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Abstract For every bivariate polynomial p(z1, z2) of bidegree (n1, n2), with p(0, 0) = 1,
which has no zeros in the open unit bidisk, we construct a determinantal representation of
the form

p(z1, z2) = det(I − K Z),

where Z is an (n1 + n2) × (n1 + n2) diagonal matrix with coordinate variables z1, z2 on the
diagonal and K is a contraction. We show that K may be chosen to be unitary if and only if p
is a (unimodular) constant multiple of its reverse. Furthermore, for every bivariate real-zero
polynomial p(x1, x2), with p(0, 0) = 1, we provide a construction to build a representation
of the form

p(x1, x2) = det(I + x1A1 + x2A2),

where A1 and A2 are Hermitian matrices of size equal to the degree of p. A key component
of both constructions is a stable factorization of a positive semidefinite matrix-valued poly-
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nomial in one variable, either on the circle (trigonometric polynomial) or on the real line
(algebraic polynomial).

Keywords Determinantal representation · Multivariable polynomial · Stable polynomial ·
Stability radius · Self-reversive polynomial · Real-zero polynomial · Lax conjecture

1 Introduction

The concept of polynomial stability arises naturally in a variety of disciplines, such as Analy-
sis, Electrical Engineering, and Control Theory (Borcea et al. 2009; Wagner 2011; Basu and
Fettweis 1987; Kummert 2002; Doyle 1982; Gurvits 2008; Xu et al. 2008; Scheicher 2013;
Ghamgui et al. 2013; Li et al. 2013). In this paper, we discuss two-variable polynomial
stability with respect to the open unit bidisk

D
2 = {(z1, z2) ∈ C

2 : |z1| < 1, |z2| < 1}.
A bivariate polynomial will be called stable if it has no zeros in D

2, and strongly stable1 if
it has no zeros in the closure of the unit bidisk. The bidegree of p ∈ C[z1, z2] is the pair
deg p = (deg1 p, deg2 p) of its partial degrees in each variable. The reverse of p is defined
as ←−p (z) = zdeg p p̄(1/z), where for z = (z1, z2) and n = (n1, n2) we set zn = zn1

1 zn2
2 ,

p̄(z) = p(z̄), z̄ = (z̄1, z̄2), and 1/z = (1/z1, 1/z2). A polynomial is self-reversive if it
agrees with its reverse. A stable polynomial p is scattering Schur (Basu and Fettweis 1987)
if p and ←−p are coprime, i.e., have no common factors.

For every stable p ∈ C[z1, z2], with p(0, 0) = 1, we construct a representation

p(z1, z2) = det(I|n| − K Zn), (1.1)

with n = deg p and K a contraction (i.e., ‖K‖ ≤ 1 where ‖ · ‖ stands for the largest singular
value), where |n| = n1+n2 and Zn = z1 In1 ⊕ z2 In2 ; see Theorem 2.1. Although we follow a
slightly different path to achieve this result, we are essentially in the trail of Kummert (1989,
1990, 2002), who established (1.1) in the case of scattering Schur polynomials (Kummert
2002, Theorem 1). Note that, given a contractive K , every polynomial defined by (1.1) is
stable, so one gains practical means of designing stable bivariate polynomials.

As an application of Theorem 2.1, we also establish in Theorem 3.2 a representation
(1.1) for stable self-reversive polynomials, with K a unitary matrix; notice that stable self-
reversive polynomials are never scattering Schur. This representation was previously estab-
lished directly in Geronimo et al. (2013, Section 10) in a somewhat different setting.

In the one-variable case, the situation is transparent: every p ∈ C[z], with p(0) = 1, can
be written in the form

p(z) = (1 − a1z) · · · (1 − anz) = det

⎛
⎜⎝In −

⎡
⎢⎣

a1
. . .

an

⎤
⎥⎦

⎡
⎢⎣

z
. . .

z

⎤
⎥⎦

⎞
⎟⎠ ,

where 1/ai are the zeros of p counting multiplicities. Thus p admits a representation (1.1),
with K = diag[a1, . . . , an]. This representation is minimal in size, n = deg p, and in norm,
‖K‖ = max1≤i≤d |ai |. Observe that p is stable (respectively, strongly stable) if and only

1 We note that a less common terminology was used in Grinshpan et al. (2013): stable polynomials were
called semi-stable, and strongly stable polynomials were called stable.
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if K = diag[a1, . . . , an] is contractive (respectively, strictly contractive); in particular, all
zeros of p are on the unit circle if and only if (1.1) holds with K a diagonal unitary. We
also note that K can be chosen to have all, with perhaps one exception, singular values
equal to 1. By a result of Horn (1954), this choice is realized by an upper-triangular K with
eigenvalues a1, . . . , an and singular values equal to 1, . . . , 1, | ∏n

i=1 ai |; see also Horn and
Johnson (1991, Theorem 3.6.6).

Our main result, Theorem 2.1, shows that in the two-variable case we are as well able to
find a representation (1.1) that is minimal both in the size and in norm of K . In particular,
this means that for a two-variable stable polynomial p with p(0, 0) = 1, we can find a
representation (1.1) with n = deg p and K a contraction.

In three or more variables, such a result does not hold; indeed, it follows from Grinshpan
et al. (2013, Example 5.1) that for 5/6 < r < 1 the strongly stable polynomial

q(z1, z2, z3) = 1 + r

5
z1z2z3

(
z21z22 + z22z23 + z23z21 − 2z1z2z23 − 2z1z22z3 − 2z21z2z3

)
,

does not have a representation (1.1)with K a contractive 9×9matrix, even though its degree is
(3, 3, 3). In general, the problem of finding a representation (1.1) with some (not necessarily
contractive) matrix K and n = deg p for a multivariable polynomial p, is overdetermined
(see Grinshpan et al. 2013). It is also unknown whether a stable polynomial p in more than
two variables admits a representation of the form (1.1) with a contractive matrix K of any
size (see Grinshpan et al. 2013 for a discussion). An alternative certificate for stability in
any number of variables is given inWoerdeman (2013). The general problem of constructing
linear determinantal representations of a polynomial is a well known classical problem in
algebraic geometry, see Kerner and Vinnikov (2012) and the references therein.

The analogue of stable self-reversive polynomials for the real line (as opposed to the
unit circle in the complex plane) are real-zero polynomials [or—upon homogenization—
hyperbolic polynomials first introduced by Gårding (1951, 1959)]. Determinantal represen-
tations of these polynomials were actively studied in recent years in relation to semidefinite
programming; see Vinnikov (2012) for a survey. Using a stable factorization of univariate
matrix polynomials that are positive semidefinite on the real line, we construct in Sect. 4 a
positive Hermitian determinantal representation for two-variable real-zero polynomials, i.e.,
a determinantal representation of the form p(x1, x2) = p(0, 0) det(I + x1A1+ x2A2), where
A1 and A2 are Hermitian matrices of the size equal to the degree of p. This reproves the main
result of Helton and Vinnikov (2007), see also Hanselka (in preparation) (which amounts to
the solution of the Lax conjecture for hyperbolic polynomials in three variables, see Lewis
et al. 2005), in a somewhat weaker form [see also (Vinnikov 2012, Section 5) and Plaumann
and Vinzant 2013]. Indeed, in Helton and Vinnikov (2007) it was proven that A1 and A2

can be chosen to be real symmetric. The advantage of the approach here is that the proof
uses factorizations of matrix polynomials (unlike the algebro-geometric techniques used in
Helton and Vinnikov (2007)) making it especially suitable for computations.

2 Norm-constrained determinantal representations

Given a non-constant bivariate polynomial p, its stability radius is defined as

s(p) := max
{

r > 0 : p(z) �= 0, z ∈ rD2
}
.

Thus p is stable if and only if s(p) ≥ 1, and strongly stable if and only if s(p) > 1.
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Theorem 2.1 Let p(z1, z2), with p(0, 0) = 1, be a non-constant bivariate polynomial. Then
p admits a representation (1.1) with n = deg p and ‖K‖ = s(p)−1.

Before we dwelve on the bivariate case, let us consider an alternative way to obtain
(1.1) in the univariate case that does not require us to compute the roots of p. Let p(z) =
p0 + · · · + pnzn be a strongly stable polynomial. Then the classical matrix theory says that
p is the characteristic polynomial of the associated companion matrix. Writing this in a form
especially useful for our purposes, we have

p(z) = p0 det(In − zC p),

where

C p =

⎡
⎢⎢⎢⎢⎣

− p1
p0

1 0
...

. . .

− pn−1
p0

0 1
− pn

p0
0 · · · 0

⎤
⎥⎥⎥⎥⎦

. (2.1)

As p is strongly stable, all the eigenvalues of C p lie in D. Thus C p is similar to a strict
contraction. For our purposes, it will suffice to find a similarity to a (not necessarily strict)
contraction. To this end, we proceed by introducing the Bezoutian

Q = AA∗ − B∗ B,

where

A =
⎡
⎢⎣

p0
...

. . .

pn−1 · · · p0

⎤
⎥⎦ , B =

⎡
⎢⎣

pn · · · p1
. . .

...

pn

⎤
⎥⎦ .

Here M∗ denotes the complex conjugate transpose of the matrix M .
The Schur–Cohn criterion [see, e.g., (Lancaster and Tismenetsky 1985, Section 13.5)] tells

us that p is strongly stable if and only if Q > 0. If we now factor Q = P P∗, with P a square
(and thus automatically invertible) matrix, then K = P−1C p P is a contraction (Woerdeman

2013). To see this, one shows that

[
Q−1 C∗

p Q−1

Q−1C p Q−1

]
and consequently P(I − K ∗K )P∗

are positive semi-definite. Since the range of K ∗ is contained in the range of P∗, it follows
that ‖K‖ ≤ 1. We now have the desired representation p(z) = p0 det(In − zK ).

This alternative derivation of a representation (1.1) in a univariate case provides the basis
for the construction of (1.1) in the bivariate case, where now the coefficients pi and the
matrices C p , A, B, Q, and P will depend on one of the variables.

We will need the following proposition.

Proposition 2.2 Every strongly stable polynomial is scattering Schur.

Proof We will prove the statement here for bivariate polynomials, but it can obviously be
extended to any number of variables.

Suppose p is a strongly stable bivariate polynomial and is not scattering Schur, and let
f be a nontrivial common factor of p and ←−p . Then f depends on at least one of the two
variables z1 and z2. Assume for definiteness that f depends on z1, then it is certainly possible
to fix z2 = λ on the unit circle T so that q(z1) = f (z1, λ) is a nontrivial polynomial in z1.
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Since q divides p(z1, λ), q has no zeros inD. Since q divides←−p (z1, λ) = λn2 zn1
1 p(1/z̄1, λ),

q has also no zeros in C \ D, a contradiction to the Fundamental Theorem of Algebra.
Thus, p is scattering Schur. 
�
Notice that an alternative proof of Proposition 2.2 can be given as follows: one can argue

that every irreducible common factor of p and ←−p would be self-reversive. By Proposition
3.1 (iii), it would have a zero on T

2 (Td in the general case) that contradicts the assumption
of strong stability

Before proceeding to the proof of Theorem 2.1, we make two further comments. First, we
view polynomials of bidegree (n1, n2) or less with constant term 1 as points in the coefficient
space C

N , where N = (n1 + 1)(n2 + 1) − 1. Notice that if a sequence of polynomials in
C

N converges to a polynomial of bidegree (n1, n2), then the polynomials in the sequence
will eventually have the same bidegree. Notice also that strongly stable polynomials form
an open set in C

N , and that every stable polynomial p is a limit of strongly stable dilations
pr (z1, z2) := p(r z1, r z2) as r ↑ 1.

We will also make use of the 1D system realization theory. A univariate matrix-valued
rational function f is said to have a (finite-dimensional) transfer-function realization if

f (z) = D + Cz(I − Az)−1B (2.2)

for some complex matrix

[
A B
C D

]
. A realization (2.2) of f is called minimal if the block

A is of minimal possible size. Every rational matrix-valued function f which is analytic
and contractive on D has a realization (Kalman et al. 1969); moreover, the system matrix[

A B
C D

]
of a minimal realization of f can be chosen to be contractive (Arov 1979).

Proof of Theorem 2.1 It is enough to establish the existence of a representation det(I|n −
K Zn), with K a contraction, for a stable polynomial of degree n with constant term 1.
Indeed, given a bivariate polynomial p with p(0, 0) = 1, q(z) = p(s(p) z) is stable, and
we get q(z) = det(I|n − Zn Kq), ‖Kq‖ ≤ 1, giving us p(z) = det(I|n − Zn K ) where we
set K = Kq/s(p) so that ‖K‖ ≤ s(p)−1. Since necessarily ‖K‖ ≥ s(p)−1, the proof is
complete.

Next, if we can show the existence of a representation det(I|n| − K Zn), with K a con-
traction, for a dense subset of stable polynomials of degree n with constant term 1, then we
are done. Indeed, if p( j) = det(I|n| − K ( j) Zn), with K ( j) a contraction, and p( j) → p,
then p = det(I|n| − K Zn), where K is a limit point of the sequence {K ( j) : j ∈ N} (which
exists as the contractions inC|n|×|n| form a compact set). Thus, we are allowed to make some
generic assumptions on p. For starters,

wemay assume that p is strongly stable; by Proposition 2.2, this implies that p is scattering
Schur, hence in particular p and←−p have only finitelymany common roots (seeGeronimo and
Woerdeman 2004, 2006). In addition, we will assume that these common roots are simple,
do not have the same z1 coordinate, and do not occur with z1 = 0.2 Finally, we assume that
when we expand p in the powers of z2,

p(z1, z2) = p0(z1) + · · · + pn2(z1)z
n2
2 , (2.3)

2 To see that this assumption is indeed generic, notice first that it means that all the roots of the resultant
determinant r(z1) of p(z1, ·) and ←−p (z1, ·) are simple—i.e., the discriminant of r(z1) is not zero—and that
z1 = 0 is not a root of r(z1), and second that the coefficients of r(z1) are polynomials in the coefficients of p
and of ←−p , i.e., polynomials in the coefficients of p and in their conjugates.
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6 Multidim Syst Sign Process (2016) 27:1–26

that pn2 is of degree n1 and is coprime with p0.
We now start the proof of the existence of a representation (1.1) with n = deg p and

‖K‖ ≤ 1 for an irreducible strongly stable polynomial p as above. Using the expansion
(2.3), we introduce the companion matrix

C(z1) =

⎡
⎢⎢⎢⎢⎢⎣

− p1(z1)
p0(z1)

1 0
...

. . .

− pn2−1(z1)
p0(z1)

0 1

− pn2 (z1)
p0(z1)

0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

, (2.4)

and the triangular Toeplitz matrices

A(z1) =
⎡
⎢⎣

p0(z1)
...

. . .

pn2−1(z1) · · · p0(z1)

⎤
⎥⎦ ,

B(z1) =
⎡
⎢⎣

pn2(z1) · · · p1(z1)
. . .

...

pn2(z1)

⎤
⎥⎦ .

Form the Bezoutian Q(z1) := A(z1)A(1/z1)∗ − B(1/z1)∗B(z1). Since the polynomial
p(z1, ·) is strongly stable for every z1 ∈ T (:= {z ∈ C : |z| = 1}), we have that Q(z1)
is positive definite for every z1 ∈ T (Lancaster and Tismenetsky 1985, Section 13.5). Then
there exists a n2 × n2 matrix-valued polynomial P(z1) = P0 + · · · + Pn1 zn1

1 such that the
factorization Q(z1) = P(z1)P(z1)∗, z1 ∈ T, holds and P(z1) is invertible for every z1 ∈ D

(Rosenblatt 1958; Dritschel and Rovnyak 2010). Since p0(z1) = p(z1, 0) �= 0 for every
z1 ∈ D, the rational matrix-valued function

M(z1) := P(z1)
−1C(z1)P(z1)

is analytic onD. In fact, M is also contractive thereWoerdeman (2013). To see this, one shows

that

[
Q(z1)−1 C(z1)∗Q(z1)−1

Q(z1)−1C(z1) Q(z1)−1

]
and consequently P(z1)(I − M(z1)∗M(z1))P(z1)∗

are positive semi-definite for z1 ∈ T. Since the range of M(z1)∗ is contained in the range of
P(z1)∗, it follows that ‖M(z1)‖ ≤ 1 for every z1 ∈ T, and by the maximum principle, for
every z1 ∈ D.

Claim: The only poles of M are the zeros of p0.
To prove the claim, we will first show that a zero z1 = a of P has geometric multiplic-

ity 1 and the corresponding vector in the left kernel is a left eigenvector of C(a). Indeed,
first observe that by analytic continuation, Q(z1) = P(z1)P(1/z̄1)∗, where the analyticity
domains of the rational matrix-valued functions on the two sides of the equality coincide.
Then the zeros of P are exactly the zeros of Q that lie in C \ D. Let z1 �= 0. Observe that

R(z1) :=
[
A(z1) B(1/z̄1)∗
B(z1) A(1/z̄1)∗

]

is the resultant for the polynomials p(z1, ·) and g(·), where
g(z2) = ←−p (z1, z2)/zn1

1 = pn1,n2/zn1
1 + · · · + p00zn2

2 .
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Thus det R(z1) = 0 if and only if p(z1, z2) = 0 = ←−p (z1, z2) for some z2, and as we
noticed in footnote 2, the assumptions on the common roots of p and ←−p imply that the zeros
of R have multiplicity 1. Moreover, when p(z1, z2) = 0 = ←−p (z1, z2) we have that the row
vector v2n2−1(z2) is in the left kernel of R(z1); here

vk(z) = [
1 z · · · zk

]
.

When p0(1/z1) �= 0, we have that A(1/z̄1)∗ is invertible, and

[
vn2−1(z2) zn2

2 vn2−1(z2)
] [

A(z1) B(1/z̄1)∗
B(z1) A(1/z̄1)∗

]
= 0

implies

vn2−1(z2)Q(z1) = 0. (2.5)

Notice that we used that A(w1)
∗ and B(w2) commute as they are both upper triangular

Toeplitz matrices. Thus the left kernel of P(a) is spanned by vn2−1(z2), where (a, z2) is
a common zero of p and ←−p .3 It is now straightforward to check that vn2−1(z2) is a left
eigenvector of C(a) corresponding to the eigenvalue 1/z2.

To show that the only poles of M are the zeros of p0, we observe that the only other
possible source of poles of M would be the zeros of P . As the zero a of P has multiplicity
1, and is not a zero of p0, we obtain that

P(z1) = P0 + P1(z1 − a) + · · · + Pn1(z1 − a)n1 ,

P(z1)
−1 = S−1/(z1 − a) + S0 + S1(z1 − a) + · · · ,

where dimKerP0 = 1 and rankS−1 = 1 [see, e.g., Bart et al. (1979, Chapter II)]. In addition,
as P(z1) and P(z1)−1 multiply to In2 , we have P0S−1 = 0 = S−1P0. By the result of the
previous paragraph, we must have that S−1 = wvn2−1(z2), for some column vector w. But
then we have that

M(z1) = P(z1)
−1C(z1)P(z1) = S−1C(a)P0/(z1 − a) + G(z1),

where G(z1) is analytic in a neighborhood of a. Since

vn2−1(z2)C(a)P0 = (1/z2)vn2−1(z2)P(a) = 0,

we have S−1C(a)P0 = 0, and thus M(z1) does not have a pole at a. This proves the claim.
By the assumption that pn2 is of degree n1 and is coprime with p0, the McMillan degree

of C, and hence, of M , is n1. Therefore there exists a minimal contractive realization of M
with A a n1 × n1 matrix:

M(z1) = D + Cz1(In1 − Az1)
−1B

[see Bart et al. (1979, Section 4.2) or Ball et al. (1990, Sections 4.1, 4.2) for the notion of
the McMillan degree of a rational matrix-valued function and its equality to the size of a

3 Alternatively, one may use the formula

p(z1, z2)p(1/z̄1, z2) − ←−p (z1, z2)
←−p (1/z̄1, z2)

1 − |z2|2
= vn2−1(z2)Q(z1)vn2−1(z2)

∗

to come to the same conclusion. This formula can be easily checked by hand, but also appears in many sources;
see, e.g., Kailath et al. (1978, Section 4).
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8 Multidim Syst Sign Process (2016) 27:1–26

minimal realization of the function]. We have

p(z1, z2) = p0(z1) det(In2 − M(z1)z2)

= p0(z1)

det(In1 − z1A)
det

(
I|n| −

[
A B
C D

] [
z1 In1 0
0 z2 In2

])
.

As det(In1 − z1A) is the denominator of the coprime fraction representation of det M (Ball
et al. 1990, Section 4.2), it follows that p0(z1) = det(In1 − z1A). This proves that

p(z1, z2) = det

(
I|n| −

[
A B
C D

] [
z1 In1 0
0 z2 In2

])
,

and we are done. 
�
Notice that the proof outlines a procedure to find a representation (1.1) of a stable poly-

nomial p with n = deg p and K a contraction. Let us try this out on two simple examples.

Example 2.3 Let p(z1, z2) = 1+ az1 + bz2, where a + b < 1 and a, b > 0. Then p0(z1) =
1 + az1 and p1(z1) = b. We have

M(z1) = C(z1) = − b

1 + az1
= −b + √

ab z1(1 + az1)
−1

√
ab

and obtain the representation p(z1, z2) = det

(
I2 −

[ −a
√

ab√
ab −b

] [
z1 0
0 z2

])
with a con-

traction

[ −a
√

ab√
ab −b

]
.

Example 2.4 Let p(z1, z2) = 1 + z1 + z2 + z21
4 + z22

4 + z1z2
2 . Then we find that

Q(z1) = 1

4
(1 + z1)(1 + 1

z1
)

[
z1 + 3 + 1

z1
z1 + 2

1
z1

+ 2 z1 + 3 + 1
z1

]
,

which gives us a factor

P(z1) = 1

2
(1 + z1)

[
1 1 + z1

−z1 1 + z1

]
.

Next

M(z1) = P(z1)
−1C(z1)P(z1) =

⎛
⎝

z1+1
(z1+2)2

− 1 (z1+1)2

(z1+2)2

− (z1+1)2

(z1+2)2
1 − 3z1+5

(z1+2)2

⎞
⎠ .

A minimal contractive realization of M(z1) = D + Cz1(I − Az1)−1B is given by

[
A B
C D

]
=

⎡
⎢⎢⎢⎢⎢⎣

− 3
4

1
4 − 1

4 − 1
4

− 1
4 − 1

4
1
4 − 3

4

− 1
4 − 1

4 − 3
4

1
4

1
4 − 3

4 − 1
4 − 1

4

⎤
⎥⎥⎥⎥⎥⎦

=: K .

Now we find p(z1, z2) = det(I4 − K Z(2,2)).
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Remark 2.5 It is an interesting question as to whether the procedure for constructing a rep-
resentation (1.1) with n = deg p and K a contraction outlined in the proof of Theorem 2.1
continues to work if some of the generic assumptions on the stable polynomial p are dropped.
A necessary condition for the procedure to work is that p is a scattering Schur polynomial,
since if p and ←−p are not relatively prime then the Bezoutian Q is singular.

Remark 2.6 Theorem 2.1 implies that if p is a strongly stable bivariate polynomial with
p(0, 0) = 1 then it admits a determinantal representation (1.1) with n = deg p and K a strict
contraction, ‖K‖ < 1. Notice that in order to construct such a determinantal representation
we cannot apply the procedure outlined in the proof of Theorem 2.1 to the polynomial
q(z) = p(s(p) z) since q is stable rather than strongly stable (so the generic assumptions in
the proof of Theorem 2.1 are never fulfilled for q); rather, we should apply the procedure to
the polynomial q̃(z) = p(r z) for some r with 1 < r < s(p).

Kummert (1989, 1990, 2002) proved Theorem 2.1 for bivariate scattering Schur polyno-
mials. He first constructed for such a polynomial p a 2D Givone–Roesser system realization
(Givone and Roesser 1972) of f = ←−p /p:

f = D + C Zn(I|n| − AZn)−1B, (2.6)

with the complex (|n| + 1) × (|n| + 1) matrix

[
A B
C D

]
being unitary, and then wrote it as

←−p
p

=
det

[
I|n| − AZn B

−C Zn D

]

det(I|n| − AZn)
.

Since the fraction representation on the left-hand side is coprime and the bidegree of the
polynomial in the denominator of the fraction on the right-hand side is less than or equal
n = (n1, n2) (in the componentwise sense), the denominators must be equal:

p = det(I|n| − AZn).

Since A is a contraction, Theorem 2.1 follows for this case, with K = A. We also remark
that in this construction K has all singular values, except one, equal to 1.

Let us note that the existence of 2D Givone–Roesser unitary system realizations was
proved by Agler (1990) for a muchmore general class of contractive analytic operator-valued
functions on the bidisk D

2, however the (unitary) system matrix in such a realization has, in
general, infinite-dimensional Hilbert-space operator blocks (in particular, A is a contraction
on an infinite-dimensional Hilbert space). Kummert’s result in the special case of scalar ratio-
nal inner functions is sharper in the sense that it provides a concrete finite-dimensional unitary
realization of the smallest possible size. We also remark that an alternative construction of
a finite-dimensional Givone–Roesser unitary system realization for matrix-valued rational
inner functions of two-variables is given in Ball et al. (2005).

The general case of Theorem 2.1 can also be deduced from the special case of scatter-
ing Schur polynomials, since the latter is a dense subset in the set of all stable bivariate
polynomials of bidegree n = (n1, n2) with the constant term 1 by Proposition 2.2, and the
approximation argument as in our proof of Theorem 2.1 works.

Notice that at least when p is an irreducible scattering Schur polynomial, all the represen-
tations (1.1) of p with n = deg p and K a contraction having all but one singular values equal
to 1, arise from a Givone–Roesser realization (2.6) of the rational inner function f = ←−p /p
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with a unitary system matrix

[
A B
C D

]
where K = A. Indeed, let

[
A B
C D

]
, A := K , be the

Halmos dilation of K , i.e., an embedding of K into a (|n| + 1) × (|n| + 1) unitary matrix,
and define f by (2.6). Then f is a rational inner function so necessarily f = ←−q /q for some
stable polynomial q which is scattering Schur. We see that q divides p; since A has all but
one singular values equal to 1, B and C are not zero implying that |D| < 1, so that f is not a
constant of absolute value 1 and q is not a constant polynomial, therefore q = p as asserted.

With the existence of contractive determinantal representations p(z1, z2) = det(I|n| −
K Zn), ‖K‖ ≤ 1, of a stable bivariate polynomial p of degree n = (n1, n2) with p(0, 0) = 1
established, the next natural question is classifying such determinantal representations

either up to structured similarity: K �→
[

T1 0
0 T2

]
K

[
T1 0
0 T2

]−1

, for T1 and T2 complex

invertible matrices of size n1 and n2, respectively, or up to structured unitary equivalence

K �→
[

U1 0
0 U2

]
K

[
U1 0
0 U2

]−1

, for U1 and U2 unitary matrices of size n1 and n2, respec-

tively. Notice that the proof of Theorem 2.1 that we presented provides a single contractive
determinantal representation up to structured similarity (since all minimal contractive real-
izations of M(z1) are similar), but—in general—many different contractive determinantal
representations up to structured unitary equivalence (since in general M(z1)will admit many
different minimal contractive realizations up to unitary equivalence, see Arov 1979).

Proposition 2.7 Assume that p is an irreducible strongly stable bivariate polynomial of
degree n = (n1, n2) having no critical points on the zero set Zp of p, and such that upon the
expansion of p in the powers of z1 the coefficients of both zn1

1 and of 1 are polynomials in z2
of degree n2 with distinct roots, and similarly for the development of p in the powers of z2.
Then p admits a g-dimensional family of strictly contractive determinantal representations
p(z1, z2) = det(I|n| − K Zn), ‖K‖ < 1, no two of which are structured similar, where
g = n1n2 − n1 − n2.

Unlike the rest of this paper, the proof uses some theory of algebraic curves and of their
determinantal representations (for which we refer to Fulton 1969; Vinnikov 1989; Ball and
Vinnikov 1996, 1999; Kerner and Vinnikov 2012).

Proof Welet p̃(z1, z2) = zn1
1 zn2

2 p(1/z1, 1/z2) and let p̃(z0, z1, z2) = zn1+n2
0 p̃(z1/z0, z2/z0)

be the homogenization of p̃. The assumptions on p imply that the zero set Zp̃ of p̃ in the
complex projective plane—which is an irreducible projective algebraic curve—is actually
smooth except for the two points at infinity on the curve, [0 : 1 : 0] and [0 : 0 : 1], which are
ordinary multiple points of multiplicity n2 and n1, respectively. Furthermore, the genus of
the desingularizing Riemann surface of Zp̃ is exactly g, and the n2 distinct preimages of the
point [0 : 1 : 0], respectively the n1 distinct preimages of the point [0 : 0 : 1], are the distinct
simple poles of the affine coordinate function z1/z0, respectively z2/z0.

Consider now a determinantal representation p̃(z0, z1, z2) = c det(z0A0+ z1A1+ z2A2),
where c ∈ C, c �= 0, and A0, A1, A2 ∈ C

(n1+n2)×(n1+n2). Such representations have a natural
equivalence relation given by (A0, A1, A2) �→ (S A0T, S A1T, S A2T ) for S, T complex
invertible matrices of size n1 + n2. It is a basic fact that the kernel of a determinantal
representation of the linear matrix pencil U (z0, z1, z2) = z0A0 + z1A1 + z2A2—which is
nonzero precisely for the points [z0 : z1 : z2] on the curve Zp̃—is one-dimensional, except
possibly at the singular points [0 : 1 : 0] and [0 : 0 : 1], where the dimension of the kernel
is less than or equal to the multiplicity. A determinantal representation is called maximal
(or maximally generated) if the dimension of the kernel at each singular point equals the
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corresponding multiplicity. It is then the case that kerU (0, 0, 1) � kerU (0, 1, 0) = C
n1+n2

and ker� U (0, 0, 1) � ker� U (0, 1, 0) = C
1×(n1+n2) (where ker� denotes the left kernel of

a matrix) are direct sum decompositions into subspaces of dimensions n1 and n2 [see, e.g.,
Ball and Vinnikov (1996, (2.24)–(2.25) and the proof of Theorem 3.3); we are using here the
fact that [0 : 0 : 1] and [0 : 1 : 0] are the two intersection points of Zp̃ with the line z0 = 0].
Since U (0, 0, 1) = A2 and U (0, 1, 0) = A1, this implies that we can find invertible matrices

S, T such that S A2T =
[
0 0
0 In2

]
and S A1T =

[
In1 0
0 0

]
. There is therefore a one-to-one

correspondence between maximal determinantal representations of p̃ up to equivalence, and
determinantal representations of the form p̃(z0, z1, z2) = det(z0A0 + Zn), which is the same
as p(z1, z2) = det(I|n| − AZn) (A = −A0), up to structured similarity.

Now, maximal determinantal representations of p̃ up to equivalence are classified by
points in a certain dense open subset of the Jacobian variety of the desingularizing Riemann
surface of Zp̃. More explicitly, the formulae (5.3) in Ball and Vinnikov (1999) yield a matrix
A(ζ ) which is analytic in ζ , ζ ∈ O ⊆ C

g a certain open dense subset, such that for any
determinantal representation of the form p(z1, z2) = det(I|n| − Zn A), A is structured similar
to A(ζ ) for ζ ∈ O which is uniquely determined modulo a lattice of rank 2g in C

g .
Let p(z1, z2) = det(I|n| − Zn K 0), ‖K 0‖ < 1, be a strictly contractive determinantal

representation that exists by Theorem 2.1. Then K 0 =
[

T1 0
0 T2

]
A(ζ 0)

[
T1 0
0 T2

]−1

, for T1

and T2 complex invertible matrices of size n1 and n2, respectively, and ζ 0 ∈ O . If we set

K (ζ ) =
[

T1 0
0 T2

]
A(ζ )

[
T1 0
0 T2

]−1

, then ‖K (ζ )‖ < 1 and K (ζ ) is not structured similar to

K (ζ ′) for ζ, ζ ′ in a sufficiently small open neighborhood of ζ 0. 
�

3 The case of self-reversive polynomials

Given a stable polynomial p, one has the factorization p = us, where u is a stable self-
reversive polynomial and s is a scattering Schur polynomial (Basu and Fettweis 1987, The-
orem 4). In the case where p is stable and self-reversive, the factor s is a constant. Our next
theorem specializes the result of Theorem 2.1 to this case. We first give several equivalent
conditions for a stable polynomial to be self-reversive; while we formulate and prove the next
proposition for bivariate polynomials, it is clear that it extends to any number of variables.

Proposition 3.1 Let p be a stable bivariate polynomial of bidegree n = (n1, n2) with
p(0, 0) = 1; then the following statements are equivalent:

(i) p is self-reversive up to a unimodular constant;
(ii) the coefficient of zn1

1 zn2
2 in p is unimodular;

(iii) if (z1, z2) ∈ T
2, the one-variable polynomial t �→ p(t z1, t z2) has all its zeros on T.

Proof (i)⇒(ii) is obvious, since for a bivariate polynomial p of bidegree n = (n1, n2), the
constant term of ←−p equals the conjugate of the coefficient of zn1

1 zn2
2 in p.

(ii)⇒(iii) Let p(z1, z2) = ∑r
j=0 p j (z1, z2), p0(z1, z2) = 1, be the expansion of p in

homogeneous polynomials. Then

p(z1,z2)(t) := p(t z1, t z2) =
r∑

j=0

p j (z1, z2)t
j . (3.1)
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If the coefficient pn1,n2 of zn1
1 zn2

2 is unimodular, then r = n1 + n2 and pr (z1, z2) =
pn1,n2 zn1

1 zn2
2 . For (z1, z2) ∈ T

2, we can write

p(z1,z2)(t) = (1 − a1(z1, z2)t) · · · (1 − ar (z1, z)t),

where 1/a1(z1, z2), . . . , 1/ar (z1, z2) are the roots of p(z1,z2) countingmultiplicities. Because
of semi-stability, |ai (z1, z2)| ≥ 1; but pr (z1, z2) = (−1)r a1(z1, z2) · · · ar (z1, z2) is unimod-
ular, hence |ai (z1, z2)| = 1.

(iii)⇒(i) Let p(z1,z2) be as in (3.1). By the assumption, for every (z1, z2) ∈ T
2 the polyno-

mial p(z1,z2) is self-reversive up to a unimodular constant, hence pr (z1, z2) is either zero or
unimodular. Since the polynomial pr is nonzero, it is not identically zero on T

2 (e.g., by the
uniqueness principle for bivariate analytic functions). By continuity, pr (z1, z2) is unimodular,
and thus deg p(z1,z2) = r for every (z1, z2) ∈ T

2. It follows (e.g., by Rudin’s characterization
of rational inner functions (Rudin 1969, Theorem 5.2.5) that pr is a monomial:

pr (z1, z2) = pm1,m2 zm1
1 zm2

2 ,

with (m1, m2) ≤ (n1, n2), |m| = r , and |pm1,m2 | = 1.
Now, the fact that for (z1, z2) ∈ T

2 the polynomial p(z1,z2) is self-reversive up to a
unimodular constant implies that

pr− j (z1, z2) = pr (z1, z2)p j (z1, z2)

for (z1, z2) ∈ T
2 and j = 0, . . . , r , and therefore by analytic continuation

pr− j

( 1

z̄1
,
1

z̄2

)
= pr

( 1

z̄1
,
1

z̄2

)
p j (z1, z2)

for all z1, z2 �= 0 and j = 0, . . . , r . It follows that

p
( 1

z̄1
,
1

z̄2

)
= pr

( 1

z̄1
,
1

z̄2

)
p(z1, z2),

and finally, since pr (z1, z2) = pm1,m2 zm1
1 zm2

2 ,

zm1
1 zm2

2 p
( 1

z̄1
,
1

z̄2

)
= pm1,m2

p(z1, z2).

Comparing the degrees of z1 and z2 we see that n1 = m1, n2 = m2, and p is self-reversive
up to the unimodular constant pm1,m2

. 
�
Theorem 3.2 Let a nonconstant bivariate polynomial p of bidegree n = (n1, n2), with
p(0, 0) = 1, be stable. Then p is self-reversive up to a unimodular constant if and only if p
admits a representation (1.1) with n = deg p and K unitary.

The result above can also be derived using the theory of distinguished varieties. Indeed,
by combining Theorem 1.12 in Agler and McCarthy (2005) (see also Theorem 2.1 in Knese
2010) with Lemma 2.5 and Proposition 4.3 (or the Proposition before Lemma 2.5) in Knese
(2010), one may arrive to the same result. We provide a proof based on Theorem 2.1.

Proof The proof in one direction is immediate. If p = det(I|n| − K Zn), with K unitary and
n = deg p, then

←−p (z) = zn det(I|n| − K Z−1
n ) = det(Zn − K ) = det(Zn − K ∗) = det(−K ∗)p(z),

with det(−K ∗) ∈ T.
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Conversely, assume that p is self-reversive up to a unimodular constant, or equivalently
(by Proposition 3.1) that the coefficient of zn1

1 zn2
2 in p is unimodular. By Theorem 2.1, p

has a representation (1.1) with a contractive K . Observe that the modulus of the coefficient
of zn1

1 zn2
2 equals | det K |, which in turn equals the product of the singular values of K . As

| det K | = 1, all singular values of K must be equal to 1, yielding that K is unitary. 
�
We notice that the procedure outlined in the proof of Theorem 2.1 to find a representation

(1.1) does not work for self-reversive polynomials as the Bezoutian Q is 0, and a limiting
process (as in the beginning of the proof of Theorem 2.1) is necessary. However, using
the ideas in Knese (2010) (see also Geronimo et al. 2013, where a more general case is
considered) we can provide the following construction.

Suppose p ∈ C[z1, z2] is a stable self-reversive polynomial with p(0, 0) = 1. It suffices
to assume that p is irreducible. Indeed, if the polynomials p1 and p2 allow the representation
(1.1) as in Theorem 2.1, then so does their product. We have

p1(z1, z2)p2(z1, z2) = det(I − K1Z (1)) det(I − K2Z (2))

= det(I − (K1 ⊕ K2)(Z (1) ⊕ Z (2))).

If K1 and K2 are unitary, then so is K1 ⊕ K2. Using a permutation matrix P such that
Z = P(Z (1) ⊕ Z (2))P = z1 In1 ⊕ z2 In2 , we obtain

p1(z1, z2)p2(z1, z2) = det(I − P(K1 ⊕ K2)P2(Z (1) ⊕ Z (2))P) = det(I − K Z)

with a unitary matrix K = P(K1 ⊕ K2)P . Since deg(p1 p2) = deg p1 + deg p2, this
representation is of the required (minimal) size.

So, let p be a stable self-reversive irreducible polynomial. We also assume that n2 > 0,
the case n2 = 0 being trivial. It follows Knese (2010, Theorem 2.9) (see also Geronimo et al.

2013, Lemma 10.7) that the polynomial
←−−−−
∂p/∂z2 is stable and

z2∂p/∂z2←−−−−
∂p/∂z2

is a coprime fraction

representation of a rational inner function. Then it is well known (see Cole andWermer 1999;
see also Kummert 2002; Geronimo andWoerdeman 2004; Ball et al. 2005; Knese 2008) that
there exist bivariate polynomials A1, …, An1 of bidegree (n1 − 1, n2) or less, and bivariate
polynomials B1, …, Bn2 of bidegree (n1, n2 − 1) or less, not all zero, such that

←−−
∂p

∂z2
(z1, z2)

←−−
∂p

∂z2
(w1, w2) − z2w2

∂p

∂z2
(z1, z2)

∂p

∂z2
(w1, w2)

= (1 − z1w1)

n1∑
i=1

Ai (z1, z2)Ai (w1, w2) + (1 − z2w2)

n2∑
j=1

B j (z1, z2)B j (w1, w2).

(3.2)

(Furthermore, these polynomials can be found using semidefinite programming software. In
Example 3.3 below we use the software package CVX, a package for specifying and solving
convex programs (Grant and Boyd 2013, 2008). It is straightforward to verify the identity

n2 p =
←−
∂p
∂z2

+ z2
∂p
∂z2

, which implies that the left-hand side of (3.2) is equal to

n2
2 p(z1, z2)p(w1, w2) − n2z2

∂p

∂z2
(z1, z2)p(w1, w2) − n2 p(z1, z2)w2

∂p

∂z2
(w1, w2).

When both (z1, z2) and (w1, w2) lie in the zero set Zp of the polynomial p, this expression
and, thus, the left-hand side of (3.2) are equal to 0. Then we use the standard “lurking
isometry” argument. We first rewrite the equality (3.2) restricted to Zp × Zp as
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[
A(w1, w2)

B(w1, w2)

]∗ [
A(z1, z2)
B(z1, z2)

]
=

[
w1A(w1, w2)

w2B(w1, w2)

]∗ [
z1A(z1, z2)
z2B(z1, z2)

]
,

where A(z1, z2) := coli=1,...,n1 [Ai (z1, z2)] and B(z1, z2) := coli=1,...,n2 [Bi (z1, z2)]. Then
we observe that this identity uniquely determines an isometry

T : span

{[
z1A(z1, z2)
z2B(z1, z2)

]
: (z1, z2) ∈ Zp

}
→ span

{[
A(z1, z2)
B(z1, z2)

]
: (z1, z2) ∈ Zp

}
,

defined on generating vectors by

T :
[

z1A(z1, z2)
z2B(z1, z2)

]
�→

[
A(z1, z2)
B(z1, z2)

]

and then extended by linearity. We shall see a posteriori that in fact the span of the vectors
on the right-hand side is all of C|n|, so that the isometry T is a unitary mapping of C|n| onto
itself. At any rate, T can be extended to a unitary mapping K of C|n| onto itself, i.e., to a
|n| × |n| unitary matrix.

The nonzero polynomial P =
[

A
B

]
∈ C

|n|[z1, z2] does not vanish identically on Zp .

Indeed, Bézout’s theorem (Fulton 1969, p. 112) says that two bivariate polynomials with
no common factors can have at most a finite number of common zeros equal to the product
of total degrees of the polynomials. Therefore, if P vanishes identically on Zp , then the
irreducible polynomial p should divide every component of P , but since these components,
Ai , i = 1, . . . , n1, and B j , j = 1, . . . , n2, are polynomials of smaller bidegree than p,
this is impossible. Moreover, the set Zp \ ZP is Zariski relatively open and dense in Zp .
Since the polynomial q = det(I|n| − K Zn) vanishes on this set, it vanishes on Zp as well.
Applying Bézout’s theorem again, we see that p divides q . Since deg q = deg p = n and
p(0) = q(0) = 1, we must have p = q , i.e., p has a representation (1.1) with n = deg p and
K unitary. This provides an alternative proof of the non-trivial direction in Theorem 3.2.

We notice that the restriction of P =
[

A
B

]
∈ C

|n|[z1, z2] to Zp is a section of the

kernel bundle of the determinantal representation I|n| − K Zn of the irreducible polynomial
p, see Vinnikov (1989), Kerner and Vinnikov (2012). It follows (essentially since such a
section is generated by the columns of the adjoint matrix adj(I|n| − K Zn)) that the entries
of the restriction of P to Zp are linearly independent, in other words there exists no nonzero
c ∈ C

1×|n| such that cP(z1, z2) = 0 for all (z1, z2) ∈ Zp . Therefore the span of P(z1, z2),
(z1, z2) ∈ Zp , is all of C|n|, so that the isometry T = K is already a unitary mapping of C|n|
onto itself and no extension is needed.

We illustrate this on the following example.

Example 3.3 Let p(z1, z2) = 1 − z1z2 − 1
2 z21 − 1

2 z22 + z21z22, so that deg p = (2, 2). We
compute

∂p

∂z2
(z1, z2) = −z1 − z2 + 2z21z2,

←−−
∂p

∂z2
(z1, z2) = 2 − z1z2 − z21,

and find

A1(z1, z2) = √
2(1 − z1z2), A2(z1, z2) = z1 − z2,

B1(z1, z2) = √
2(1 − z21), B2(z1, z2) = z1 + z2 − 2z21z2,

so that (3.2) holds.
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Taking the zeros (0,
√
2), (

√
2, 0), ( 12 ,−1+ 3√

2
), (−1+ 3√

2
, 1
2 ), we find that the unitary

K = T is the matrix

K = 1√
2

⎡
⎢⎢⎣
0 1 0 1
1 0 −1 0
0 −1 0 1
1 0 1 0

⎤
⎥⎥⎦ .

One can easily check that p(z1, z2) = det(I4 − K Z(2,2)).

4 Real-zero polynomials and Hermitian determinantal representations

We consider bivariate real-zero polynomials, which are polynomials p ∈ R[x1, x2] with
the property that for every (x1, x2) ∈ R

2 the one-variable polynomial p(t x1, t x2) has only
real zeros. In Helton and Vinnikov (2007, Theorem 2.2) it was shown that every real-zero
polynomial p with p(0, 0) = 1 may be represented as

p(x1, x2) = det(I + x1A1 + x2A2), (4.1)

where A1, A2 ∈ R
d×d are symmetric matrices and d is the total degree of p; in the homoge-

neous setting of hyperbolic polynomials this statement was known as the Lax conjecture, see
Lewis et al. (2005). We refer to Vinnikov (2012) for a detailed survey and further references.
The proof in Helton and Vinnikov (2007) is based on the results of Vinnikov (1993) and Ball
and Vinnikov (1999), see also Dubrovin (1983), and uses algebro-geometric techniques—the
correspondence between (certain) determinantal representations of an irreducible plane curve
and line bundles on its desingularization, together with a detailed analysis of the action of
the complex conjugation on the Jacobian variety and the theory of Riemann’s theta function;
a new proof, using instead the theory of quadratic forms, has been discovered recently in
Hanselka. (in preparation) A somewhat weaker statement—namely, the existence of a rep-
resentation (4.1) where now A1, A2 ∈ C

d×d are Hermitian matrices—has been established
recently in Vinnikov (2012, Section 5) and Plaumann and Vinzant (2013); these proofs are
also algebro-geometric but avoid the transcendental machinery of Jacobian varieties and theta
functions. In this section (Theorem 4.1), we provide a new proof (actually, two closely related
proofs) of the existence of a representation (4.1) with A1, A2 ∈ C

d×d Hermitian matrices
using factorizations of matrix-valued polynomials. One advantage of our proof is that it pro-
vides a constructive way to find such a representation. The most involved step is finding a
stable factorization for a one-variable matrix polynomial that is positive semidefinite on the
real line. As the latter can be implemented using any semidefinite programming package or
a Riccati equation solver [see, e.g., Hachez and Woerdeman 2007 or Bakonyi and Woerde-
man (2011, Section 2.7)], this construction can be easily implemented numerically. For more
on computational questions related to the construction of determinantal representations of
real-zero polynomials, see Henrion (2010), Plaumann et al. (2011), Plaumann et al. (2012),
Leykin and Plaumann (2012). By a simple trick, Theorem 4.1 also implies the existence of
a 2d × 2d real symmetric representation for p2—see Remark 4.6.

Theorem 4.1 Let p be a bivariate real-zero polynomial of total degree d > 0 with p(0, 0) =
1. Then there exist d × d Hermitian matrices A1 and A2 so that (4.1) holds.

We will need two lemmata. The first one is simply a restatement of one of the results of
Nuij (1968) in the non-homogeneous setting.
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Lemma 4.2 Let p be a real-zero polynomial of total degree d and with p(0, 0) = 1. For
every ε > 0 there exists a real-zero polynomial q of total degree d and with q(0, 0) = 1 such
that each coefficient of q is within ε distance of the corresponding coefficient of p, and for
every x2 ∈ R the one-variable polynomial q̌x2 defined via

q̌x2(t) := tdq(1/t, x2/t)

has only simple real zeros.

Proof Let p(x0, x1, x2) := xd
0 p(x1/x0, x2/x0). Then p is a degree d homogeneous poly-

nomial in three variables that is hyperbolic with respect to e = (1, 0, 0), which means that
p(e) �= 0 and for every (x0, x1, x2) ∈ R

3 the one-variable polynomial t → p(x0 − t, x1, x2)
has only real zeroes. By a result of Nuij (1968), the polynomial p can be approximated arbi-
trarily close, in the sense of coefficients, by a degree d homogeneous polynomial q which is
strictly hyperbolic with respect to e; that is, q is hyperbolic with respect to e, and for every
(x0, x1, x2) ∈ R

3 with (x1, x2) �= (0, 0) the zeros of t → q(x0 − t, x1, x2) are simple. But
then q(x1, x2) := q(1, x1, x2)/q(1, 0, 0) has the desired property. Notice that while a priori
the total degree of q is at most d , it will be actually equal to d if we choose ε small enough.

�

The following result is due to Hanselka (in preparation). For the sake of completeness,
we include a proof.

Lemma 4.3 Let M be a d × d matrix-valued polynomial in one variable with Hermitian
coefficients. If the polynomial det(t Id − M(s)) has total degree at most d, then M is linear
(i.e., deg M ≤ 1).

Proof Let

det(t Id − M(s)) = td + p1(s)t
d−1 + · · · + pd(s),

where p j is a polynomial of degree at most j . Assume that M is a polynomial of degree k,
and write−M(s) = B0+· · ·+ Bksk . The sum of j × j principal minors in−M(s) is exactly
p j (s); therefore the coefficient of sk j in p j (s) is the sum of j × j principal minors in Bk .
But deg p j ≤ j for all j , hence if k > 1 we conclude that the sum of j × j principal minors
in Bk is zero for all j > 0. It follows that Bk is nilpotent. Since Bk is also Hermitian, it must
be zero, a contradiction. 
�

Wewill present two closely related proofs of Theorem 4.1: the first proof uses the Hermite
matrix [considered in the context of real-zero polynomials and determinantal representations
in Henrion (2010) and in Netzer et al. (2013)], whereas the second proof uses intertwin-
ing polynomials and the Bezoutian [considered in this context in Vinnikov (2012) and in
Plaumann and Vinzant (2013), Kummer et al. (2012).

First proof of Theorem 4.1 We first claim that if we can establish the existence of a required
determinantal representation for a dense subset of real-zero polynomials of total degree d and
with constant term 1, then we are done.4 Indeed, assume that we have real-zero polynomials
p(n), n ∈ N, of total degree d with p(n)(0, 0) = 1, so that the sequence {p(n)}n∈N converges
to p and so that there exist Hermitian d × d matrices A(n)

1 and A(n)
2 with p(n)(x1, x2) =

det(Id + x1A(n)
1 + x2A(n)

2 ). Let

μ := min{|t | : p(t, 0)p(0, t) = 0}.
4 This was previously noticed in Speyer (2005, Lemma 8) and Plaumann and Vinzant (2013, Lemma 3.4).
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Clearly, μ > 0. Then for n large enough the spectra of A(n)
1 and A(n)

2 lie in the interval
(−2μ−1, 2μ−1). Since the spectral radius of an Hermitian matrix coincides with its operator
(2, 2) norm, the matrices A(n)

1 and A(n)
2 have norms bounded by 2μ−1, and therefore the

sequence {(A(n)
1 , A(n)

2 )}n∈N, has a limit point (A1, A2). Thenwe get that p(x1, x2) = det(Id +
x1A1 + x2A2), with Hermitian d × d matrices A1 and A2, as desired.

Given p, we introduce

p̌x2(t) := td p(1/t, x2/t) = td + p1(x2)t
d−1 + · · · + pd(x2).

One easily observes that deg p j ≤ j , j = 1, . . . , d , and that for every x2 ∈ R the
polynomial p̌x2 has only real zeros. Furthermore, we may assume by the previous paragraph
and by Lemma 4.2 that for every x2 ∈ R the polynomial p̌x2 has only simple zeros.

Let C(x2) be the companion matrix

C(x2) =

⎡
⎢⎢⎢⎣

0 · · · 0 −pd(x2)
1 0 −pd−1(x2)

. . .
...

0 1 −p1(x2)

⎤
⎥⎥⎥⎦ . (4.2)

Then

p̌x2(t) = det(t Id − C(x2)).

Denote the zeros of p̌x2 by λ1(x2), . . . , λd(x2), and let s j (x2) be their j th Newton sum:

s j (x2) =
d∑

k=1

λk(x2)
j , j = 0, 1, . . . .

As is well known, s j (x2) can be expressed in terms of p j (x2), as follows

s0(x2) = d, s1(x2) = −p1(z),

s j (x2) = − j p j (x2) −
j−1∑
k=1

pk(x2)s j−k(x2), j = 2, . . . , d.

Note that s j is a polynomial of degree ≤ j , j = 0, . . . , d . We let H(x2) be the Hermite
matrix of p̌x2 , namely (see, e.g., Krein and Naimark 1936) the Hankel matrix whose entries
are the Newton sums of the zeros of p̌x2 :

H(x2) = [si+ j (x2)]i, j=0,...,d−1.

Clearly, H is a matrix polynomial of degree at most 2d . E.g., for d = 2 we have

H(x2) =
[

2 −p1(x2)

−p1(x2) p1(x2)2 − 2p2(x2)

]
.

Since all the zeros of p̌x2 are real and simple for real x2, we have that H(x2) > 0, x2 ∈ R.
This is well known and it follows immediately from

H(x2) = V (x2)
�V (x2), (4.3)

where V (x2) is the (real) Vandermonde matrix

V (x2) = [λk+1(x2)
j ]k, j=0,...,d−1. (4.4)
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In addition, one may easily check (e.g., using (4.3)) that

C(x2)
� H(x2) = H(x2)C(x2). (4.5)

By the positive definiteness of H(x2) for all real x2, we may factor H(x2) as

H(x2) = Q(x2)
∗Q(x2), x2 ∈ R, (4.6)

where Q(x2) is a matrix polynomial of degree d and Q(x2) is invertible for Im x2 ≥ 0
(Yakubovich 1970; Rosenblum and Rovnyak 1985). We now let

M(x2) = Q(x2)C(x2)Q(x2)
−1,

and obtain that

p̌x2(t) = det(t Id − M(x2)).

Note that M(x2) = M(x2)∗ for x2 ∈ R. Indeed, (4.5) implies that

C(x2)
∗Q(x2)

∗Q(x2) = Q(x2)
∗Q(x2)C(x2), x2 ∈ R.

Multiplying on the left with Q(x2)∗−1 and on the right with Q(x2)−1, yields that M(x2) =
M(x2)∗, x2 ∈ R.

Next, we claim that the rational matrix function M(x2) is in fact a matrix polynomial. The
only possible poles arise from the zeros of Q(x2). Let a be a zero of Q(x2). Then Im a < 0.
We rewrite (4.6) as

H(x2) = Q(x̄2)
∗Q(x2)

for all x2 ∈ C, and substitute in (4.5), obtaining

C(x2)
�Q(x̄2)

∗ = Q(x̄2)
∗Q(x2)C(x2)Q(x2)

−1 = Q(x̄2)
∗M(x2), (4.7)

for all x2 ∈ C. Since Q(ā) is invertible, we conclude that

M(x2) = Q(x̄2)
∗−1C(x2)

�Q(x̄2)
∗,

is regular at a, i.e., a is not a pole of M(x2).
It follows now from Lemma 4.3 that deg M ≤ 1, i.e., we can write

M(x2) = −A1 − A2x2,

where A1 and A2 are d × d Hermitian matrices. Then

p̌x2(t) = det(t Id + A1 + A2x2),

and thus

p(x1, x2) = xd
1 p̌ x2

x1

( 1

x1

)
= det(Id + x1A1 + x2A2).


�

Note that the proof provides a constructive way to find a representation (4.1). We illustrate
this with an example.
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Example 4.4 Let p(x, y) = 1 + 10y + 4x − y2 − 2xy − x2. Then p̌y(t) = t2 + (10y +
4)t + (−1 − 2y − y2). We get

H(y) =
[

2 −10y − 4
−10y − 4 102y2 + 84y + 18

]
.

Factoring as in (4.6) we find that

Q(y) =
[√

2 −2
√
2 − 5

√
2y

0
√
10(1 + y 11+3i

5 )

]
.

Then

M(y) = Q(y)C(y)Q(y)−1 =
[ −5y − 2

√
5(1 + y

5 (11 − 3i))√
5(1 + y

5 (11 + 3i)) −5y − 2

]
.

Ultimately, we find that

p(x, y) = det

(
I2 + x

[
2 −√

5
−√

5 2

]
+ y

[
5

√
5
5 (−11 + 3i)√

5
5 (−11 − 3i) 5

])
.

(4.8)

By the way, the polynomial p was constructed using A1 =
[
1 2
2 3

]
and A2 =

[
4 5
5 6

]
.

Before presenting a second proof of Theorem 4.1, we introduce a definition. Let p be a
real-zero polynomial of total degree d , p(0, 0) = 1, and let q be a real-zero polynomial of
total degree less than d , q(0, 0) > 0. We define

p̌x2(t) := td p(1/t, x2/t), q̌x2(t) := td−1q(1/t, x2/t),

and let, for x2 ∈ R, λ1(x2) ≤ · · · ≤ λd(x2) and μ1(x2) ≤ · · · ≤ μd−1(x2) be the zeros of
p̌x2 and of q̌x2 , respectively, counting multiplicities. We will say that q interlaces p if

λ1(x2) ≤ μ1(x2) ≤ λ2(x2) ≤ · · · ≤ λd−1(x2) ≤ μd−1(x2) ≤ λd(x2), (4.9)

for all x2 ∈ R. We will say that q strictly interlaces p if all the zeros of p̌x2 are simple and
strict inequalities hold in (4.9), for all x2 ∈ R.

As an example, let p be a real-zero polynomial of total degree d , p(0, 0) = 1, and let
(x01 , x02 ) belong to the connected component of (0, 0) in {(x1, x2) ∈ R

2 : p(x1, x2) > 0}. We
set p(x0, x1, x2) = xd

0 p(x1/x0, x2/x0) and define

q(x1, x2) = d

ds
p(1 + s, x1 + sx01 , x2 + sx02 )

∣∣∣∣
s=0

; (4.10)

q is called the Renegar derivative of p with respect to (x01 , x02 ) and it interlaces p; see Renegar
(2006), Netzer et al. (2010). The interlacing is strict if all the zeros of p̌x2 are simple for all
x2 ∈ R. Notice that for (x01 , x02 ) = (0, 0), we have simply q̌x2 = (

p̌x2

)′.

Second proof of Theorem 4.1. Weassume as in the first proof that p is a real-zero polynomial
of total degree d , p(0, 0) = 1, such that the polynomial p̌x2 has only simple zeros for all
x2 ∈ R. We choose a real-zero polynomial q of total degree less than d , q(0, 0) �= 0, that
strictly interlaces p. We let B(x2) be the Bezoutian of the polynomials q̌x2 and p̌x2 , namely
(see, e.g., Krein and Naimark 1936)

B(x2) = [bi j (x2)]i, j=0,...,d−1,

123



20 Multidim Syst Sign Process (2016) 27:1–26

where bi j (x2) are determined from

p̌x2(t)q̌x2(s) − q̌x2(t) p̌x2(s)

t − s
=

∑
i, j=0,...,d−1

bi j (x2)t
i s j . (4.11)

It is easily seen that bi j (x2) are polynomials (over Z) in the coefficients of p̌x2 and q̌x2 ,
hence polynomials in x2, i.e., B is a matrix polynomial. The defining equation (4.11) can be
conveniently rewritten as

vd−1(t)B(x2)vd−1(s)
� = p̌x2(t)q̌x2(s) − q̌x2(t) p̌x2(s)

t − s
, (4.12)

and taking the limit t → s,

vd−1(s)B(x2)vd−1(s)
� = (

p̌x2

)′
(s)q̌x2(s) − (

q̌x2

)′
(s) p̌x2(s), (4.13)

where

vd−1(t) = [
1 t · · · td−1

]
.

Since the zeros of p̌x2 and q̌x2 are real, simple, and alternate for real x2, we have that
B(x2) > 0, x2 ∈ R. Indeed,

V (x2)B(x2)V (x2)
� = diag

[(
p̌x2

)′
(λi (x2))q̌x2(λi (x2))

]
i=1,...,d

,

where V (x2) is the Vandermonde matrix (4.4) based at the zeros of p̌x2 . In addition, one has

C(x2)B(x2) = B(x2)C(x2)
� (4.14)

(where C(x2) is given by (4.2)), which can be verified by multiplying by V (x2) on the left
and by V (x2)� on the right and using (4.13).

By the positive-definiteness of B(x2) for all real x2, we may factor B(x2) as

B(x2) = P(x2)P(x2)
∗, x2 ∈ R, (4.15)

where P(x2) is a matrix polynomial and P(x2) is invertible for Im x2 ≥ 0 (Yakubovich 1970;
Rosenblum and Rovnyak 1985), and we let

M(x2) = P(x2)
−1C(x2)P(x2),

and obtain that

p̌x2(t) = det(t Id − M(x2)).

As in the first proof of the theorem, (4.14) and (4.15) imply that M(x2) = M(x2)∗, x2 ∈ R,
and that the rational matrix function M(x2) is regular at a zero a of P(x2), so that it is in fact
a matrix polynomial.5 It follows from Lemma 4.3 that M is linear:

M(x2) = −A1 − A2x2,

5 Alternatively, we can prove that a zero a of P(x2) is not a pole of M(x2) similarly to the proof of the claim
in the proof of Theorem 2.1. It is well known that det B(a) = 0 if and only if the polynomials p̌a and q̌a have
a common zero λ; let us assume that λ is a simple zero of both p̌a and q̌a , then it is also well known that
the left kernel of B(a) is spanned by vd−1(λ) (all these facts follow quite easily from (4.12)–(4.13)). Since
B(a) = P(a)P(ā)∗, and since vd−1(λ)C(a) = λvd−1(λ), it follows that the one-dimensional left kernel of
P(a) is the left eigenspace of C(a), implying as in the proof of Theorem 2.1 that a is not a pole of M(x2).

123



Multidim Syst Sign Process (2016) 27:1–26 21

where A1 and A2 are d × d Hermitian matrices, and then

p(x1, x2) = xd
1 p̌ x2

x1

( 1

x1

)
= det(Id + x1A1 + x2A2).


�
This second proof of Theorem 4.1 is of course constructive as well as soon as we choose a

strictly interlacing polynomial q , which can be the choice given in (4.10). When in Example
4.4 we choose q as in (4.10) with (x01 , x02 ) = (0, 0), we find that

B(y) =
(
18 + 84y + 102y2 4 + 10y

4 + 10y 2

)
,

and we ultimately obtain the same representation (4.8).
We notice also that the algebro-geometric proof of Theorem 4.1 given in Vinnikov (2012)

and in Plaumann and Vinzant (2013) also uses an interlacing polynomial q , and yields a
determinantal representation with

q(x1, x2) = c adj(I + x1A1 + x2A2) c∗,

where adj denotes the classical adjoint or adjugate matrix (the matrix of cofactors) and
c ∈ C

1×d . It would be interesting to see whether this relation holds for the determinantal
representation constructed in the second proof of Theorem 4.1 above (meaning that the two
constructions are essentially equivalent, despite using quite different methods).

Remark 4.5 Note that for d = 2we can always convert a representation p(x1, x2) = det(I2+
x1A1+x2A2)with A1 and A2 Hermitian, to onewith real symmetric A1 and A2. Indeed, write
A1 = U DU∗, with U unitary and D diagonal, and consider U∗ A2U which has a complex

(1, 2) entry with, say, argument θ . Then letting V =
[
1 0
0 eiθ

]
and Â1 = D = V DV ∗, Â2 =

V U∗ A2U V ∗ ∈ R
2×2, we obtain p(x1, x2) = det(I2 + x Â1 + x2 Â2), as desired.

Remark 4.6 (See Ramana and Goldman (1995, Section 1.4) and Netzer and Thom (2012,
Lemma 2.14)) From the representation as in Theorem 4.1, we may represent p(x1, x2)2 as

p(x1, x2)
2 = det(I2d + x1α1 + x2α2), (4.16)

where α1 = α�
1 , α2 = α�

2 ∈ R
2d×2d . Indeed, with A1 and A2 as in Theorem 4.1, we write

A1 = A1R + i A1I , A2 = A2R + i A2I ,

where A1R, A2R, A1I , A2I ∈ R
d×d . It is easy to check that since A1 and A2 are Hermitian,

A1R , A2R are symmetric and A1I , A2I are skew-symmetric. Let now

α1 =
[

A1R A1I

−A1I A1R

]
, α2 =

[
A2R A2I

−A2I A2R

]
,

and (4.16) follows. Indeed, using

U = 1√
2

[
Id Id

i Id −i Id

]
,

it is easy to check that

U

[
A1 0
0 A�

1

]
U∗ = α1, U

[
A2 0
0 A�

2

]
U∗ = α2.
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5 Conclusions

The paper gives a detailed analysis of certain determinantal representations of bivariate
polynomials and can be divided into two parts, the relation between which is of special
interest.

The first and main part deals with polynomials p(z1, z2) stable with respect to the unit
bidisk and normalized by p(0, 0) = 1. For every such polynomial of bidegree (n1, n2) we
construct a determinantal representation of the form

p(z1, z2) = det(I − K Z),

where Z is an (n1 + n2) × (n1 + n2) diagonal matrix with coordinate variables z1, z2
on the diagonal and K is a contraction. This representation is an important certificate of
stability, it was first established by Kummert, see Kummert (1989, Theorem 1), in the case of
scattering Schur polynomials. Our method employs a polynomial factorization technique for
an appropriately formed stable Bezoutian matrix in one variable. We pay separate attention
to the case of self-reversive polynomials—such polynomials are parameterized by unitary
representation matrices K . A constructive approach to build a unitary representation matrix
is outlined and illustrated.

The second part of the paper dealswith real-zero polynomials andHermitian determinantal
representations. It was shown in Hanselka (in preparation, Theorem 2.2) that every real-zero
polynomial p with p(0, 0) = 1 may be represented as

p(x1, x2) = det(I + x1A1 + x2A2),

where A1, A2 ∈ R
d×d are symmetric matrices and d is the total degree of p. In the homoge-

neous setting of hyperbolic polynomials this statement was known as the Lax conjecture, see
Lancaster and Tismenetsky (1985). A somewhat weaker statement—namely, the existence of
the preceding representation where now A1, A2 ∈ C

d×d are Hermitian matrices—has been
established recently in Speyer (2005, Section 5) and Plaumann et al. (2011). We provide
a new approach to this problem based on the factorization of matrix-valued polynomials
parallel to the one employed in the first part of the paper. Two closely related proofs of the
Hermitian case are given. Each is constructive and can be numerically implemented using a
semi-definite programming package.
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