , |x |2:=(

∑n
i=1 x

2
i )

1
2 and |x |∞:=max{|xi | : i =

1, 2, . . . , n}. Note that |x |∞ ≤ |x |2 = √
x∗x for all x ∈ R

n . Given A ∈ R
p×m with

elements ai j ∈ R, ‖A‖2→2:= supx �=0 |Ax |2/|x |2 and ‖A‖∞→∞:= supx �=0 |Ax |∞/|x |∞ =
maxi

∑
j ai j . The set of eigenvalues of A is denoted by σ(A) = {λ ∈ C : Ax = λx, x �= 0}.

Clearly, λ ∈ σ(A) ⇔ −λ ∈ σ(−A) and λ ∈ σ(A) ⇔ (1+ λ) ∈ σ(I + A), where I denotes
the identity matrix.

A symmetric matrix P = P∗ ∈ R
n×n has eigenvalues that are real and λmax(P)

(resp. λmin(P)) denotes the maximum (resp. minimum) eigenvalue. It is said to be posi-
tive definite (resp. semi-definite) if x∗Px ≥ cx∗x (resp. x∗Px ≥ 0) for all x ∈ R

n and
some c > 0, which is denoted by P > 0 (resp. P ≥ 0). Also, P < 0 ⇔ −P > 0 and
P ≤ 0 ⇔ −P ≥ 0. Note that P > 0 ⇔ λmin(P) > 0 and P < 0 ⇔ λmax(P) < 0. Given
P > 0, there exists a unique matrix 0 < P

1
2 = (P

1
2 )∗ ∈ R

n×n such that P = P
1
2 P

1
2 .

Ln
2 denotes the space of functions x : R+ → R

n with ‖x‖2:=(
∫ ∞
0 |x(t)|22dt)

1
2 < ∞.

The space of functions x : R+ → R
n such that ‖x‖∞:= supt |x(t)|∞ < ∞ is denoted

by Ln∞. Similarly, �n2 and �n∞ denote the subspaces of sequences x : Z+ → R
n such that

‖x‖2:=(
∑∞

i=0 |x(i)|22)
1
2 < ∞ and ‖x‖∞:= supi |x(i)|∞ < ∞, respectively. The dimension

n of the function value is often suppressed for convenience.
The following technical lemma, a version of which can be found in Knorn (2013) for

example, is used subsequently in Lyapunov-type analysis of a 2-D Roesser model for het-
erogeneous cascades.

Lemma 1 Let Vt , Vs : R+ × Z+ → R. If Vt (t, i) ≥ 0, Vs(t, i) ≥ 0 and

Δ(t, i):=∂Vt
∂t

(t, i) + Vs(t, i + 1) − Vs(t, i) ≤ 0

for all (t, i) ∈ R+ × Z+, then
i∑

k=0

Vt (t, k) ≤
i∑

k=0

Vt (0, k) +
∫ t

0
Vs(τ, 0)dτ and (1)

∫ t

0
Vs(τ, i)dτ ≤

∫ t

0
Vs(τ, 0)dτ +

i∑

k=0

Vt (0, k), (2)

for all (t, i) ∈ R+ × Z+.

Proof Since Δ(t, i) ≤ 0 for all (t, i) ∈ R+,

0 ≥
i∑

k=0

∫ t

0
Δ(τ, k)dτ =

i∑

k=0

(Vt (t, k) − Vt (0, k)) +
∫ t

0
(Vs(τ, i) − Vs(τ, 0))dτ,

Therefore,

i∑

k=0

Vt (t, k) +
∫ t

0
Vs(τ, i)dτ ≤

i∑

k=0

Vt (0, k) +
∫ t

0
Vs(τ, 0)dτ,

whereby (1) and (2) hold because Vt (t, i) ≥ 0 and Vs(t, i) ≥ 0. �
The following non-strict version of the so-called Bounded Real Lemma plays a role

in subsequently establishing a decentralized string-stability certificate for heterogeneous
cascades of stable LTI subsystems with rational transfer functions.
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Lemma 2 Let G(s) = C(s I−A)−1B be a state-space realization of a strictly-proper matrix
transfer function, with A ∈ R

n×n Hurwitz (i.e. σ(A) ⊂ C−).The following are equivalent:

(i) ‖G‖∞:= sup�(s)>0 ‖G(s)‖2→2 = supω∈R ‖G( jω)‖2→2 ≤ 1;
(ii) there exists a unique real matrix X = X∗ ≥ 0 such that

A∗X + X A + XBB∗X + C∗C = 0 (3)

and σ(A + BB∗X) ⊂ C− ∪ jR.

Proof ‖G‖∞ ≤ 1 is equivalent to

φ( jω):= I − G∗( jω)G( jω)

= [
B∗(− jωI − A∗)−1 I

]
[−C∗C 0

0 I

] [
( jωI − A)−1B

I

]

≥ 0. (4)

Applying Zhou et al. (1996, Lemma 13.17) φ( jω) ≥ 0 for all ω ≥ 0 is equivalent to the
existence of a unique real Y = Y ∗ ≤ 0 such that

A∗Y + Y A − Y BB∗Y − C∗C = 0

and σ(A− BB∗Y ) ∈ C− ∪ jR. By taking X = −Y , this is in turn equivalent to the existence
of X ≥ 0 such that (3) holds with σ(A + BB∗X) ∈ C− ∪ jR. �

In the case that additional hypotheses on the state-space realization of G hold, an eigen-
value upper bound for the solution of (3) follows as summarised below. This bound also plays
a role in subsequent analysis.

Lemma 3 Let G(s) = B(s I − A)−1C, with A ∈ R
n×n Hurwitz, (A, B) controllable and

(C, A) observable; i.e. (A, B,C) is a minimal realization of G(·). If ‖G‖∞ ≤ 1, then the
unique positive semi-definite solution of (3) such that σ(A+BB∗X) ∈ C−∪ jR, also satisfies
X > 0. Moreover, λmax(X) ≤ 1/λmin(P), where P = P∗ ∈ R

n×n > 0 is the unique solution
of

AP + PA∗ + BB∗ = 0. (5)

Proof Since ‖G‖∞ ≤ 1, there exists a unique X = X∗ ≥ 0 such that (3) holds with
σ(A + BB∗X) ∈ C− ∪ jR by Lemma 2. Note that (C, A) observable implies X > 0. To
see this, suppose to the contrary that ker(X) �= {0} and observe the following: (a) ker(X) ⊂
ker(C), which can be seen by left and right multiplying (3) by x∗ and x , to yield Cx = 0
whenever x ∈ ker(X); and (b) A ker(X) ⊂ ker(X), which can be seen by right multiplying
(3) by x ∈ ker(X) so that using (a) it follows that X Ax = 0 and thus, Ax ∈ ker(X). In
particular, (b) implies there exists 0 �= x ∈ ker(X) and λ ∈ σ(A) ⊂ C− such that Ax = λx .
Moreover, Cx = 0 by (a), which contradicts the hypothesis that (C, A) is observable. As
such, ker(X) = {0}, whereby X > 0 as claimed.

Now, let Z = X−1 > 0. Using (3) yields

AZ + Z A∗ + BB∗ + ZC∗CZ = 0 (6)

and

A(Z − P) + (Z − P)A∗ + ZC∗CZ = 0, (7)

where P = P∗ is the unique solution of (5), which satisfies P > 0 because A is Hurwitz and
(A, B) is controllable; see Zhou et al. (1996, Lemma 3.18(iii)). Since C∗C ≥ 0, it follows
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from (7) that A(Z − P) + (Z − P)A∗ ≤ 0, whereby Zhou et al. (1996, Lemma 3.18(ii))

implies Z − P ≥ 0. As such, 0 ≤ X−1 − P = X− 1
2 (I − X

1
2 PX

1
2 )X− 1

2 , which is equivalent

to 0 ≤ I − X
1
2 PX

1
2 . In particular, 0 ≤ λmin(I − X

1
2 PX

1
2 ) = 1 − λmax(X

1
2 PX

1
2 ) =

1 − λmax(X P), where λmax(X) > 0 or λmax(P) > 0 can be used to establish the last
equality. The inequality λmin(P)λmax(X) ≤ λmax(X P), which holds by Wang and Zhang
(1992, Theorem 2) as X > 0 and P > 0, thus leads to the bound λmax(X) ≤ 1/λmin(P). �
Remark 1 In Lemma 3, if (A, B,C) is also a balanced realization of G, so that P =
diag(σ1, · · · , σn) is a diagonal matrix of the Hankel singular values of G in descending
order σ1 ≥ · · · ≥ σn > 0 and PA + A∗P + CC∗ = 0, then λmax(X) ≤ 1/σn .

3 A 2-D Roesser model for heterogeneous cascades

Recall the cascade of heterogeneous LTI systems shown in Fig. 1. Let

Gi (s) = C(i)(s I − A(i))−1B(i)

be a state-space realization for the transfer function of subsystem i ∈ Z+. In the frequency
domain,

Ui+1(s) = Gi (s)Ui (s) + Hi (s)w(i) (8)

for i ∈ Z+, with U0(s) = D(s) and Hi (s):=C(i)(s I − A(i))−1, where Ui (s) and D(s)
denote the Laplace transforms of ui and d , respectively. In the time domain,

ẋi (t) = A(i)xi (t) + B(i)ui (t),

ui+1(t) = C(i)xi (t), (9)

with initial state xi (0) = w(i) and spatial boundary condition u0(t) = d(t). Defining
the semi-states xt (t, i):=xi (t) and xs(t, i):=ui (t) yields the following mixed-continuous-
discrete spatially-varying 2-D Roesser model (see Xiao 2001):

[
ẋt (t, i)

xs(t, i + 1)

]

=
[
A(i) B(i)
C(i) 0

] [
xt (t, i)
xs(t, i)

]

, (10)

with boundary conditions xt (0, ·) = w(·) and xs(·, 0) = d(·). The evolution of the semi-
states given boundary conditions xt (0, .) ∈ �2 and xs(., i) ∈ L2∩ L∞ is of particular interest
in this paper.

Before proceeding, it is instructive to note that the aforementioned steady-state matching
requirement considered in this paper simply translates to the requirement that lims→0 Gi (s) =
1 for all i ∈ Z+. It is for this reason that sufficient conditions for string-stability which need
the H∞ norm of each Gi to be strictly less than unity (see e.g. Shaw and Hedrick 2007) do
not apply directly. This is overcome via the analysis developed below.

4 String-stability analysis

Consider the cascade shown in Fig. 1. Let Gi denote the rational transfer function from the
input signal ui to the output signal ui+1, at the LTI subsystem labelled i ∈ Z+, which has
initial state w(i).
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Definition 1 The cascade in Fig. 1 is called L2-to-L∞ string-stable if there exists finite
constants M1, M2, M3 > 0 such that the bound

‖ui‖∞ ≤ M1‖d‖2 + M2‖d‖∞ + M3‖w‖2
holds for all i ∈ Z+ and arbitrary boundary conditions u0 = d ∈ L2 ∩ L∞ and w =
{w(0), w(1), . . .} ∈ �2.

The following theorem provides a sufficient condition for L2-to-L∞ string-stability in
terms of appropriate state-space realizations (A(i), B(i),C(i)) of the subsystem transfer
functions Gi and the corresponding 2-D Roesser model (10). This is used subsequently to
establish another sufficient, but importantly decentralized, string-stability certificate for the
cascade.

Theorem 1 Given (A(i), B(i),C(i)) for i ∈ Z+, consider the spatially-varying 2-DRoesser
model (10). Suppose the following exist:

1. finite constants β, γ, λ, κ > 0 such that, for all i ∈ Z+,

‖B(i)‖∞→∞ ≤ β, ‖C(i)‖∞→∞ ≤ γ, and ‖eA(i)t‖∞→∞ ≤ κe−λt ∀t ∈ R+;

2. positive-semi-definite matrix sequences {Pt (0) = Pt (0)∗, Pt (1) = Pt (1)∗, . . .} and
{Ps(0) = Ps(0)∗, Ps(1) = Ps(1)∗, . . .}, and finite constants λs, λt > 0 such that, for
all i ∈ Z+,

(a) λmin(Ps(i)) ≥ λs , λmax(Pt (i)) ≤ λt and
(b) Q(i):= Ã(i)∗ P̃t (i) + P̃t (i) Ã(i) + Ã(i)∗ P̃s(i + 1) Ã(i) − P̃s(i) ≤ 0,

where

Ã(i):=
[
A(i) B(i)
C(i) 0

]

, P̃t (i):=
[
Pt (i) 0
0 0

]

and P̃s(i):=
[
0 0
0 Ps(i)

]

. (11)

Then there exist finite constants M1, M2, M3 > 0 such that

|x(t, i)|∞ ≤ M1‖xt (0, ·)‖2 + M2‖xs(·, 0)‖2 + M3‖xs(·, 0)‖∞

for all (t, i) ∈ R+ × Z+ and arbitrary boundary conditions xs(·, 0) ∈ L2 ∩ L∞ and
xt (0, ·) ∈ �2.

Proof Let Vt (t, i):=xt (t, i)∗Pt (i)xt (t, i) and Vs(t, i):=xs(t, i)∗Ps(i)xs(t, i) for (t, i) ∈
R+ × Z+. Using (10) and hypothesis 2(b), it follows that

∂Vt
∂t

(t, i) + Vs(t, i + 1) − Vs(t, i)

= x(t, i)∗( Ã(i)∗ P̃t (i) + P̃t (i) Ã(i) + Ã(i)∗ P̃s(i + 1) Ã(i) − P̃s(i))x(t, i)

= x(t, i)∗Q(i)x(t, i) ≤ 0 for all (t, i) ∈ R+ × Z+. (12)

Since Vt (t, i) ≥ 0 and Vs(t, i) ≥ 0, the inequality (12) implies (2) holds by Lemma 1.
Combining this with the properties of Ps(i) > 0 and Pt (i) ≥ 0 identified in hypothesis 2(a)
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yields
∫ t

0
xs(τ, i)

∗xs(τ, i)dτ ≤ 1

λs

∫ t

0
Vs(τ, i)dτ

≤ 1

λs

∫ t

0
Vs(τ, 0)dτ + 1

λs

i∑

k=0

Vt (0, k)

= 1

λs

∫ t

0
xs(τ, 0)

∗Ps(0)xs(τ, 0)dτ + 1

λs

i∑

k=0

xt (0, k)
∗Pt (k)xt (0, k)

≤ λmax(Ps(0))

λs
‖xs(·, 0)‖22 + λt

λs
‖xt (0, ·)‖22. (13)

Now bearing in mind hypothesis 1, and noting that xt (0, ·) ∈ �2 implies |xt (0, i)|∞ ≤
|xt (0, i)|2 ≤ ‖xt (0, ·)‖2 for all i ∈ Z+, it follows that

|xt (t, i) |∞ = |xt (0, i) eA(i)t +
∫ t

0
eA(i)(t−τ)B (i) xs (τ, i) dτ |∞

≤ κe−λt |xt (0, i) |∞ + κ sup
i

‖B (i) ‖∞→∞
∫ t

0
e−λ(t−τ)|xs (τ, i) |∞dτ

≤ κ‖xt (0, ·) ‖2 + κβ

(∫ t

0

(
e−λ(t−τ)

)2
dτ

) 1
2
(∫ t

0
|xs (τ, i) |2∞dτ

) 1
2

(14)

≤ κ‖xt (0, ·) ‖2 + κβ

(
1 − e−2λt

2λ

) 1
2
(∫ t

0
|xs (τ, i) |22dτ

) 1
2

(15)

≤ κ‖xt (0, ·) ‖2 + κβ√
2λ

√∫ t

0
x∗
s (τ, i) xs (τ, i) dτ

≤ κ‖xt (0, ·) ‖2 + κβ√
2λ

√
λmax (Ps (0))

λs
‖xs (·, 0) ‖22 + λt

λs
‖xt (0, ·) ‖22 (16)

≤ κ

(

1 + β
√

λt√
2λλs

)

‖xt (0, ·) ‖2 + κβ
√

λmax (Ps (0))√
2λλs

‖xs (·, 0) ‖2
:=μ1‖xt (0, ·) ‖2 + μ2‖xs (·, 0) ‖2 (17)

for all (t, i) ∈ R+ × Z+. In particular, (14) holds by the Cauchy–Schwartz inequality, (15)
holds because |xs(τ, i)|∞ ≤ |xs(τ, i)|2 and (16) holds in view of (13).

Finally, note that xs(t, i + 1) = C(i)xt (t, i) by (10). Hence,

|xs(t, i + 1)|∞ ≤ sup
i

‖C(i)‖∞→∞|xt (t, i)|∞ ≤ γ (μ1‖xt (0, ·)‖2 + μ2‖xs(·, 0)‖2)

for all (t, i) ∈ R+ × Z+, where (17) and hypothesis 1 have been used. Moreover, xs(·, 0) ∈
L2 ∩ L∞ implies |xs(t, 0)|∞ ≤ ‖xs(·, 0)‖∞. As such, it follows that

|x(t, i)|∞ = max{|xt (t, i)|∞, |xs(t, i)|∞}
≤ max{μ1‖xt (0, ·)‖2 + μ2‖xs(·, 0)‖2,

max{γ (μ1‖xt (0, ·)‖2 + μ2‖xs(·, 0)‖2), ‖xs(·, 0)‖∞}}
≤ max{1, γ }μ1‖xt (0, ·)‖2 + max{1, γ }μ2‖xs(·, 0)‖2 + ‖xs(·, 0)‖∞

for all (t, i) ∈ R+ × Z+, as claimed. �
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Theorem 1 and the following lemma lead to the main decentralized string-stability cer-
tificate summarised in Theorem 2 below.

Lemma 4 For all i ∈ Z+, suppose that Gi (s):=C(i)(s I − A(i))−1B(i) with A(i) ∈
R
n(i)×n(i) Hurwitz, and that ‖Gi‖∞ ≤ 1. Then there exist positive-semi-definite matrix

sequences {Pt (0) = Pt (0)∗, Pt (1) = Pt (1)∗, . . .} and {Ps(0) = Ps(0)∗, Ps(1) = Ps(1)∗, . . .}
such that

Q(i):= Ã(i)∗ P̃t (i) + P̃t (i) Ã(i) + Ã(i)∗ P̃s(i + 1) Ã(i) − P̃s(i) ≤ 0 (18)

for all i ∈ Z+, where Ã(i), P̃t (i) and P̃s(i) are as defined in (11). Specifically, take Ps(i) = I
and Pt (i) = Pt (i)∗ ≥ 0 to be the unique solution of

A(i)∗Pt (i) + Pt (i)A(i) + Pt (i)B(i)B(i)∗Pt (i) + C(i)∗C(i) = 0 (19)

that satisfies σ(A(i) + B(i)B(i)∗Pt (i)) ∈ C− ∪ jR.

Proof In view of Lemma 2, there exists a real matrix X (i) = X∗(i) ≥ 0 such that

X (i)A(i) + A(i)∗X (i) + X (i)B(i)B(i)∗X (i) + C(i)∗C(i) = 0. (20)

Applying the Schur complement to (20) gives
[
X (i)A(i) + A(i)∗X (i) + C(i)∗C(i) X (i)B(i)

B(i)∗X (i) −I

]

≤ 0. (21)

Note that with Pt (i) = X (i) and Ps(i) = I ,

Q(i) =
[
X (i)A(i) + A(i)∗X (i) + C(i)∗C(i) X (i)B(i)

B(i)∗X (i) −I

]

,

whereby (21) implies (18). �
Theorem 2 Consider a cascade of stable LTI systems, as shown in Fig. 1. Let Gi (s) =
C(i)(s I − A(i))−1B(i), with A(i) ∈ R

n(i)×n(i) Hurwitz, be a minimal balanced realization
for subsystem i ∈ Z+ and suppose that the following hold:

1. there exists a constant ς > 0 such that the minimumHankel singular value of Gi satisfies
σn(i) ≥ ς for all i ∈ Z+.

2. there exist finite constants β, γ, λ, κ > 0 such that

‖B(i)‖∞→∞ ≤β, ‖C(i)‖∞→∞ ≤ γ and ‖eA(i)t‖∞→∞ ≤ κe−λt for all (t, i)∈R+×Z+.

If ‖Gi‖∞ ≤ 1 for all i ∈ Z+, then the cascade is L2-to-L∞ string-stable in the sense of
Definition 1.

Proof Let ‖Gi‖∞ ≤ 1 for all i ∈ Z+, so that in view of Lemma 2, Lemma 3,
Remark 1 and hypothesis 1 above, the unique solution of Pt (i) ≥ 0 of (19) such that
σ(A(i) + B(i)B(i)∗Pt (i)) ∈ C− ∪ jR also satisfies Pt (i) > 0 and λmax(Pt (i)) ≤ 1/ς
for all i ∈ Z+. Using Lemma 4 and hypothesis 2, it follows that Theorem 1 applies to yield
the required bound on the semi-state evolution of the corresponding 2-D Roesser model (10),
given boundary conditions xs(·, 0) = d ∈ L2 ∩ L∞ and xt (0, ·) = w ∈ �2. As such, the
result holds since ui (t) = xs(t, i). �
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5 Distant-downstream control of irrigation channels

Irrigation channels are used around the world to distribute fresh water for agriculture. The
channels are typically sectioned into pools that stretch between gates that can be adjusted to
locally impose gravity-powered flow downstream and at supply points. Figure 2 shows the
block diagram for a section of an automated irrigation channel that has a so-called distant-
downstream control architecture (Clemmens and Replogle 1989; Schuurmans et al. 1999;
Weyer 2002; Mareels et al. 2005; Li 2006; Litrico and Fromion 2009; Soltanian 2014). The
local feedback controller Ci (s) is used to regulate the water-level yi at the downstream gate,
which reflects the capacity of the section to supply flow locally and downstream, under the
power of gravity. This is achieved via adjustment of the inflow ui at the upstream gate,
in response to variation of the outflow load vi . The controlled inflow ui is a load on the
upstream section. A correspondingly automated irrigation channel is therefore a cascade
of subsystems on the kind shown in Fig. 2. Importantly, the distant-downstream control
architecture translates to demand-driven release of water from upstream storage, which has
merit from an operations perspective in light of the limited availability of storage in the
channels.

In this section, a heterogeneous channel of pools with specifications as in Table 1 is
considered,where the pool delay and integrator constant are denoted by τi and ki , respectively,
and PI controller is represented by Ci (s) = Ki

(s+zi )
s(s+pi )

for each pool i .
The conventional decentralized distant-downstream control architecture corresponds to

Fi (s) = 0 in Fig. 2. For a homogeneous channel and integral action in identical decentralized
controllers C(s), transient flow peaks produced along the channel in response to a step
increase in downstream flow, are amplified as these propagate upstream (Li et al. 2005;
Cantoni et al. 2007). Indeed, it is not possible to achieve ‖G‖∞ ≤ 1,whereG = C(s)k/s

1+C(s)ke−sτ /s
is the transfer function fromoutflow v to inflow u. Even in the case of heterogeneous channels,
under a purely decentralized distant-downstream control architecture transient water flow
peaks can be amplified, as shown in Fig. 3 for the channel and controller data summarised

+

+

+ _

_

_
Fi(s)Ci(s)

ki
s

e−sτi
ViUi

Yi

Ri

Fig. 2 Section (pool) of an irrigation channel under decentralized distant-downstream control
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Table 1 Pool model and controller parameters, n = 0, 1, 2, . . .

Pool number (i) Pool model parameters Controller parameters

Time-delay (τi ) ki Ki pi zi

5n + 1 8 1/22414 101.25 1/8.7 1/77

5n + 2 3 1/11942 329.74 1/350 1/30

5n + 3, 5n + 4, 5n + 5 16 1/43806 65 1/15.2 1/128
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Fig. 3 Response of channel under decentralized distant-downstream control—i.e., Fi (s) = 0 and Ci (s)

= Ki
(s+zi )
s(s+pi )

in Table 1. Note that in this case, ‖G1‖∞ = 1.66, ‖G2‖∞ = 2.16, ‖G3‖∞ = ‖G4‖∞ =
‖G5‖∞ = 1.836, and so on.

As first considered in Soltanian and Cantoni (2013), Soltanian (2014), the local feed-
forward controller Fi (s) provides scope for shaping the transfer function Gi (s) from vi to
ui for each section of the automated channel, as desired. Of course, there is a price to pay;
the steady-state offset in water-level relative to a constant reference for a step increase in
flow load becomes non-zero. For a given PI controller Ci (s) (i.e., given Ki , zi , pi > 0), a
desired stable strictly-proper transfer functionGi (s), whichmust satisfyGi (0) = 1 to ensure
steady-state matching of inflow to outflow, can be achieved by setting

Fi (s) = ki
s

(1 − Gi (s)e
−sτi ) − Gi (s)

Ci (s)
. (22)

Note that Fi (s) is stable, because Gi (s) is stable, (1 − Gi (s)e−sτi ) has at least one zero at
s = 0 and the zero of Ci (s) has negative real part. Note that it is also reasonable to use a
rational approximation of the delay transfer function e−sτi , provided the error is sufficiently
small up to the loop-gain crossover frequency, as the closed-loop behaviour is insensitive to
such modeling uncertainty. For example, the Padé approximation (1− sτi/2)/(1+ sτi/2) is
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Fig. 4 Response of channel under decentralized distant-downstream control with Fi (s) set as in (22) so that
G1(s) = 1/(20s + 1),G2(s) = 1/(10s + 1),G3(s) = G4(s) = G5(s) = 1/(40s + 1), . . .

acceptable provided the controller gain Ki and corresponding loop-gain crossover frequency
are sufficiently small, which is necessary to achieve reasonable control performance and
robustness anyway (Li 2006).

By Theorem 2, choosing Fi (s) to achieve ‖Gi‖∞ ≤ 1 for each pool would imply
L2-to-L∞ string-stability of the automated channel. That is, uniformly bounded flow
peaks in response to finite-duration step-changes of flow load. One possible choice is
Gi (s) = 1/(Ti s + 1) for some time-constant Ti > 0; note Gi (0) = 1. In this case,
‖gi‖1:=

∫ ∞
0 |gi (t)|dt ≤ 1, where gi (·) denotes the impulse response associated with the

transfer function Gi (i.e. gi (t) = e−t/Ti here). In fact, ‖gi‖1 ≤ 1, which implies ‖Gi‖∞ ≤ 1
(in general), is a condition that ensures non-amplification of peaks as these propagate;
see Soltanian and Cantoni (2013). This is illustrated in Fig. 4, where again a 17m3/min
step change in the outflow of the bottom pool is considered.

With Fi (s) selected to achieve G1(s) = 0.03/(s2 + 0.28s + 0.03), G2(s) = 0.06/(s2 +
0.35s+0.06), andG3(s) = G4(s) = G5(s) = 0.01/(s2+0.15s+0.01), one hasGi (0) = 1
and ‖Gi‖∞ = 1 for all i . Thus, L2-to-L∞ stability would be achieved by Theorem 2. The
controlled flow responses to a 17m3/min step change in the outflow at the bottom pool are
shown in Figs. 5 and 6. It can be seen that, while there is amplification of flow peaks as these
propagate along the bottom pools, this does not persist and the peak flows remain uniformly
bounded along the channel as expected.

6 Conclusion

An L2-to-L∞ string-stability property is defined and analyzed for a heterogeneous cascade
of stable LTI subsystems, subject to the requirement that the interconnection signals match
constant spatial boundary conditions in steady state. A sufficient condition is established in
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Fig. 5 Response of channel under decentralized distant-downstream control with Fi (s) set as in (22) so that
‖Gi‖∞ = 1
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Fig. 6 Response channel under decentralized distant-downstream control with Fi (s) set as in (22) so that
‖Gi‖∞ = 1(zoomed in)

terms of state-space realizations for the subsystems. This is subsequently used to develop a
decentralized string-stability certificate, which simply involves a location independent bound
on the H∞ norm of the transfer function relating the interconnection signals associated with
each subsystem. An application of this is explored within the context of scalable distant-
downstream controller design in irrigation channels. It would be of interest to understand if
the H∞ norm condition is necessary for L2-to-L∞ stability of homogeneous cascades. The
robustness properties of the presented local feed-forward approach to satisfying the decen-
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tralized string-stability certificate within the context of irrigation channel control-system
design also requires further investigation.
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