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Abstract Two-dimensional (2-D) nonlinear-phase finite impulse response (FIR) filters have
foundmany applications in signal processing and communication systems. This paper consid-
ers the elliptic-error and phase-error constrained least-squares design of 2-D nonlinear-phase
FIR filters, and develops a matrix-based algorithm to solve the design problem directly for
the filter’s coefficient matrix rather than vectorizing it first as in the conventional methods.
The matrix-based algorithm makes the design to consume much less design time than exist-
ing algorithms. Design examples and comparisons with existing methods demonstrate the
effectiveness and high efficiency of the proposed design method.

Keywords 2-D nonlinear-phase FIR filters · Elliptic-error and phase-error constrained
least-squares design · Matrix-based algorithm

1 Introduction

Optimal design of two-dimensional (2-D) nonlinear-phase finite impulse response (FIR)
filters has attracted much attention of many researchers because they are more desirable
than linear-phase FIR filters in many applications, e.g., the low group-delay FIR filters (Lu
2002; Lu and Hinamoto 2006) and fractional delay FIR filters (Deng and Lu 2000; Laakso
et al. 1996; Shyu et al. 2009) in image and video processing, prototype FIR filters in 2-D
filter banks (Dam et al. 2005; de Haan et al. 2003; Yan and Ikehara 1999) and allpass FIR
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filters in phase compensation (Zhu et al. 1999). In addition, optimal designs of 2-D infinite
impulse response (IIR) filters are often transformed into convex subproblems in the same or
similar formulations as 2-D nonlinear-phase FIR filter designs (Chottera and Jullien 1982;
Dumitrescu 2005; Lu et al. 1998).

In constrained least-square (CLS) andminimax designs of 2-D nonlinear-phase FIR filters
(Lu 2002; Lu and Hinamoto 2006), constraints are usually imposed merely on the filter’s
frequency response error. The resultant maximum magnitude error and phase error are about
the samevalue. In order to obtain smallermagnitude error thanphase error, Lai (2009) imposes
constraints simultaneously on the frequency response error and phase error. The phase-error
constrained minimax design in Lai et al. (2009) constrains the frequency response using
elliptic-error and phase-error constraints, resulting in smaller magnitude error than those
obtained by using frequency-response-error and phase-error constraints.

The impulse response coefficients of 2-D FIR filters are naturally arranged in matrices.
Most existing algorithms for optimal designs of 2-D FIR filters, say, those in Algazi et al.
(1986), Dumitrescu (2006), Gislason et al. (1993), Lai (2009), Lai et al. (2009), Lang et al.
(1996), Lu (2002), Lu and Hinamoto (2006, 2011), Rusu and Dumitrescu (2012), rearrange
the coefficient matrices into vectors and then solve the design problems using algorithms
for one-dimensional (1-D) FIR filters. This leads to high computational complexities of the
design algorithms and much design time for large size filters.

There are also several works (Ahmad and Wang 1989; Aravena and Gu 1996; Gu and
Aravena 1994; Hong et al. 2013; Zhao and Lai 2011, 2013; Zhu et al. 1997, 1999) that
formulate the design problems in terms of the coefficient matrices and develop algorithms
to directly solve for the coefficient matrices rather than vectorizing them first, leading to
lower computational complexities than corresponding algorithms vectorizing the coefficient
matrices. The algorithms in Ahmad and Wang (1989), Aravena and Gu (1996), Gu and
Aravena (1994), Zhao andLai (2011, 2013), Zhu et al. (1997, 1999) only consider (weighted)
least-squares designs of 2-D FIR filters without any other constraints. The algorithm in Hong
et al. (2013) considers the constrained least-squares (CLS) design of 2-D FIR filters but is
only applicable to the design of exact linear-phase filters.

This paper considers the elliptic-error and phase-error constrained least-squares (EPCLS)
design of 2-D FIR filters. The problem can be solved by the Goldfarb–Idnani (GI) based
algorithm in Lai (2009) after minor modifications. However, the algorithm in Lai (2009) is
a vectorized one and thus has high computational complexity. To reduce the complexity, a
matrix-based algorithm is developed in this paper to directly solve the EPCLS problem for
the co-efficient matrix. Through design examples, the presented method is shown to be much
more efficient than competing methods.

The rest of this paper is organized as follows. In Sect. 2, the EPCLS design of 2-D
nonlinear-phase FIR filters is formulated as a semi-infinite convex quadratic programming
(QP) problem in terms of the coefficient matrix. In Sect. 3, a matrix-based version of the GI-
based algorithm in Lai (2009) is developed for the semi-infinite convex QP problem resulting
from theEPCLSdesign.Design examples and comparisonswith existing algorithms are given
in Sect. 4. Conclusions of this paper are drawn in Sect. 5.

2 Matrix-based formulation for EPCLS design problem

The frequency response of a 2-DFIRfilterwith real impulse response coefficients {h(n1, n2) :
n1 = 0, 1, . . . , N1 − 1; n2 = 0, 1, . . . , N2 − 1} can be expressed as
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G(ω1, ω2) =
N1−1∑

n1=0

N2−1∑

n2=0

h(n1, n2)e
−i(n1ω1+n2ω2), (1)

where ω1 and ω2 are the horizontal and vertical frequencies, and i is the imaginary unit.
By introducing a function vector of ω,

ϕ(ω, N ) = [1, e−iω, . . . , e−i(N−1)ω]H , (2)

where the symbol “H” in the superscript denotes the conjugate transpose operation, the
frequency response can be rewritten in a matrix form as

G(ω1, ω2,A) = ϕH (ω1, N1)Aϕ(−ω2, N2), (3)

where A is an N1 × N2 real matrix whose elements are the impulse response coefficients,
i.e., A = [h(n1, n2)], n1 = 0, 1, . . . , N1 − 1; n2 = 0, 1, . . . , N2 − 1.

Denote by D(ω1, ω2) = D̄(ω1, ω2)eiβ(ω1,ω2) the desired complex frequency response,
where D̄(ω1, ω2) and β(ω1, ω2) are respectively the magnitude and phase of D(ω1, ω2).
The approximation of D(ω1, ω2) by G(ω1, ω2) is defined on the frequency plane � =
{(ω1, ω2)| − π ≤ ω1 ≤, π, | − π ≤ ω2 ≤ π}. In practical designs, we discretize the
continuous frequency plane � by a sufficiently dense rectangular frequency grid given by
� = {(ω1 j , ω2k)|ω1 j = 2π( j−1)/(M1−1)−π,ω2k = 2π(k−1)/(M2−1)−πwith( j, k) ∈
F}, where F = {( j, k)| j = 1, 2, . . . , M1; k = 1, 2, . . . , M2}. Then the frequency response
approximation error is defined as

E(ω1, ω2,A) ≡ G(ω1, ω2,A) − D(ω1, ω2), ∀(ω1, ω2) ∈ �, (4)

and the magnitude approximation error and phase approximation error are represented by
Em(ω1, ω2,A) = |G(ω1, ω2,A)| − D̄(ω1, ω2) and Ep(ω1, ω2,A) = φ(ω1, ω2,A) −
β(ω1, ω2), where φ(ω1, ω2,A) is the phase of G(ω1, ω2,A).

We further define a transformed error by

Ē(ω1, ω2,A) = e−iβ(ω1, ω2)E(ω1, ω2,A), (5)

and an elliptic error as

Ēσ (ω1, ω2,A) = Re
[
Ē(ω1, ω2,A)

] + iσ−1Im
[
Ē(ω1, ω2,A)

]
, (6)

where σ ≥ 1 is a prescribed model parameter. When σ > 1, the boundary of the constraint
∣∣Ēσ (ω1, ω2,A)

∣∣ ≤ ρ(ω1, ω2), ∀(ω1, ω2) (7)

for any ρ(ω1, ω2) > 0 is an ellipse, and thus the name elliptic error for Ēσ (ω1, ω2,A).
When σ = 1, Ēσ (ω1, ω2,A) reduces to the circular error Ē(ω1, ω2,A) and the elliptic error
constraint (7) reduces to the following circular error constraint:

|Ē(ω1, ω2,A) ≤ ρ(ω1, ω2). (8)

In this paper, we consider the EPCLS design of the 2-D nonlinear-phase FIR filters.
That is, we minimize the energy of the frequency response error and impose constraints
simultaneously on the elliptic error and the phase error as follows:

min
A

f (A) =
∑∑

|E(ω1, ω2,A)|2, ∀(ω1, ω2) ∈ �, (9a)

s.t. : |Ēσ (ω1, ω2,A)| ≤ ρ(ω1, ω2), ∀(ω1, ω2) ∈ �1, (9b)

|Ē(ω1, ω2,A)| ≤ ρ(ω1, ω2), ∀(ω1, ω2) ∈ �2, (9c)

|Ep(ω1, ω2,A)| ≤ γ (ω1, ω2), ∀(ω1, ω2) ∈ �1, (9d)
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where �1 and �2 are two subsets of the passband and stopband frequencies on �, “s.t.”
stands for “subject to”, and 0 < γ (ω1, ω2) < π/2. The above EPCLS problem (9) reduces
to the CPCLS problem considered in Lai (2009) when σ = 1.

It is obvious that, {A∣∣|Ē(ω1, ω2,A)| ≤ ρ(ω1, ω2)} ⊂ {A∣∣|Ēσ (ω1, ω2,A)| ≤ ρ(ω1, ω2)}
for any (ω1, ω2) ∈ �1. This implies that the feasible domain of the CPCLS problem in Lai
(2009) is a subset of the feasible domain of EPCLS problem (9). Thus, solving the EPCLS
problem (9) will result in better filters than solving the CPCLS problem in Lai (2009).

By introducing the following notation:

p j = ϕ(ω1 j , N1)( j = 1, 2, · · · , M1),P = [p1,p2, . . . ,pM1], (10a)

qk = ϕ(−ω2k, N2)(k = 1, 2, · · · , M2),Q = [q1,q2, . . . ,qM2], (10b)

d jk = D(ω1 j , ω2k)( j, k) ∈ F,D = (d j×k)M1×M2, (10c)

the frequency response G(ω1, ω2,A) and cost function f (A) can be rewritten as

G(ω1 j , ω2k,A) ≡ g jk(A) = pH
j Aqk, ∀( j, k) ∈ F, (11a)

f (A) = tr

{(
PHAQ − D

)H (
PHAQ − D

)}
, (11b)

where tr{•} denotes the trace operation. It can be proved that f (A) is convex when M1 ≥ N1

and M2 ≥ N2 (Zhu et al. 1999).
We further introduce ρ jk = ρ(ω1 j , ω2k), γ jk = γ (ω1 j , ω2k), d̄ jk = D̄(ω1 j , ω2k), β jk =

β(ω1 j , ω2k), F1 = {( j, k)|(ω1 j , ω2k) ∈ �1}, F2 = {( j, k)|(ω1 j , ω2k) ∈ �2}. Then, the
elliptic-error constraints (9b), the circular-error constraints (9c) and the phase-error con-
straints (9d) can be transformed respectively into

(
cos(α) cos(β jk) − σ−1 sin(α) sin(β jk)

)
gRjk(A)

+ (
cos(α) sin(β jk) + σ−1 sin(α) cos(β jk)

)
gIjk(A) ≤ ρ jk + cos(α)d̄ jk,

∀α ∈ [0, 2π), ( j, k) ∈ F1, (12a)
(
cos(α) cos(β jk) − sin(α) sin(β jk)

)
gRjk(A)

+ (
cos(α) sin(β jk) + sin(α) cos(β jk)

)
gIjk(A) ≤ ρ jk, ∀α ∈ [0, 2π), ( j, k) ∈ F2,

(12b)
(
cos(α) cos(β jk) − sin(α) sin(β jk)

)
gRjk(A) + (

cos(α) sin(β jk) + sin(α) cos(β jk)
)

gIjk(A) ≤ 0, ∀α ∈ {±(π/2 + γ jk)}, ( j, k) ∈ F1. (12c)

where gR
jk(A) and gIjk(A) are the real and imaginary parts of g jk(A) respectively, and α is an

angle parameter.While the constraints in (12a) (12b) are linear but of infinite number because
of the continuity of parameter α, the constraints in (12c) are linear and of finite number.

We now introduce a quadruplet (α, j, k, l) to index the constraints in (12), where l ∈
{1, 2, 3}, ( j, k) ∈ F1 and α ∈ [0, 2π) when l = 1, ( j, k) ∈ F2 and α ∈ [0, 2π) when l = 2,
and ( j, k) ∈ F1 and α ∈ {±(π/2 + γ jk)} when l = 3. Let

 ≡ [0, 2π),� jk ≡ {±(π/2 + γ jk)}, (13)

I1 = {(α, j, k, l)|α ∈ , ( j, k) ∈ F1, l = 1}, (14a)

I2 = {(α, j, k, l)|α ∈ , ( j, k) ∈ F2, l = 2}, (14b)

I3 = {(α, j, k, l)|α ∈ � jk, ( j, k) ∈ F1, l = 3}. (14c)
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Then, the matrix-based EPCLS design problem (9) can be rewritten as

min
A

f (A) = tr

{(
PHAQ − D

)H (
PHAQ − D

)}
, (15a)

s.t. � jkl(α)gR
jk(A) + �̄ jkl(α)gIjk(A) ≤ θ jkl(α), ∀(α, j, k, l) ∈ I1UI2UI3, (15b)

where

� jkl(α) =
{
cos(α) cos(β jk) − σ−1 sin(α) sin(β jk), (α, j, k, l) ∈ I1,
cos(α) cos(β jk) − sin(α) sin(β jk), (α, j, k, l) ∈ I2 ∪ I3,

(15c)

�̄ jkl(α) =
{
cos(α) sin(β jk) + σ−1 sin(α) cos(β jk), (α, j, k, l) ∈ I1,
cos(α) sin(β jk) + sin(α) cos(β jk), (α, j, k, l) ∈ I2 ∪ I3,

(15d)

θ jkl(α) =
⎧
⎨

⎩

ρ jk + cos(α)d̄ jk, (α, j, k, l) ∈ I1,
ρ jk, (α, j, k, l) ∈ I2,
0, (α, j, k, l) ∈ I3.

(15e)

Problem (15) is a linearly constrained semi-infinite convex QP problem because the index
set I1 and I2 are two infinite sets.

3 Matrix-based algorithm for linearly constrained semi-infinite convex QP problem

3.1 The matrix-based EPCLS-GI algorithm

In Sect. 2, the EPCLS design of 2-D FIR filters has been expressed as a matrix-based linearly
constrained semi-infinite convex QP problem. In this section, an improved GI algorithm
referred to as the matrix-based EPCLS-GI algorithm will be developed to solve the problem.

Like the original GI algorithm (Goldfarb and Idnani 1983), the matrix-based EPCLS-
GI algorithm belongs to an active method that maintains an active set of constraints
which are satisfied as equalities. We assume in the �th iteration, the active set is J (�) =
{(αm, jm, km, lm),m = 1, 2, . . . , t}. The solution matrix of problem (15a) subject only to the
equality constraints indexed by the active set J (�) isA(�), and the corresponding Lagrangian
multiplier vector is λ(�).

To proceed, we first identify the most violated constraint among the infinite set of con-
straints in (12), or, (15) at the current solution matrix A(�). By introducing the following
notation:

ḡ jk(A(�)) =
{
Re[e−iβ jk g jk(A(�))] + iσ−1Im[e−iβ jk

g jk(A(�))], for ( j, k) ∈ F1,

Re[e−iβ jk g jk(A(�))] + Im[e−iβ jk
g jk(A(�))], for ( j, k) ∈ F2,

(16a)

the most violated constraint among the infinite set of constraints (15) with (α, j, k, l) ∈
I1

⋃
I2, if any, is chosen as the one indexed by (αu, ju, ku, lu) where

( ju, ku) = arg max
( j,k)∈F1∪F2

{∣∣ḡ jk(A(�)) − d̄ jk
∣∣ − ρ jk

}
, (16b)

αu = tan−1

(
Im

(∣∣ḡ juku (A(�)) − d̄ juku

∣∣)

Re
(∣∣ḡ juku (A(�)) − d̄ juku

∣∣)
)

, (16c)

lu =
{
1, for ( ju, ku) ∈ F1,
2, for ( ju, ku) ∈ F2.

(16d)
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In the complex plane of Ḡ(ω1 j , ω2k) ≡ ḡ jk(A(�)), the most violated constraint is the one
whose boundary is a tangent of the circle |Ḡ(ω1 j , ω2k) − d̄ jk | = ρ jk , the tangency point of
which is the perpendicular projection of Ḡ(ω1 j , ω2k) on the circle along the radial direction
with angle αu (see, e.g., Lai 2009).

Among the finite set of constraints (15) with (α, j, k, l) ∈ I3, the most violated constraint,
if any, is identified by the index quadruplet (αv, jv, kv, lv) with

(αv, jv, kv) = arg max
α∈�( j,k)∈F1

{� jk3(α)gR
jk(A(�)) + �̄ jk3(α)gIjk(A(�))}, (17a)

lv = 3. (17b)

Then, with Eqs. (16) and (17), the most violated constraint at the current iterative point A(�)

among all constraints in (12) can be determined by Step 2 of the matrix-based EPCLS-GI
algorithm given later in this section.

Suppose now we are going to add the most violated constraint to the active set J (�) as the
(t + 1)th active constraint to obtain the new active set J+. Denote by A+ the new solution
matrix to problem (15a) subject to the equality constraints indexed by J+ and by λ+ the
corresponding new multiplier vector. If we let

λ+ =
[

λ(�)

0

]
+ w

[−r
1

]
, (18)

A+ = A(�) + wZ, (19)

where the [−rH , 1]H is the step direction vector in the dual space, i.e., the direction from
the old multiplier vector [λ(�)H , 0]H to the new multiplier vector λ+, Z is the step direction
matrix in the primal space, i.e., the direction from the old solution matrix A(�) to the new
solution matrix A+, and w > 0 is a hypothetical common step length in the dual and primal
spaces. We have the following theorem regarding the primal and dual step directions. The
proof of the theorem is given in the “Appendix”.

Theorem 1 The vector r and matrix Z in the dual and primal step directions can be given
by

r = S−1ξ, (20)

Z =
t∑

m=1

rmRm − Rt+1, (21)

where rm represents the mth component of r, and

S = (Smn)t×t ,where Smn = � jmkmlm (αm)gR
jmkm (Rn)

+�̄ jmkmlm (αm)gIjmkm (Rn) ,m, n = 1, 2, . . . , t, (22a)

ξ = (ξ1, ξ2, . . . , ξt )
H ,where ξm = � jmkmlm (αm)gR

jmkm (Rt+1)

+�̄ jmkmlm (αm)gIjmkm (Rt+1) ,m = 1, . . . , t, (22b)

Rn =
(
PPH

)−1 [
� jnknln (αn)Re

(
p jnq

H
kn

)
−�̄ jnknln (αn)Im

(
p jnq

H
kn

)] (
QQH

)−1
,

n = 1, . . . , t + 1. (22c)

After the primal and dual step directions are determined, we may compute the maximum
dual step length w1 and the minimum primal step length w2. Then we can update the active
set J (�), solution matrix A(�) and multiplier vector λ(�) using the primal and dual step
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directions and the primal and dual step lengths. The procedure details for determination
of the step lengths and that for calculation of the active set, new solution matrix and new
multiplier vector are described in Steps 4 and 5 of the following matrix-based EPCLS-GI
algorithm for problem (15).

Step 1. Prepare the data matrices P, Q and D by (10), compute the solution to the uncon-
strained LS problem (15a) by

A0 =
(
PPH

)−1
PDQH

(
QQH

)
, (23)

and initialize the algorithm by S = [],A(0) = A0,λ(0) = [], t = 0, and � = 0.
Step 2. Identify the most violated constraint.

(a) Compute (αu, ju, ku, lu) and (αv, jv, kv, lv) by (16), (17), and then let

Emv
c = ∣∣ḡ juku (A(�)) − d̄ juku

∣∣ − ρ juku , (24a)

Emv
p = � jvkv3(αv)g

R
jvkv

(A(�)) + �̄ jvkv3(αv)g
I
jvkv

(A(�)). (24b)

(b) If Emv
c ≤ ε1ρ juku and Emv

p ≤ ε2 (where ε1 > 0 is a tolerance of the relative complex
error, ε2 > 0 is a small positive number) which means no constraints are violated, then
terminate the algorithm and A(�) is the solution to problem (15).

(c) If Emv
p ≥ Emv

c , choose the constraint indexed by (αv, jv, kv, lv) as the most violated
one. Let (αt+1, jt+1, kt+1, lt+1) = (αv, jv, kv, lv), and compute Rt+1 and ξms(m =
1, 2, . . . , t) by (22c) and (22b).

(d) If Emv
p < Emv

c , choose the constraint indexed by (αu, ju, ku, lu) as the most violated
one. Let (αt+1, jt+1, kt+1, lt+1) = (αu, ju, ku, lu), and compute Rt+1 and ξms(m =
1, 2, . . . , t) by (22c) and (22b).

Step 3. Determine the step directions. Let r=[] if t = 0; Or compute r by (20) otherwise.
Compute Z by (21).

Step 4. Compute the step lengths.

(a) Compute the maximum dual step length w1 within which the dual feasibility would not
be violated. If r ≤ 0 or t=0, let w1 = ∞; Otherwise, let

m̄ = arg min{m=1,...,t |rm>0}

{
λm(�)

rm

}
andw1 = λm̄(�)

rm̄
, (25)

where m̄ is actually the subscript of the multiplier that would change sign earliest when
the multiplier vector changes along the dual step direction.

(b) Compute the minimum primal step length w2 with which the most violated constraint
would become feasible. If ‖Z‖ = 0, let w2 = ∞; Otherwise, let

w2 = � jt+1kt+1lt+1 (αt+1)gRjt+1kt+1
(A(�)) + �̄ jt+1kt+1lt+1 (αt+1)gIjt+1kt+1

(A(�)) − θ jt+1kt+1lt+1 (αt+1)

� jt+1kt+1lt+1 (αt+1)gRjt+1kt+1
(Z) + �̄ jt+1kt+1lt+1 (αt+1)gIjt+1kt+1

(Z)
.

(26)
(c) Let w = min(w1, w2).

Step 5. Update the active set, and compute the new solution matrix and new multiplier
vector.

(a) If w = ∞, problem (15) is infeasible, terminate the algorithm.
(b) If w = w1, delete the m̄th element of ξ , and the m̄ th column and m̄th row of S;

Update Rms by Rm ← Rm+1 for m = m̄, m̄ + 1, . . . , t ; Update the multiplier vector
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by firstly computing λ(� + 1) = λ+ with (18) and then deleting its m̄th element; If
w2 < ∞, update the solution matrix by A(� + 1) = A+ with (19); Update the active
constraints by (αm, jm, km, lm) ← (αm+1, jm+1, km+1, lm+1) for m = m̄, m̄ + 1, . . . , t ;
Let t ← t − 1, � ← � + 1, and go back to Step 3.

(c) If w = w2, update the multiplier vector and solution matrix by λ(� + 1) = λ+ and
A(�+ 1) = A+ using (18) and (19); Let t ← t + 1, � ← �+ 1; Compute S by (22a) and
go back to Step 2.

Remark 1 Since we use the perpendicular projection method to identify the most violated
constraint and the GI primal–dual method to update the active set, solution matrix and mul-
tiplier vector, theoretically, without taking into account the numerical precision, the matrix-
based EPCLS-GI algorithm has the same convergence properties, say, the same iteration
number, as the vectorized CPCLS-GI algorithm in Lai (2009).

Remark 2 When the coefficient vector of a newly added (most violated) constraint obtained
in Step 2 is linearly dependent on those of the constraints in the active set, it can be proved
that Rt+1 = ∑t

m=1 rmRm , and thus Z=0 from (21). In that case, the m̄ th constraint will be
deleted from the active set until the direction matrix Z becomes nonzero. This ensures the
non-singularity of matrix S.

Remark 3 Since the matrix S in each iterate is actually obtained either by adding to or by
deleting from S in the previous iterate one column and one row, we can use the methods
presented in Lemmas 1 and 2 of Hong et al. (2013) to update the inverse matrix S−1.

3.2 Complexity analysis and comparison

The computational complexity of the matrix-based EPCLS-GI algorithm is dominated by
Steps 2, 3, 4 and 5. We assume the frequency grid lengths are M1 = L1N1 and M2 = L2N2,
where L1 and L2 are the grid density constants. Then in each iterate, the multiplication
number in Step 2 is 2M1N1N2 + 4M1M2N2 + 12M1M2 + N 2

1 N2 + N1N 2
2 + 2t N 1N2 +

8N1N2+4N2t+2t+4N2+3 = [(2L1+1)N1+(4L1L2+1)N2+2t+12L1L2+8]N1N2+
4N2t+ 2t + 4N2 + 3, that in Step 3 is t2+tN1N2, that in Step 4 is 4N1N2 + 8N2 + t , and that
in Step 5 is 3N1N2 + 2t2 + 3t + 4N2 + 3 for adding a constraint and N1N2 + t2 for deleting
a constraint, respectively.

The number t of the Lagrangian multipliers varies with iteration. We assume problem
(15), or equivalently, the EPCLS problem (9), is feasible. Then, the value of t changes from
zero to some tmax ≤ N1N2, where tmax depends on the tightness of the problem constraints.
When t is very small, say, t ≤ max{N1, N2}, the complexity of the matrix-based EPCLS-GI
algorithm for one iterate is O(max{N1, N2}N1N2). When t ≈ N1N2, the complexity for one
iterate is O(N 2

1 N
2
2 ). Therefore, the complexity of the matrix-based EPCLS-GI algorithm for

one iterate is betweenO(max{N1, N2}N1N2) and O(N 2
1 N

2
2 ).

For comparison, the complexity of the vectorized CPCLS-GI algorithm (Lai 2009) for
the EPCLS design problem in one iterate is between O(N 2

1 N
2
2 ) when t ≤ max{N1, N2}

and O(N 3
1 N

3
2 ) when t ≈ N1N2. Since the matrix-based EPCLS-GI and vectorized CPCLS-

GI algorithms consume the same number of iterations (Remark 1), the complexity of the
matrix-based EPCLS-GI algorithm is smaller than the vectorized CPCLS-GI algorithm.

4 Design examples and comparisons

Twodesign examples are provided in this section.WhileExample 1 ismainly for the efficiency
comparison between the matrix-based EPCLS-GI algorithm and the vectorized CPCLS-GI
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algorithm in Lai (2009) and the SDP method in Lu (2002), Example 2 is provided to show
the better performance of the filter obtained by the EPCLS design than that by the CPCLS
design. All algorithms are implemented in MATLAB 7.11.0.584 (R2010b). All designs are
conducted on a personal computer with an Intel(R) Core(TM) i7-4510U CPU @ 2.00GHz
and an 8.0GB memory. We pointed out here that minor changes have been made to the
original SDP method in Lu (2002) with merely circular complex-error constraints since
the design problem in this paper has not only elliptic-error constraints but also phase-error
constraints. Minor changes has also been made to the CPCLS-GI algorithm to meet the
elliptic-error constrains. Moreover, the SDP method is implemented in this paper using the
SDPT3 (Tütüncü et al. 2003) in CVX (Grant and Boyd 2013). Without loss of generality, we
assume the 2-D FIR filters are of square size, i.e., N1 = N2 = N . The size of the frequency
grid is taken as M1 = M2 = 8N . The phase of the desired complex frequency response is
defined by

β(ω1, ω2) = −i(τ1ω1 + τ2ω2), (27)

where τ1 and τ2are the desired group delays along the ω1 and ω2 directions.
Both of the matrix-based EPCLS-GI and vectorized CPCLS-GI algorithms use the same

stopping conditions, i.e., they return feasible solutions when Emv
c ≤ ε1ρiuku and Emv

p ≤ ε2

with the same tolerance parameters ε1 = 10−5 and ε2 = 10−12.

Example 1 The first example considers the EPCLS design of circular lowpass filters with a

passband �p = {(ω1, ω2)|
√

ω2
1 + ω2

2 ≤ ωp} and a stopband �s = {(ω1, ω2)|
√

ω2
1 + ω2

2 ≥
ωs, |ω1| ≤ π, |ω2| ≤ π}, where ωp = 0.4π and ωs = 0.6π . The desired group delays are
τ1 and τ2 and the desired magnitude response is described by

D̄(ω1, ω2) =

⎧
⎪⎪⎨

⎪⎪⎩

1, ω ∈ �p,

ωs−
√

ω2
1+ω2

2

ωs−ωp
, ω ∈ � \ (�p ∪ �s),

0, ω ∈ �s .

(28)

Such filters of size N × N with N ranging from 9 to 31 have been designed using
the matrix-based EPCLS-GI algorithm, the vectorized CPCLS-GI algorithm and the SDP
method. Table 1 gives a comparison of the three methods in terms of the mean squared
complex error (MSCE) of the filter and the CPU time and iteration number of the algorithm
under the specified maximum magnitude error (MME) (i.e., ρ), maximum phase error MPE
(i.e., γ ), group delays τ1 and τ2, and the model parameter τ . It is seen from Table 1 that, under
the same N , ρ, γ, τ1, τ2 and σ , the matrix-based EPCLS-GI, vectorized CPCLS-GI and SDP
methods obtain almost the sameMSCE, but thematrix-based EPCLS-GI algorithm consumes
much less CPU time than other twomethods. For the designs with the same specifications, the
matrix-based EPCLS-GI takes the same number of iterations as the vectorized CPCLS-GI.
Figure 1 draws the magnitude response and passband phase error of the 31×31 circular filter
with ρ = 0.01, γ = 0.002, τ1 = τ2 = 13.5 and σ = 3.

Filters with the same size N = 21 and group delays τ1 = 8 and τ2 = 9 but different ρs and
γ s have also been designed using the matrix-based EPCLS-GI and vectorized CPCLS-GI
algorithms under σ = 5. Table 2 gives a comparison of the design results. It is seen that the
matrix-based EPCLS-GI is muchmore efficient than the vectorized CPCLS-GI in all designs.

Example 2 The second example considers the design of fan filters with a passband �p =
{(ω1, ω2)|0 ≤ ω1 ≤ ω2 tan χ, 0 ≤ ω2 ≤ π} and a stopband �s = {(ω1, ω2)|φ ≤ ω1 ≤
π, 0 ≤ ω2 ≤ (ω1 − φ) tan χ}, where χ = π/6, and φ = 0.1π is a positive number used to

123



486 Multidim Syst Sign Process (2016) 27:477–491

Table 1 Efficiency comparison of thematrix-based EPCLS-GI with the vectorized CPCLS-GI and SDP using
SDPT3 in CVX in Example 1

Filter specifications and
model parameter σ

Design algorithm MSCE
(10−4)

CPU time(s)a/iterates

N = 9, ρ = 0.09, γ = 0.04, Matrix-based EPCLS-GI 23.604 0.156/105

τ1 = τ2 = 3, σ = 1 vectorized CPCLS-GI 23.604 0.454/105

SDP using SDPT3 in CVX 23.604 27.44/30

N = 13, ρ = 0.04, γ = 0.02, Matrix-based EPCLS-GI 4.7362 0.672/325

τ1 = τ2 = 5, σ = 1.5 vectorized CPCLS-GI 4.7362 3.031/325

SDP using SDPT3 in CVX 4.7362 233.5/33

N = 15, ρ = 0.035, γ = 0.02, Matrix-based EPCLS-GI 3.9803 1.25/501

τ1 = τ2 = 6, σ = 2 vectorized CPCLS-GI 3.9803 6.785/501

SDP using SDPT3 in CVX 3.9804 524.4/32

N = 21, ρ = 0.013, γ = 0.004, Matrix-based EPCLS-GI 3.0317 3.86/877

τ1 = τ2 = 9, σ = 2 vectorized CPCLS-GI 3.0317 37.11/877

SDP using SDPT3 in CVX 3.0317 3,726/32

N = 31, ρ = 0.01, γ = 0.002, Matrix-based EPCLS-GI 1.5069 33.37/2,807

τ1 = τ2 = 13.5, σ = 3 vectorized CPCLS-GI 1.5069 527.4/2,807

SDP using SDPT3 in CVX 1.5069 45,764/36

a CPU time for the SDP method using SDPT3 in CVX does not include the time of parsing the problem and
formatting it in the input format of SDPT3

Fig. 1 a Magnitude response and b passband phase error of the 31 × 31 circular filter obtained by the
matrix-based EPCLS-GI with ρ = 0.01, γ = 0.002, τ1 = τ2 = 13.5 and σ = 3

control the width of transition band. The desired group delays are τ1 and τ2and the desired
magnitude response is taken as

D̄(ω1, ω2) =
⎧
⎨

⎩

1, ω ∈ �p,
φ−(|ω1|−|ω2| tan χ)

φ
, ω ∈ �\(�p ∪ �s),

0, ω ∈ �s .

(29)

Several such fan filters of size 25 × 25 with the same γ, ρ, τ1 and τ2 have been designed
using the EPCLS and CPCLS criterions. Table 3 gives the results for the CPCLS design and
EPCLS designs with various σ s, where the CPCLS design is actually the EPCLS design
under σ = 1. Results show that the MSCEs of the resultant EPCLS filters, decreasing with
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Table 2 Efficiency comparison of the matrix-based EPCLS-GI and the vectorized CPCLS-GI algorithms for
filters with N = 21, τ1 = 8 and τ2 = 9 in Example 1

Specifications of the filter Matrix-based EPCLS-GI (σ = 5) Vectorized CPCLS-GI (σ = 5)

(N = 21, τ1 = 8 and τ2 = 9) MSCE (10−4) Time(s)/iterates MSCE (10−4) Time(s)/iterates

ρ = 0.017, γ = 0.006 2.2954 2.891/633 2.2954 29.49/633

ρ = 0.015, γ = 0.006 2.8031 4.125/902 2.8031 38.80/902

ρ = 0.015, γ = 0.005 2.8418 4.312/933 2.8418 40.42/933

ρ = 0.013, γ = 0.005 3.7772 6.425/1,413 3.7772 58.96/1,413

Table 3 Comparison of the filter’s MSCE obtained by the CPCLS design and EPCLS designs with various
σ s in Example 2

Filter specifications Design criterion MSCE (10−4) Time(s)/iterates of
matrix-based EPCLS

CPCLS (EPCLS with σ = 1) 5.9071 8.141/929

EPCLS with σ = 2 5.7663 6.235/719

EPCLS with σ = 5 5.6964 5.703/641

N = 25, ρ = 0.051, γ = 0.03, EPCLS with σ = 10 5.6841 5.531/592

τ1 = τ2 = 11 EPCLS with σ = 20 5.6810 5.359/579

EPCLS with σ = 50 5.6801 4.906/560

EPCLS with σ = 100 5.6800 3.406/560

EPCLS with σ = 200 5.6800 3.390/560

σ , are all smaller than that of the CPCLS filter. That is to say, the EPCLS designs obtain
better filters than the CPCLS design. It is interesting that the iteration number and CPU time
of the matrix-based EPCLS algorithm also decrease with σ . This is because the domain of
the elliptic-error and phase-error constraints becomes larger and thus the constraints become
easier to meet when σgets larger. Figure 2 draws the magnitude response and passband phase
error of the 25 × 25 fan filter with ρ = 0.051, γ = 0.03, τ1 = τ2 = 11 and σ = 5.

We also design several such fan filters of size 25 × 25 with minimal MME using a
combination of the sequential CLS (SCLS) method (see, e.g., Hong et al. 2013)) and the
matrix-based EPCLS-GI algorithm with various σ s. Table 4 shows the design results. Under
the same MPE, the minimal MME decreases with σ , with a sacrifice of possible increase
in MSCE. This implies that an EPCLS design may obtain filters with smaller MME than a
CPCLS design.

5 Conclusions

A matrix-based GI algorithm has been developed for the elliptic-error and phase-error con-
strained least-squares design of 2-D FIR filters with arbitrarily specified frequency responses.
The developed matrix-based EPCLS-GI algorithm is a matrix-based extension of the vector-
ized CPCLS-GI algorithm in Lai (2009) but has a lower computational complexity than it.
Design examples and comparisons demonstrate that the matrix-based EPCLS algorithm con-
sumes much less CPU time than the vectorized CPCLS-GI algorithm and the SDP method,
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Fig. 2 aMagnitude response and b passband phase error of the 25×25 fan filter obtained by the matrix-based
EPCLS-GI with ρ = 0.051, γ = 0.03, τ1 = τ2 = 11 and σ = 5

Table 4 Comparison of the filter’s minimal MME that can be obtained by the CPCLS design and EPCLS
designs with various σ s in Example 2

Filter specifications Design criterion Minimal MME MPE MSCE (10−4)

CPCLS (EPCLS with σ = 1) 0.05001527 0.04 10.69142
EPCLS with σ = 2 0.04966005 0.04 10.75726

EPCLS with σ = 4 0.04938960 0.04 10.96028

N = 25, γ = 0.04, τ1 = τ2 = 11 EPCLS with σ = 8 0.04926968 0.04 11.64738

EPCLS with σ = 16 0.04923793 0.04 11.98660

EPCLS with σ = 32 0.04923181 0.04 11.78357

and the EPCLS design may obtain better filters in terms of smaller MSCE and/or MME than
the CPCLS design.

Appendix

Proof of Theorem 1 Using the Lagrangian method, we can obtain the following equations
for the multiplier vector λ(�) and the solution matrix A(�) of problem (15a) subject to the
equality constraints indexed by the active set J (�),

Sλ(�) = b, A(�) = A0 −
t∑

m=1

λm(�)Rm, (30)

where λm(�) is the mth multiplier in λ(�),S and Rn are defined in (22a) and (22c), and
b = [bm]t×1 with

bm = � jmkmlm (αm)gR
jmkm (A0) + �̄ jmkmlm (αm)gIjmkm (A0)

−θ jmkmlm (αm),m = 1, 2, . . . , t. (31)

If the (t + 1)th equality constraint is added into the active set, the matrix S and vector b
become respectively into

S+ =
[
S ξ

ξ H ξt+1

]
,b+ = [bH , bt+1]H , (32)
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where ξ is defined in (22b), bt+1 and ξt+1 are defined by (31) and (22b) form = t +1. Then,
by (30) and from (18), (19) and (32), we have

S+λ+ =
[
S ξ

ξ H ξt+1

] [
λ(�) − wr
w

]
= b+ =

[
b
bt+1

]
,

A+ = A0 −
t+1∑

m=1

λ+
mRm = A0 −

t∑

m=1

λm(�)Rm + wZ, (33)

where λ+
m is the mth element of λ+. Equations (20) and (21) immediately follow from (18),

(19) and (33). �
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