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Abstract In this paper, a new structure and design method are proposed for variable
fractional-delay (VFD) 2-D FIR digital filters. Basing on the Taylor series expansion of
the desired frequency response, a prefilter–subfilter cascaded structure can be derived. For
the 1-D differentiating prefilters and the 2-D quadrantally symmetric subfilters, they can be
designed simply by the least-squares method. Design examples show that the required num-
ber of independent coefficients of the proposed system is much less than that of the existing
structure while the performance of the designed VFD 2-D filters is still better under the cost
of larger delays.

Keywords Farrow structure · Variable fractional-delay filter · 2-D FIR filter ·
Least-squares method · 2-D quadrantally symmetric filter · Prefilter

1 Introduction

VFD digital filters belong to the branch of variable digital filters which are applied to where
frequency characteristics need to be adjusted online without redesigning the system. For the
past decade, several works have been proposed for the design of variable digital filters (Shyu
et al. 2009a,b, 2010; Deng 1998a,b, 2001, 2003, 2005, 2007a,b, 2010; Deng et al. 2003; Deng
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and Soma 1995a,b; Zarour and Fahmy 1989; Farrow 1998; Laakso et al. 1996; Lu and Deng
1999; Tseng 2002a,b, 2003; Johansson and Löwenborg 2003; Deng and Lian 2006; Zhao and
Yu 2006; Tsui et al. 2007; Kwan and Jiang 2009; Pei and Lin 2009; Tseng and Lee 2010; Deng
and Lu 2000) due to their wide applications in signal processing and communication systems.
By the function, they are generally classified into two main categories. One is the filters with
variable magnitude characteristics such as cutoff frequencies or magnitude responses (Deng
1998a,b, 2001, 2003, 2005; Deng and Soma 1995a,b; Zarour and Fahmy 1989; Deng et al.
2003; Shyu et al. 2009b), and the other is the filters with variable fractional delay (Shyu et
al. 2009a, 2010; Farrow 1998; Laakso et al. 1996; Lu and Deng 1999; Tseng 2002a,b, 2003;
Johansson and Löwenborg 2003; Deng and Lian 2006; Zhao and Yu 2006; Deng 2007a,b,
2010; Tsui et al. 2007; Kwan and Jiang 2009; Pei and Lin 2009; Tseng and Lee 2010; Deng
and Lu 2000).

In this paper, the design of VFD 2-D FIR digital filters will be investigated. Conventionally,
the transfer function of a variable fractional-delay (VFD) 2-D FIR digital filter is given by

Hc (z1, z2, p1, p2) =
N1∑

n1=0

N2∑

n2=0

hn1n2 (p1, p2)z
−n1
1 z−n2

2 (1)

where

hn1n2 (p1, p2) =
M∑

m1=0

M∑

m2=0

h (n1, n2, m1, m2)pm1
1 pm2

2 . (2)

Hence, (1) can be represented by

Hc (z1, z2, p1, p2) =
M∑

m1=0

M∑

m2=0

Ĝm1m2 (z1, z2)pm1
1 pm2

2 (3)

where the 2-D subfilters

Ĝm1m2 (z1, z2) =
N1∑

n1=0

N2∑

n2=0

h (n1, n2, m1, m2)z
−n1
1 z−n2

2 , (4)

and the system can be implemented by a 2-D Farrow structure as in Fig. 1 (Shyu et al. 2009a).
Comparing with the conventional 2-D Farrow structure presented recently in (Shyu et

al. 2009a), a prefilter–subfilter cascaded structure is proposed in this paper. The structure
is developed based on the Taylor series expansion of the desired frequency response. In
(Shyu et al. 2009a), there are four types of 2-D quadrantally symmetric/antisymmetric filters
(Pei and Shyu 1995; Zhao and Lai 2011) to be designed. But, only two 1-D differentiating
prefilters and one type of 2-D quadrantally symmetric subfilters are needed to be designed in
the proposed structure. By the proposed experiments in this paper, it will be shown that the
required number of independent coefficients of the designed system is much less than that
in (Shyu et al. 2009a) while the performance of the designed filters is still better than that in
(Shyu et al. 2009a) under the cost of larger delays.

This paper is organized as follows. In Sect. 2, the proposed prefilter–subfilter cascaded
structure is derived from the Taylor series expansion of the desired frequency response. And
the design of the mentioned prefilters and subfilters for even M is presented in Sect. 3. For
simplicity, the general least-squares method (Shyu et al. 2009a, 2010; Zhao and Lai 2011,
2012) is applied, and design examples will be presented to demonstrate the effectiveness of
the presented method. As to the design of VFD 2-D FIR digital filters for odd M , it is shown
in Sect. 4 accompanying also a design example. Finally, the conclusions are given in Sect. 5.
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Fig. 1 The conventional structure for a VFD 2-D FIR digital filter. (M = 5)

2 The proposed structure

For designing a VFD 2-D FIR filter, the desired frequency response is given by

Hd (ω1, ω2, p1, p2) = M (ω1, ω2) e− j[ω1(I1+p1)+ω2(I2+p2)] (5)

where M (ω1, ω2) is the desired magnitude response, I1 and I2 are the prescribed group-
delays with respect to ω1 and ω2-axis, respectively, and p1, p2 ∈ [−0.5, 0.5] .For simplicity,
only quadrantally symmetric magnitude response M (ω1, ω2) is considered in this paper. By
Taylor series expansion,
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e− j(ω1 p1+ω2 p2) =
∞∑

m1=0

(− jω1 p1)
m1

m1! ·
∞∑

m2=0

(− jω2 p2)
m2

m2!

≈
M∑

m1=0

(− jω1 p1)
m1

m1! ·
M∑

m2=0

(− jω2 p2)
m2

m2! (6)

for sufficiently large M . In this paper, the case for odd M is considered first, and the case for
even M will be discussed in Sect. 4. Let M = 2M̂ + 1, then (6) becomes

e− j(ω1 p1+ω2 p2) ≈
⎡

⎣
M̂∑

m1=0

(−1)m1
(ω1 p1)

2m1

(2m1)! + (− jω1) p1

M̂∑

m1=0

(−1)m1

2m1 + 1

(ω1 p1)
2m1

(2m1)!

⎤

⎦

×
⎡

⎣
M̂∑

m2=0

(−1)m2
(ω2 p2)

2m2

(2m2)! + (− jω2) p2

M̂∑

m2=0

(−1)m2

2m2 + 1

(ω2 p2)
2m2

(2m2)!

⎤

⎦

=
M̂∑

m1=0

M̂∑

m2=0

(−1)m1+m2
(ω1 p1)

2m1 (ω2 p2)
2m2

(2m1)! (2m2)!

+ (− jω1) p1

M̂∑

m1=0

M̂∑

m2=0

(−1)m1+m2

2m1 + 1

(ω1 p1)
2m1 (ω2 p2)

2m2

(2m1)! (2m2)!

+ (− jω2) p2

M̂∑

m1=0

M̂∑

m2=0

(−1)m1+m2

2m2 + 1

(ω1 p1)
2m1 (ω2 p2)

2m2

(2m1)! (2m2)!

+ (− jω1) (− jω2) p1 p2

M̂∑

m1=0

M̂∑

m2=0

(−1)m1+m2

(2m1 + 1) (2m2 + 1)

(ω1 p1)
2m1 (ω2 p2)

2m2

(2m1)! (2m2)!
(7)

By (5) and (7), the applied transfer function of the VFD 2-D FIR filter in this section is
represented by

H (z1, z2, p1, p2) = z
− Nd1

2
1 z

− Nd2
2

2

M̂∑

m1=0

M̂∑

m2=0

G2m1,2m2 (z1, z2)p2m1
1 p2m2

2

+z
− Nd2

2
2 D1 (z1)

M̂∑

m1=0

M̂∑

m2=0

1

2m1 + 1
G2m1,2m2 (z1, z2)p2m1+1

1 p2m2
2

+z
− Nd1

2
1 D2 (z2)

M̂∑

m1=0

M̂∑

m2=0

1

2m2 + 1
G2m1,2m2 (z1, z2)p2m1

1 p2m2+1
2

+D1 (z1) D2 (z2)

M̂∑

m1=0

M̂∑

m2=0

1

(2m1 + 1) (2m2 + 1)
G2m1,2m2

× (z1, z2) p2m1+1
1 p2m2+1

2 (8)
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Fig. 2 The proposed structure of a VFD 2-D FIR digital filter. (M = 5)

and the proposed structure is shown in Fig. 2. In (8), the quadrantally symmetric subfilters
G2m1,2m2 (z1, z2) are characterized by

G2m1,2m2 (z1, z2) =
Ng∑

n1=0

Ng∑

n2=0

gm1m2 (n1, n2)z
−n1
1 z−n2

2 (9)

where Ng is assumed to be even while the Type III linear-phase prefilters Di (zi ), i = 1, 2,

are characterized by

Di (zi ) =
Ndi∑

n=0

di (n) z−n
i , Ndi : even, i = 1, 2. (10)

After some algebraic operations, the frequency response of (8) can be represented by

H
(

e jω1 , e jω2 , p1, p2

)
= e

− j
(

Nd1
2 + Ng

2

)
ω1 e

− j
(

Nd2
2 + Ng

2

)
ω2 Ĥ (ω1, ω2, p1, p2) (11)

123



516 Multidim Syst Sign Process (2014) 25:511–529

where

Ĥ (ω1, ω2, p1, p2) =
M̂∑

m1=0

M̂∑

m2=0

Ĝ2m1,2m2 (ω1, ω2)p2m1
1 p2m2

2

+ j D̂1 (ω1)

M̂∑

m1=0

M̂∑

m2=0

1

2m1 + 1
Ĝ2m1,2m2 (ω1, ω2)p2m1+1

1 p2m2
2

+ j D̂2 (ω2)

M̂∑

m1=0

M̂∑

m2=0

1

2m2 + 1
Ĝ2m1,2m2 (ω1, ω2)p2m1

1 p2m2+1
2

− D̂1 (ω1) D̂2 (ω2)

M̂∑

m1=0

M̂∑

m2=0

1

(2m1 + 1) (2m2 + 1)

×Ĝ2m1,2m2 (ω1, ω2) p2m1+1
1 p2m2+1

2 , (12a)

Ĝ2m1,2m2 (ω1, ω2) =
Ng
2∑

n1=0

Ng
2∑

n2=0

ĝm1m2 (n1, n2) cos (n1ω1) cos (n2ω2) , (12b)

D̂i (ωi ) =
Ndi

2∑

n=1

d̂i (n) sin (nωi ), i = 1, 2, (12c)

ĝm1m2 (n1, n2) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

gm1m2

(
Ng
2 ,

Ng
2

)
, n1 = n2 = 0,

2gm1m2

(
Ng
2 − n1,

Ng
2

)
, 1 ≤ n1 ≤ Ng

2 , n2 = 0,

2gm1m2

(
Ng
2 ,

Ng
2 − n2

)
, n1 = 0, 1 ≤ n2 ≤ Ng

2 ,

4gm1m2

(
Ng
2 − n1,

Ng
2 − n2

)
, 1 ≤ n1, n2 ≤ Ng

2 ,

(12d)

d̂i (n) = 2di

(
Ndi

2
− n

)
, i = 1, 2. (12e)

Obviously, the integers I1 and I2 in (5) can be set as Ii = Ndi
2 + Ng

2 , i = 1, 2.

3 Design of 2-D VFD FIR digital filters with odd M

In this paper, we first deal with the design of the prefilters D1 (z1) and D2 (z2), and then these
prefilters will be applied for the design of the subfilters G2m1,2m2 (z1, z2). Design examples
will be given to demonstrate the effectiveness of the presented method.

3.1 Design of the prefilters D1 (z1) and D2 (z2)

By (7) and (8), the prefilters D1 (z1) and D2 (z2) are used as differentiators with magni-
tudes −ω1 and −ω2, respectively, and their specifications depend on the magnitude response
M (ω1, ω2) in (5). For example, when the designed filter is an elliptically low-pass VFD filter
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with

M (ω1, ω2) =

⎧
⎪⎨

⎪⎩

1,
ω2

1
ω2

p1
+ ω2

2
ω2

p2
≤ 1,

0,
ω2

1
ω2

s1
+ ω2

2
ω2

s2
≥ 1,

(13)

the prefilters D1 (z1) and D2 (z2) are designed with passband edges ωp1 and ωp2, respectively,
while their stopband edges are ωs1 and ωs2, respectively.

Defining

di =
[

d̂i (1) , d̂i (2) , . . . , d̂i

(
Ndi

2

)]T

, (14a)

si (ωi ) =
[

sin (ωi ) , sin (2ωi ) , . . . , sin

(
Ndi

2
ωi

)]T

, (14b)

the magnitude responses D̂i (ωi ) of the prefilters can be represented by

D̂i (ωi ) = dT
i si (ωi ) , i = 1, 2 (15)

where the superscript T denotes a transpose operator. Hence, the objective error functions
for designing the prefilters in least-squares sense can be defined by

e (di ) =
ωpi∫

0

[
−ωi − D̂i (ωi )

]2
dωi +

π∫

ωsi

[
D̂i (ωi )

]2
dωi

= ui + rT
i di + dT

i Qi di (16)

where

ui =
ωpi∫

0

ω2
i dωi = ω2

pi

3
, (17a)

ri = 2

ωpi∫

0

ωi si (ωi ) dωi , (17b)

Qi =
ωpi∫

0

si (ωi ) sT
i (ωi ) dωi +

π∫

ωsi

si (ωi ) sT
i (ωi ) dωi , (17c)

and the solutions are

di = −1

2
Q−1

i ri , i = 1, 2. (18)
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3.2 Design of the subfilters G2m1,2m2 (z1, z2)

Similarly, by defining

g =
[

ĝ00 (0, 0) , . . . , ĝ00

(
Ng

2
,

Ng

2

)
, . . . , ĝM̂ M̂ (0, 0) , . . . ,

ĝM̂ M̂

(
Ng

2
,

Ng

2

)]T

, (19a)

cee =
[

1, . . . , cos

(
Ng

2
ω1

)
cos

(
Ng

2
ω2

)
, . . . , p2M̂

1 p2M̂
2 , . . . ,

p2M̂
1 p2M̂

2 cos

(
Ng

2
ω1

)
cos

(
Ng

2
ω2

)]T

, (19b)

coe =
[

p1, . . . , p1 cos

(
Ng

2
ω1

)
cos

(
Ng

2
ω2

)
, . . . ,

1

M
pM

1 p2M̂
2 , . . . ,

1

M
pM

1 p2M̂
2 cos

(
Ng

2
ω1

)
cos

(
Ng

2
ω2

)]T

, (19c)

ceo =
[

p2, . . . , p2 cos

(
Ng

2
ω1

)
cos

(
Ng

2
ω2

)
, . . . ,

1

M
p2M̂

1 pM
2 , . . . ,

1

M
p2M̂

1 pM
2 cos

(
Ng

2
ω1

)
cos

(
Ng

2
ω2

)]T

, (19d)

coo =
[

p1 p2, . . . , p1 p2 cos

(
Ng

2
ω1

)
cos

(
Ng

2
ω2

)
, . . . ,

1

M2 pM
1 pM

2 , . . . ,

1

M2 pM
1 pM

2 cos

(
Ng

2
ω1

)
cos

(
Ng

2
ω2

)]T

, (19e)

(12a) can be represented by

Ĥ (ω1, ω2, p1, p2) = gT cee + j D̂1 (ω1) gT coe + j D̂2 (ω2) gT ceo

−D̂1 (ω1) D̂2 (ω2) gT coo. (20)

Therefore, the objective error function for designing the subfilters G2m1,2m2 (z1, z2) can be
defined by

e (g) =
∫

R

∣∣∣Hd (ω1, ω2, p1, p2) − H
(

e jω1 , e jω2 , p1, p2

)∣∣∣
2

dv

=
∫

R

∣∣∣M (ω1, ω2) e− j(ω1 p1+ω2 p2) − Ĥ (ω1, ω2, p1, p2)

∣∣∣
2

dv

=
∫

R

∣∣∣M (ω1, ω2) cos (ω1 p1 + ω2 p2) − gT cee + D̂1 (ω1) D̂2 (ω2) gT coo

∣∣∣
2

dv

+
∫

R

∣∣∣−M (ω1, ω2) sin (ω1 p1 + ω2 p2) − D̂1 (ω1) gT coe − D̂2 (ω2) gT ceo

∣∣∣
2

dv

= u + rT g + gT Qg (21)
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where
∫

R

�=
∫∫

Rp

∫∫

Rω

, (22a)

dv
�= dω1dω2dp1dp2, (22b)

R = Rp ∪ Rω = {−0.5 ≤ p1, p2 ≤ 0.5} ∪ {(ω1, ω2)

∈ passbands or (ω1, ω2) ∈ stopbands} (22c)

and

u =
∫

R

|M (ω1, ω2) cos (ω1 p1 + ω2 p2)|2 dv +
∫

R

|M (ω1, ω2) sin (ω1 p1 + ω2 p2)|2 dv

=
∫

R

|M (ω1, ω2)|2 dv

=
∫∫

Rω

|M (ω1, ω2)|2 dω1dω2, (23a)

r = −2
∫

R

M (ω1, ω2) cos (ω1 p1 + ω2 p2)
[
cee − D̂1 (ω1) D̂2 (ω2) coo

]
dv

+ 2
∫

R

M (ω1, ω2) sin (ω1 p1 + ω2 p2)
[

D̂1 (ω1) coe + D̂2 (ω2) ceo

]
dv, (23b)

Q =
∫

R

[
cee − D̂1 (ω1) D̂2 (ω2) coo

] [
cee − D̂1 (ω1) D̂2 (ω2) coo

]T
dv

+
∫

R

[
D̂1 (ω1) coe + D̂2 (ω2) ceo

] [
D̂1 (ω1) coe + D̂2 (ω2) ceo

]T
dv. (23c)

The least-squares solution can be obtained by differentiating (21) with respect to the
coefficient vector g and setting the result to zero, which yields

g = −1

2
Q−1r. (24)

3.3 Design examples

In this subsection, design example is presented and the results are compared with those of
the conventional method (Shyu et al. 2009a). To evaluate the performance, several measured
criterions are defined as below:

εm,rms =
[∫

R

∣∣Hd (ω1, ω2, p1, p2) − H
(
e jω1 , e jω2 , p1, p2

)∣∣2
dv

∫
R |Hd (ω1, ω2, p1, p2)|2 dv

]1/2

× 100 %,(25a)

εmp = max
{∣∣∣Hd (ω1, ω2, p1, p2) − H

(
e jω1 , e jω2 , p1, p2

)∣∣∣ ,

(ω1, ω2) ∈ passbands,−0.5 ≤ p1, p2 ≤ 0.5

}
(25b)
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εms = max
{∣∣∣Hd (ω1, ω2, p1, p2) − H

(
e jω1 , e jω2 , p1, p2

)∣∣∣ ,

(ω1, ω2) ∈ stopbands,−0.5 ≤ p1, p2 ≤ 0.5

}
(25c)

ετ1,rms =
[∫

R |τd1 (ω1, ω2, p1, p2) − τ1 (ω1, ω2, p1, p2)|2 dv
∫

R p2
1dv

]1/2

× 100 %, (25d)

ετ2,rms =
[∫

R |τd2 (ω1, ω2, p1, p2) − τ2 (ω1, ω2, p1, p2)|2 dv
∫

R p2
2dv

]1/2

× 100 %, (25e)

ετ1 = max {|τd1 (ω1, ω2, p1, p2) − τ1 (ω1, ω2, p1, p2)| (ω1, ω2)

∈ passbands,−0.5 ≤ p1, p2 ≤ 0.5} , (25f)

ετ2 = max {|τd2 (ω1, ω2, p1, p2) − τ2 (ω1, ω2, p1, p2)| (ω1, ω2)

∈ passbands,−0.5 ≤ p1, p2 ≤ 0.5} (25g)

where τdi (ω1, ω2, p1, p2) and τi (ω1, ω2, p1, p2) denote the desired and actual group delays,
respectively, with respect to ωi -direction, i = 1, 2. Meanwhile, the numbers of independent
coefficients are also taken into account for comparison, which are computed as below:

Proposed method (including scale factors):

Nd +
(

Ng

2
+ 1

)2 (
M̂ + 1

)2 + 4M̂ + 3M̂2 (26a)

Conventional method (Shyu et al. 2009a):
(

N

2
+ 1

)2

(Mc + 1)2 +
(

N

2

)2

M2
s + 2

(
N

2
+ 1

)
N

2
(Mc + 1) Ms (26b)

where

{
Mc = Ms = M

2 , for even M,

Mc + 1 = Ms = M+1
2 , for odd M.

(27)

To compute the errors in (25), the frequencies ω1 and ω2 are uniformly sampled at step size
π/100, and the variable parameters p1 and p2 are uniformly sampled at step size 1/50.

Example 1 In this example, an elliptically symmetric low-pass VFD FIR filter is designed
and the desired magnitude response has been given in (13). When ωp1 = 0.45π, ωp2 =
0.6π, ωs1 = 0.7π, ωs2 = 0.85π, Nd1 = Nd2 = 30, Ng = 20, M = 5, the obtained
magnitude responses for (p1, p2) = (0, 0), (0.25, 0.25), (0.5, 0.5), (0.5,−0.5) are shown
in Fig. 3a, the group-delay responses at (p1, p2) = (0.25, 0.25) and (0.5,−0.5) are shown
in Fig. 3b, c, while the variable group-delay responses and magnitude responses for both
ω2 = 0, p2 = 0 and ω1 = 0, p1 = 0 are shown in Fig. 3d, e, respectively. The errors
defined in (25) are tabulated in Table 1, accompanying those of the conventional method
with N = 20.
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Fig. 3 Design of an elliptically symmetric low-pass VFD FIR filter. a Magnitude responses at (p1, p2) =
(0, 0), (0.25, 0.25), (0.5, 0.5), (0.5,−0.5). b ω1-directional and ω2-directional group-delay responses in the
passband at (p1, p2) = (0.25, 0.25). c ω1-directional and ω2-directional group-delay responses in the pass-
band at (p1, p2) = (0.5, −0.5). d Variable group-delay response in the passband and magnitude response at
ω2 = 0, p2 = 0. e Variable group-delay response in the passband and magnitude response at ω1 = 0, p1 = 0

123



522 Multidim Syst Sign Process (2014) 25:511–529

Fig. 3 continued

4 Design of 2-D VFD FIR digital filters with even M

For even M in (6), let M = 2M̂ then

e− j(ω1 p1+ω2 p2) ≈
⎡

⎣
M̂∑

m1=0

(−1)m1
(ω1 p1)

2m1

(2m1)! + (− jω1) p1

M̂−1∑

m1=0

(−1)m1

2m1 + 1

(ω1 p1)
2m1

(2m1)!

⎤

⎦
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Table 1 Comparisons for the proposed method and the conventional method (Shyu et al. 2009a)

Example Example 1 Example 2
Method Proposed Conventional Proposed Conventional

Filter order Nd1 = Nd2 = 30 N = 20 Nd1 = Nd2 = 30 N = 16

Ng = 20 Ng = 16

Number of
independent
coefficients

1,139 3,969 768 1,849

Average delays ω1-direction:25 ω1-direction:10 ω1-direction:23 ω1-direction:8

ω1-direction:25 ω1-direction:10 ω1-direction:23 ω1-direction:8

εm,rms (%) 0.21486344 0.24878285 0.67991394 0.7187766

εmp 0.01013381 0.01140162 0.02642647 0.02685282

εms 0.00844768 0.00992308 0.02541064 0.02507116

ετ1,rms (%) 0.00141645 0.02759631 0.00529623 0.08887992

ετ2,rms (%) 0.00241521 0.05946121 0.00529623 0.08887992

ετ1 0.03280007 0.09599047 0.03507453 0.09010251

ετ2 0.03488614 0.12677654 0.03507453 0.09010251

×
⎡

⎣
M̂∑

m2=0

(−1)m2
(ω2 p2)

2m2

(2m2)! + (− jω2) p2

M̂−1∑

m2=0

(−1)m2

2m2 + 1

(ω2 p2)
2m2

(2m2)!

⎤

⎦

=
M̂∑

m1=0

M̂∑

m2=0

(−1)m1+m2
(ω1 p1)

2m1 (ω2 p2)
2m2

(2m1)! (2m2)!

+ (− jω1) p1

M̂−1∑

m1=0

M̂∑

m2=0

(−1)m1+m2

2m1 + 1

(ω1 p1)
2m1 (ω2 p2)

2m2

(2m1)! (2m2)!

+ (− jω2) p2

M̂∑

m1=0

M̂−1∑

m2=0

(−1)m1+m2

2m2 + 1

(ω1 p1)
2m1 (ω2 p2)

2m2

(2m1)! (2m2)!

+ (− jω1) (− jω2) p1 p2

M̂−1∑

m1=0

M̂−1∑

m2=0

(−1)m1+m2

(2m1 + 1) (2m2 + 1)

(ω1 p1)
2m1 (ω2 p2)

2m2

(2m1)! (2m2)!
(28)

Hence, the applied transfer function in this section is represented by

H (z1, z2, p1, p2) = z
− Nd1

2
1 z

− Nd2
2

2

M̂∑

m1=0

M̂∑

m2=0

G2m1,2m2 (z1, z2) p2m1
1 p2m2

2

+ z
− Nd2

2
2 D1 (z1)

M̂−1∑

m1=0

M̂∑

m2=0

1

2m1 + 1
G2m1,2m2 (z1, z2) p2m1+1

1 p2m2
2
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Fig. 4 Design of a circularly symmetric low-pass VFD FIR filter. a Magnitude responses at (p1, p2) =
(0, 0), (0.25, 0.25), (0.5, 0.5), (0.5,−0.5). b ω1-directional and ω2-directional group-delay responses in the
passband at (p1, p2) = (0.25, 0.25). c ω1-directional and ω2-directional group-delay responses in the pass-
band at (p1, p2) = (0.5, −0.5). d Variable group-delay response in the passband and magnitude response at
ω2 = 0, p2 = 0. e Variable group-delay response in the passband and magnitude response at ω1 = 0, p1 = 0
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Fig. 4 continued

+ z
− Nd1

2
1 D2 (z2)

M̂∑

m1=0

M̂−1∑

m2=0

1

2m2 + 1
G2m1,2m2 (z1, z2) p2m1

1 p2m1+1
2

+ D1 (z1) D2 (z2) ×
M̂−1∑

m1=0

M̂−1∑

m2=0

1

(2m1 + 1) (2m2 + 1)

×G2m1,2m2 (z1, z2) p2m1+1
1 p2m1+1

2 (29)

123



526 Multidim Syst Sign Process (2014) 25:511–529

where G2m1,2m2(z1, z2) and Di (zi ), i = 1, 2 have been characterized in (9) and (10), respec-
tively, and the frequency response of (29) is

H
(

e jω1 , e jω2 , p1, p2

)
= e

− j
(

Nd1
2 + Ng

2

)
ω1 e

− j
(

Nd2
2 + Ng

2

)
ω2 Ĥ (ω1, ω2, p1, p2) (30)

where

Ĥ (ω1, ω2, p1, p2) =
M̂∑

m1=0

M̂∑

m2=0

Ĝ2m1,2m2 (ω1, ω2) p2m1
1 p2m2

2

+ j D̂1 (ω1)

M̂−1∑

m1=0

M̂∑

m2=0

1

2m1 + 1
Ĝ2m1,2m2 (ω1, ω2) p2m1+1

1 p2m2
2

+ j D̂2 (ω2)

M̂∑

m1=0

M̂−1∑

m2=0

1

2m2 + 1
Ĝ2m1,2m2 (ω1, ω2)p2m1

1 p2m2+1
2

− D̂1 (ω1) D̂2 (ω2)

M̂−1∑

m1=0

M̂−1∑

m2=0

1

(2m1 + 1) (2m2 + 1)

×Ĝ2m1,2m2 (ω1, ω2) p2m1+1
1 p2m2+1

2 (31)

in which Ĝ2m1,2m2 (ω1, ω2) and D̂i (ωi ), i = 1, 2 are the same as (12b) and (12c), respec-
tively. So, the technique in Sect. 3 can also be applied to the design of 2-D VFD FIR filters
with even M .

Example 2 This example will deal with the design of a circularly symmetric low-pass
VFD FIR filter whose magnitude response is shown in (13) with ωp1 = ωp2 = ωp and
ωs1 =ωs2 =ωs . Figure 4a presents the obtained magnitude responses for (p1, p2)= (0, 0),

(0.25, 0.25), (0.5, 0.5), (0.5,−0.5) if Nd1 = Nd2 = 30, Ng = 16, M = 4, ωp = 0.5π,

ωs = 0.75π are used, Fig. 4b, c present the group-delay responses at (p1, p2) = (0.25, 0.25)

and (0.5,−0.5), and Fig. 4d, e present the variable group-delay responses and magnitude
responses for ω2 = 0, p2 = 0 and ω1 = 0, p1 = 0, respectively. The error defined in (25)
are also tabulated in Table 1, accompanying those of the conventional method with N = 16,
M = 4.

5 Conclusions

In this paper, a prefilter–subfilter cascaded structure for the design of VFD 2-D FIR digital
filters has been proposed, which is derived basing on the Taylor series expansion of the
desired frequency response. By the specified relationships among the presented structure, it
has been shown that the required number of independent coefficients is much less than that
of the existing structure, while the performance of the designed filters is still better. Design
examples have been presented to demonstrate the effectiveness of the presented method.
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