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Abstract This paper is concerned with the problem of global asymptotic stability of a class
of nonlinear uncertain two-dimensional (2-D) discrete systems described by the Fornasini-
Marchesini second local state-space model with time-varying state delays. The class of
systems under investigation involves norm bounded parameter uncertainties, interval-like
time-varying delays and various combinations of quantisation and overflow nonlinearities. A
linear matrix inequality-based delay-dependent criterion for the global asymptotic stability of
such systems is proposed. An example is given to illustrate the effectiveness of the proposed
method.

Keywords Delayed system · Linear matrix inequality · Lyapunov stability ·
Nonlinear system · Two-dimensional system · Uncertain system

1 Introduction

Many physical systems or processes have natural multidimensional characteristics (Paszke
et al. 2004). The most investigated systems are two-dimensional (2-D) systems due to their
extensive applications in many areas such as geophysics, projective radiography (Mitra and
Ekstrom 1978), image data processing and transmission (Bracewell 1995), thermal processes
in chemical reactors, 2-D digital control systems (Kaczorek 1985), river pollution modeling
(Fornasini 1991), grid based wireless sensor networks (Dewasurendra and Bauer 2008) and
process of gas filtration (Bors and Walczak 2012).

Parametric uncertainties, which are intrinsic features of many physical systems, may
lead to instability and poor performance of the system. Such uncertainties may arise due
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to the modeling errors, variations in system parameters and some ignored factors. Several
publications relating to the stability of uncertain 2-D discrete systems have appeared (Dey
and Kar 2011; Du and Xie 1999; Feng et al. 2010; Kar and Singh 2004; Lu 1994a, 1995;
Paszke et al. 2004, 2006; Singh 2005; Wang and Liu 2003).

Delay is often present in many physical, industrial and engineering systems as a con-
sequence of the finite capabilities of information processing and data transmission among
various parts of the systems (Mahmoud 2000; Malek-Zavarei and Jamshidi 1987). There are
many examples of practical 2-D systems containing inherent delays, such as discretisation
time in discrete models describing delayed lattice differential equation (Huang et al. 2004)
and partial difference equations (Chen and Fong 2006; Zhang and Tian 2004). The presence
of delay may cause instability in the designed system. The problem of stability analysis of
delayed systems has received much attention in past decades (Chen 2009, 2010a,b; Chen and
Fong 2006, 2007, 2010; Feng et al. 2010; He et al. 2008; Huang and Feng 2010; Kandanvli
and Kar 2010; Paszke et al. 2004, 2006; Peng and Guan 2009a; Peng and Guan, 2009b; Xu
and Yu 2006, 2009a,b). According to dependence of delay, the available stability criteria
for time-delay systems can be broadly classified into two categories: delay-independent and
delay-dependent. Delay-independent stability criteria can be applied to check the stability of
systems without knowing the sizes of the delays. On the other hand, delay-dependent stabil-
ity criteria utilize the information about the delays in the system. Delay-dependent methods
generally yield less conservative stability conditions (Chen 2010a,b; Chen and Fong 2007,
2010; Feng et al. 2010; He et al. 2008; Huang and Feng 2010; Kandanvli and Kar 2010;
Paszke et al. 2006; Xu and Yu 2009a,b).

While implementing recursive discrete systems with fixed-point arithmetic, the finite reg-
ister length of digital hardware or computer generates nonlinearities such as quantisation and
overflow. The presence of such nonlinearities may cause instability in the designed system.
The common types of overflow nonlinearities are saturation, zeroing, two’s complement and
triangular. Magnitude truncation, roundoff and value truncation are the frequently occurred
quantisation nonlinearities. If the total number of quantisation steps is large or, in other words,
the internal wordlength is sufficiently long, then it is usually assumed that quantisation and
overflow effects are decoupled or noninteracting. Under this decoupling assumption, several
researchers (Aboulnasr and Fahmy 1986; Aravena et al. 1990; Bauer and Jury 1990; Bose
and Trautman 1992) have investigated the effects of quantisation in 2-D discrete systems
without considering overflow effects, while others (Chen 2009, 2010a,b; Dey and Kar 2011;
Du and Xie 1999; El-Agizi and Fahmy 1979; Hinamoto 1997; Kar 2008, 2010, 2012; Kar and
Singh 1997, 1999, 2000, 2001b, 2005; Liu 1998; Liu and Michel 1994; Singh 2005; Tzafestas
et al. 1992; Wang and Liu 2003; Xiao and Hill 1996) have studied the overflow phenomenon
ignoring the effects of quantisation. However, the validity of decoupling assumption has also
been queried by several researchers (Johnson and Sandberg 1995; Sim and Pang 1985). Since
the practical discrete system operates in the simultaneous presence of both quantisation and
overflow nonlinearities, the study of stability of discrete systems involving both types of
nonlinearities is considered to be more realistic. A few publications have appeared on the
combined effects of quantisation and overflow nonlinearities for 2-D systems (Bose 1995;
Kar and Singh 2001a, 2004; Leclerc and Bauer 1994).

The design of a 2-D system so as to ensure the stability of the designed system is
an interesting and challenging problem. During the past few decades, the stability prop-
erties of 2-D discrete systems described by the Fornasini–Marchesini second local state-
space (FMSLSS) model (Fornasini and Marchesini 1978) have been studied extensively
(Bhaya et al. 2001; Chen 2009, 2010a; Chen and Fong 2006, 2007; Dey and Kar 2011; Du
and Xie 1999; Feng et al. 2010; Hinamoto 1993, 1997; Kar and Singh 1999, 2001a,b, 2004;
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Liu 1998; Lu 1994a,b, 1995; Ooba 2000; Peng and Guan 2009a; Peng and Guan, 2009b;
Singh 2005; Wang and Liu 2003; Xu et al. 2005; Xu and Yu 2009a,b). The problem of global
asymptotic stability of 2-D systems described by Roesser (1975) model has also received a
considerable attention (Anderson et al. 1986; Chen 2010b; El-Agizi and Fahmy 1979; Kar
2008, 2010, 2012; Kar and Singh 1997, 2000, 2005; Liu and Michel 1994; Tzafestas et al.
1992; Xiao and Hill 1996). The problem of robust stability and stabilisation of 2-D discrete
FMSLSS state-delayed systems has been studied in Paszke et al. (2004); Feng et al. (2010).
A 2-D filtering approach with H2/H∞ performance measure has been developed in Chen
and Fong (2006, 2007); Peng and Guan, (2009b); Xu et al. (2005); Xu and Yu (2009a).
The guaranteed cost control problem for 2-D discrete state-deayed systems in FMSLSS set-
ting has been considered in Xu and Yu (2009b). In Chen (2010a,b), the stability properties
of 2-D discrete systems with time-varying delays using saturation nonlinearities have been
investigated.

The stability analysis of 2-D discrete systems in the simultaneous presence of quantisation,
overflow, state delay, and parameter uncertainty in their physical models is an important
and realistic problem. Since the characterisation of the evolution of nonlinear uncertain
dynamical state-delayed systems as a deterministic set of state equations is a formidable
task, the stability analysis of such systems is generally difficult. To the best of authors’
knowledge, such problem has not been addressed so far in the literature.

This paper, therefore, deals with the problem of global asymptotic stability of a class of
uncertain 2-D discrete systems with time-varying state-delays under the influence of various
combinations of quantisation and overflow nonlinearities. Parametric uncertainties involved
in the system are assumed to be norm bounded. The paper is organized as follows. In Sect. 2,
we formulate the problem and recall some useful results. A linear matrix inequality (LMI)-
based delay-dependent criterion for the global asymptotic stability of uncertain 2-D discrete
systems described by the FMSLSS model with interval-like time-varying state-delays under
various combinations of quantisation and overflow nonlinearities is established in Sect. 3.
In Sect. 4, an example highlighting the usefulness of the proposed method is given. Finally,
conclusions are made in Sect. 5.

2 Problem formulation and preliminaries

The following notations are used throughout the paper:

Rn×n set of n × n real matrices
Rn set of n×1 real vectors
Z+ set of nonnegative integers
I identity matrix of appropriate dimension
0 null matrix or null vector of appropriate dimension
BT transpose of the matrix (or vector) B
B > 0 B is positive definite symmetric matrix
B ≥ 0 B is positive semidefinite symmetric matrix
B < 0 B is negative definite symmetric matrix
‖.‖ any vector or matrix norm
diag {a1, a2, . . . , an} diagonal matrix with diagonal elements a1, a2, . . . , an

max {v,w} maximum value of scalars v and w

O(·) overflow nonlinearities
Q(·) quantisation nonlinearities
f (·) composite nonlinear functions
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We consider a class of uncertain 2-D discrete systems with interval time-varying delays
described by the FMSLSS model under various combinations of quantisation and overflow
nonlinearities and for the situation where quantisation occurs after summation only. Specif-
ically, the system under consideration is given by

x(i + 1, j + 1) = O{Q(y(i, j))} = f (y(i, j))

= [ f1(y1(i, j)) f2(y2(i, j)) . . . fn(yn(i, j)) ]T , (1a)

y(i, j) = (A1 + �A1) x(i, j + 1) + (A2 + �A2) x(i + 1, j)

+(Ad1 + �Ad1) x(i − α (i), j + 1) + (Ad2 + �Ad2) x(i + 1, j − β( j))

= [ y1(i, j) y2(i, j) . . . yn(i, j) ]T , (1b)

where i ∈ Z+ and j ∈ Z+ are horizontal coordinate and vertical coordinate, respectively;
x(i, j) ∈ Rn is the local state vector; A1, A2, Ad1 , Ad2 are the known real constant n × n
matrices; �A1,�A2,�Ad1 ,�Ad2 are the unknown real n×n matrices representing paramet-
ric uncertainties in the state matrices; α(i) and β( j) are time-varying delays along horizontal
direction and vertical direction, respectively. It is assumed that (Chen 2010a,b; Feng et al.
2010)

αl ≤ α(i) ≤ αh, βl ≤ β( j) ≤ βh, (1c)

where αl and βl are constant nonnegative integers representing the lower delay bounds along
horizontal and vertical directions, respectively; αh and βh are constant nonnegative integers
representing the upper delay bounds along horizontal and vertical directions, respectively.

In the event of Q(·) being either magnitude truncation or roundoff, f (·) turn out to be
confined to the sector [ko, kq ], i.e.,

fk(0) = 0, ko y2
k (i, j) ≤ fk(yk(i, j))yk(i, j) ≤ kq y2

k (i, j), k = 1, 2, . . . , n, (2a)

where

kq =
{

1, for magnitude truncation
2, for roundoff

, ko =
⎧⎨
⎩

0, for zeroing or saturation
− 1

3 , for triangular
−1, for two′s complement

(2b)

The uncertainties are assumed to be of the form (Feng et al. 2010; Paszke et al. 2004)[
�A1 �A2 �Ad1 �Ad2

] = [
H F E1 H F E2 H F Ed1 H F Ed2

]
, (3a)

where H, E1, E2, Ed1 , Ed2 are known real constant matrices with appropriate dimensions
and F is an unknown real matrix satisfying

FT F ≤ I. (3b)

It is assumed (Xu and Yu 2009a,b) that system (1) has a finite set of initial conditions, i.e.,
there exist two positive integers K and L such that{

x(i, j) = 0, ∀i ≥ K , j = −βh, −βh + 1, . . . , 0,

x(i, j) = 0, ∀ j ≥ L , i = −αh, −αh + 1, . . . , 0.
(4)

Equations (1–4) represent a class of 2-D discrete uncertain state-delayed dynamical sys-
tems involving both quantisation and overflow nonlinearities. Examples of such systems are
common in engineering and include 2-D discrete systems implemented in a finite register
length, digital control systems with finite wordlength nonlinearities, models of various phys-
ical phenomena (e.g., compartmental systems, single carriageway traffic flow (Bhaya et al.
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2001) etc.), various dynamical processes represented by the Darboux equation (Foda and
Agathoklis 1992; Marszalek 1984; Tsai et al. 2002) and so on. A typical example of the sys-
tem represented by (1–4) can be found in wireless sensor networks (Dewasurendra and Bauer
2008), where the delays induced by information transmission (from one node to its immediate
neighbours) are actually time-varying. In such networks, the communication between nodes
with zero delay is not possible. Presently, embedded wireless sensor platforms typically use
8-bit or 16-bit fixed-point microprocessors for data processing inside each node. Thus, the
nonlinearities due to finite word length are inherently present in such systems.

The main objective of this paper is to develop a delay-dependent and LMI-based global
asymptotic stability criterion for system (1–4) using Lyapunov approach. Motivated by the
work of 1-D systems presented in He et al. (2008), in the proposed stability analysis, a new
2-D Lyapunov functional is employed. The forward difference of the Lyapunov functional
is tightly bounded by making use of slack matrix variables. The proposed conditions are
advantageous in terms of less conservativeness, which is achieved by avoiding the utilisation
of bounding techniques on some cross product terms.

The following definition and lemma are needed in the proof of our main result.

Definition 1 Paszke et al. (2004) The system (1) is globally asymptotically stable if
lim

r→∞ Xr = 0 with initial conditions (4), where Xr = sup {‖x(i, j)‖ : i + j = r, i, j ∈ Z+}.

Lemma 1 Xie et al. (1992) LetΣ,Γ , F, and M be real matrices of appropriate dimensions
with M satisfying M = M T then

M +ΣFΓ + Γ T FTΣT < 0 (5)

for all FT F ≤ I, if and only if there exists a positive scalar εsuch that

M + ε−1ΣΣT + εΓ TΓ < 0. (6)

3 Main result

The main result may be stated as follows.

Theorem 1 For given nonnegative integers αl , αh, βl , βh satisfying 0 < αl ≤ αh and
0 < βl ≤ βh, the system described by (1–4) is globally asymptotically stable if there

exist appropriately dimensioned matrices Pi = PT
i > 0 (i = 1, 2), Qi = QT

i > 0 (i =
1, 2, . . . , 6), Zi = ZT

i > 0 (i = 1, 2, 3, 4), X =

[
X11 X12

∗ X22

]
≥ 0, Y =

[
Y11 Y12

∗ Y22

]
≥ 0,

C=

[
C11 C12

∗ C22

]
≥ 0, D =

[
D11 D12

∗ D22

]
≥ 0, N =

[
N1

N2

]
, M=

[
M1

M2

]
, S =

[
S1

S2

]
, U =[

U1

U2

]
, V =

[
V1

V2

]
, W =

[
W1

W2

]
, a diagonal matrix G = diag (g1, g2, . . . , gn) > 0, and a

positive scalar ε such that the following LMIs (7–9) hold
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ11 εET
1 E2 ζ13 εET

1 Ed2 S1 −M1 0 0 kq AT
1 G − Z̄ −kq

√−2koAT
1 G 0

∗ ζ22 εET
2 Ed1 ζ24 0 0 W1 −V1 kq AT

2 G − Ẑ −kq
√−2koA2

T G 0
∗ ∗ ζ33 εET

d1
Ed2 S2 −M2 0 0 kq AT

d1
G −kq

√−2koAT
d1

G 0

∗ ∗ ∗ ζ44 0 0 W2 −V2 kq AT
d2

G −kq
√−2koAT

d2
G 0

∗ ∗ ∗ ∗ −Q1 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ −Q2 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Q4 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q5 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

[{(ko/2kq )

−2}G + P1

+P2 + Z̄ + Ẑ
] √−ko/2 G kq GH

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −kq G −kq
√−2koGH

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −εI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (7)

ψ1 =
[

X N
∗ Z1

]
≥ 0, ψ2 =

[
Y S
∗ Z2

]
≥ 0, ψ3 =

[
X + Y M

∗ Z1 + Z2

]
≥ 0 (8)

ψ4 =
[

C U
∗ Z3

]
≥ 0, ψ5 =

[
D W
∗ Z4

]
≥ 0, ψ6 =

[
C + D V

∗ Z3 + Z4

]
≥ 0 (9)

where
Z̄ = αhZ1 + (αh − αl )Z2, (10)
Ẑ = βhZ3 + (βh − βl )Z4, (11)
ζ11 = −P1 + Q1 + Q2 + (αh − αl + 1)Q3 + Z̄ + N1 + NT

1 + αhX11 + (αh − αl )Y11 + εET
1 E1, (12)

ζ13 = −N1 + NT
2 + M1 − S1 + αhX12 + (αh − αl )Y12 + εET

1 Ed1 , (13)

ζ22 = −P2 + Q4 + Q5 + (βh − βl + 1)Q6 + Ẑ + U1 + UT
1 + βhC11 + (βh − βl )D11 + εET

2 E2, (14)
ζ24 = −U1 + UT

2 + V1 − W1 + βhC12 + (βh − βl )D12 + εET
2 Ed2 , (15)

ζ33 = −Q3 − N2 − NT
2 + M2 + MT

2 − S2 − ST
2 + αhX22 + (αh − αl )Y22 + εET

d1
Ed1 , (16)

ζ44 = −Q6 − U2 − UT
2 + V2 + VT

2 − W2 − WT
2 + βhC22 + (βh − βl )D22 + εET

d2
Ed2 . (17)

Proof The proof of Theorem 1 is based on standard Lyapunov theory. It consists of several
steps. First, we construct a 2-D Lyapunov functional V (x(i, j)). Second, we estimate the
forward difference of the Lyapunov functional along the trajectories of the system (1a), i.e.,
�V (x(i, j)) by introducing slack matrix variables and using sector based characterisation of
the nonlinearities. Third, the condition under which �V (x(i, j)) < 0 is determined. Finally,
Lemma 1 is used to remove the dependency of uncertain parameters in the stability condition.

�

Define

η1(i, j + 1) = x(i + 1, j + 1) − x(i, j + 1) = f (y(i, j)) − x(i, j + 1), (18)

η2(i + 1, j) = x(i + 1, j + 1) − x(i + 1, j) = f (y(i, j)) − x(i + 1, j) (19)

and consider a quadratic 2-D Lyapunov function

V (x(i, j)) = V̄ (x(i, j)) + Ṽ (x(i, j)), (20a)

V̄ (x(i, j)) =
4∑

k=1

V̄k(x(i, j)), Ṽ (x(i, j)) =
4∑

k=1

Ṽk(x(i, j)), (20b)
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where

V̄1(x(i, j)) = xT (i, j)P1x(i, j), (21)

V̄2(x(i, j)) =
0∑

θ=−αh+1

−1∑
l=θ−1

ηT
1 (i + l, j)Z1η1(i + l, j)

+
−αl∑

θ=−αh+1

−1∑
l=θ−1

ηT
1 (i + l, j) Z2η1(i + l, j), (22)

V̄3(x(i, j)) =
−1∑

l=−αl

xT (i + l, j) Q1x(i + l, j)

+
−1∑

l=−αh

xT (i + l, j) Q2x(i + l, j), (23)

V̄4(x(i, j)) =
−αl +1∑

θ=−αh+1

−1∑
l=θ−1

xT (i + l, j) Q3x(i + l, j), (24)

Ṽ1(x(i, j)) = xT (i, j)P2x(i, j), (25)

Ṽ2(x(i, j)) =
0∑

θ=−βh+1

−1∑
l=θ−1

ηT
2 (i, j + l)Z3η2(i, j + l)

+
−βl∑

θ=−βh+1

−1∑
l=θ−1

ηT
2 (i, j + l) Z4η2(i, j + l), (26)

Ṽ3(x(i, j)) =
−1∑

l=−βl

xT (i, j + l) Q4x(i, j + l) +
−1∑

l=−βh

xT (i, j + l) Q5x(i, j + l), (27)

Ṽ4(x(i, j)) =
−βl +1∑

θ=−βh+1

−1∑
l=θ−1

xT (i, j + l) Q6x(i, j + l). (28)

The 2-D Lyapunov function (20) may be treated as an extension of the 1-D Lyapunov function
used in He et al. (2008) for output feedback control of linear 1-D discrete time systems with
a time-varying delay.

Taking the forward difference of Lyapunov functional along the trajectories of system
(1a), we obtain

�V (x(i, j)) = V̄ (x(i + 1, j + 1))−V̄ (x(i, j + 1))+Ṽ (x(i + 1, j + 1))−Ṽ (x(i + 1, j))

=
4∑

k=1

�V̄k(x(i, j)) +
4∑

k=1

�Ṽk(x(i, j)), (29)

where

�V̄1(x(i, j)) = xT (i + 1, j + 1)P1x(i + 1, j + 1) − xT (i, j + 1)P1x(i, j + 1)

= f T (y(i, j))P1f (y(i, j)) − xT (i, j + 1)P1x(i, j + 1), (30)

�V̄2(x(i, j)) = αhη
T
1 (i, j + 1)Z1η1(i, j + 1) −

−1∑
θ=−αh

ηT
1 (i + θ, j + 1)Z1η1(i + θ, j + 1)

+ (αh − αl )η
T
1 (i, j + 1)Z2η1(i, j + 1) −

−αl −1∑
θ=−αh

ηT
1 (i + θ, j + 1)Z2η1(i + θ, j + 1)
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= ηT
1 (i, j + 1)Z̄η1(i, j + 1) −

−α(i)−1∑
θ=−αh

ηT
1 (i + θ, j + 1)(Z1 + Z2)η1(i + θ, j + 1)

−
−1∑

θ=−α(i)

ηT
1 (i + θ, j + 1)Z1η1(i + θ, j + 1) −

−αl −1∑
θ=−α(i)

ηT
1 (i + θ, j + 1)Z2η1(i + θ, j + 1), (31)

�V̄3(x(i, j)) = xT (i, j + 1) (Q1 + Q2)x(i, j + 1) − xT (i − αl , j + 1) Q1x(i − αl , j + 1)

− xT (i − αh , j + 1) Q2x(i − αh , j + 1), (32)

�V̄4(x(i, j)) = (αh − αl + 1)xT (i, j + 1) Q3x(i, j + 1) −
−αl∑

θ=−αh

xT (i + θ, j + 1) Q3x(i + θ, j + 1)

≤ (αh − αl + 1)xT (i, j + 1) Q3x(i, j + 1) − xT (i − α(i), j + 1) Q3x(i − α(i), j + 1), (33)
�Ṽ1(x(i, j)) = xT (i + 1, j + 1)P2x(i + 1, j + 1) − xT (i + 1, j)P2x(i + 1, j)

= f T (y(i, j))P2f (y(i, j)) − xT (i + 1, j)P2x(i + 1, j), (34)

�Ṽ2(x(i, j)) = βhη
T
2 (i + 1, j)Z3η2(i + 1, j) −

−βl −1∑
θ=−βh

ηT
2 (i + 1, j + θ)Z4η2(i + 1, j + θ)

−
−1∑

θ=−βh

ηT
2 (i + 1, j + θ)Z3η2(i + 1, j + θ) + (βh − βl )η

T
2 (i + 1, j)Z4η2(i + 1, j)

= ηT
2 (i + 1, j)Ẑη2(i + 1, j) −

−β( j)−1∑
θ=−βh

ηT
2 (i + 1, j + θ)(Z3 + Z4)η2(i + 1, j + θ)

−
−βl −1∑

θ=−β( j)

ηT
2 (i + 1, j + θ)Z4η2(i + 1, j + θ) −

−1∑
θ=−β( j)

ηT
2 (i + 1, j + θ)Z3η2(i + 1, j + θ),(35)

�Ṽ3(x(i, j)) = xT (i + 1, j)(Q4 + Q5)x(i + 1, j) − xT (i + 1, j − βl )Q4x(i + 1, j − βl )

− xT (i + 1, j − βh )Q5x(i + 1, j − βh ), (36)

�Ṽ4(x(i, j)) = (βh − βl + 1)xT (i + 1, j) Q6x(i + 1, j) −
−βl∑

θ=−βh

xT (i + 1, j + θ)Q6x(i + 1, j + θ)

≤ (βh − βl + 1)xT (i + 1, j)Q6x(i + 1, j) − xT (i + 1, j − β( j))Q6x(i + 1, j − β( j)). (37)

Next, we need to prove that �V (x(i, j)) < 0. Before showing �V (x(i, j)) < 0, we
consider the following null products:

0 = 2ξT
1 (i, j + 1)N

[
x(i, j + 1) − x(i − α(i), j + 1) −

−1∑
l=−α(i)

η1(i + l, j + 1)

]
, (38)

0 = 2ξT
1 (i, j + 1)M

[
x(i − α(i), j + 1)−x(i − αh , j + 1) −

−α(i)−1∑
l=−αh

η1(i + l, j + 1)

]
, (39)

0 = 2ξT
1 (i, j + 1)S

[
x(i − αl , j + 1) − x(i − α(i), j + 1) −

−αl −1∑
l=−α(i)

η1(i + l, j + 1)

]
, (40)

0 = 2ξT
2 (i + 1, j)U

[
x(i + 1, j) − x(i + 1, j − β( j)) −

−1∑
l=−β( j)

η2(i + 1, j + l)

]
, (41)

0 = 2ξT
2 (i + 1, j)V

[
x(i + 1, j − β( j)) − x(i + 1, j − βh ) −

−β( j)−1∑
l=−βh

η2(i + 1, j + l)

]
, (42)

0 = 2ξT
2 (i + 1, j)W

[
x(i + 1, j − βl ) − x(i + 1, j − β( j)) −

−βl −1∑
l=−β( j)

η2(i + 1, j + l)

]
, (43)

where

ξ1(i, j + 1) = [
xT (i, j + 1) xT (i − α(i), j + 1)

]T
, (44)

ξ2(i + 1, j) = [
xT (i + 1, j) xT (i + 1, j − β( j))

]T
. (45)
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Relations (38–43) can be obtained directly by using (18) and (19). The following equations
hold for any appropriately dimensioned positive semi-definite symmetric matrices X, Y, C
and D:

0 = αhξ
T
1 (i, j + 1)Xξ1(i, j + 1) −

i−1∑
l=i−α(i)

ξ T
1 (i, j + 1)Xξ1(i, j + 1)

−
i−α(i)−1∑
l=i−αh

ξ T
1 (i, j + 1)Xξ1(i, j + 1), (46)

0 = (αh − αl)ξ
T
1 (i, j + 1)Yξ1(i, j + 1) −

i−αl−1∑
l=i−α(i)

ξ T
1 (i, j + 1)Yξ1(i, j + 1)

−
i−α(i)−1∑
l=i−αh

ξ T
1 (i, j + 1)Yξ1(i, j + 1), (47)

0 = βhξ
T
2 (i + 1, j)Cξ2(i + 1, j) −

j−1∑
l= j−β( j)

ξ T
2 (i + 1, j)Cξ2(i + 1, j)

−
j−β( j)−1∑
l= j−βh

ξ T
2 (i + 1, j)Cξ2(i + 1, j), (48)

0 = (βh − βl)ξ
T
2 (i + 1, j)Dξ2(i + 1, j) −

j−βl−1∑
l= j−β( j)

ξ T
2 (i + 1, j)Dξ2(i + 1, j)

−
j−β( j)−1∑
l= j−βh

ξ T
2 (i + 1, j)Dξ2(i + 1, j), (49)

Adding the terms on the right sides of (38–43) and (46–49) to �V (x(i, j)) yields

�V (x(i, j)) ≤ ξT
3 (i, j)μξ3(i, j) −

i−1∑
l=i−α(i)

ξ T
4 (i, j, l)ψ1ξ4(i, j, l)

−
i−αl−1∑

l=i−α(i)

ξ T
4 (i, j, l)ψ2ξ4(i, j, l) −

i−α(i)−1∑
l=i−αh

ξ T
4 (i, j, l)ψ3ξ4(i, j, l)

−
j−1∑

l= j−β( j)

ξ T
5 (i, j, l)ψ4ξ5(i, j, l) −

j−βl−1∑
l= j−β( j)

ξ T
5 (i, j, l)ψ5ξ5(i, j, l)

−
j−β( j)−1∑
l= j−βh

ξ T
5 (i, j, l)ψ6ξ5(i, j, l) − 2δ, (50a)

where

δ =
n∑

k=1

gk [kq yk (i, j) − fk (yk (i, j))][ fk (yk (i, j)) − ko yk (i, j)]

= [kq y(i, j) − f (y(i, j))]T G[f (y(i, j)) − koy(i, j)], (50b)
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μ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ11 −2kq koĀT
1 GĀ2 μ13 −2kq koĀT

1 GĀd2 S1 −M1 0 0 (kq + ko)ĀT
1 G − Z̄

∗ μ22 −2kq koĀT
2 GĀd1 μ24 0 0 W1 −V1 (kq + ko)ĀT

2 G − Ẑ

∗ ∗ μ33 −2kq koĀT
d1

GĀd2 S2 −M2 0 0 (kq + ko)ĀT
d1

G

∗ ∗ ∗ μ44 0 0 W2 −V2 (kq + ko)ĀT
d2

G
∗ ∗ ∗ ∗ −Q1 0 0 0 0
∗ ∗ ∗ ∗ ∗ −Q2 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Q4 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q5 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ (P1 + P2
−2G + Z̄ + Ẑ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(50c)

μ11 = −P1 + Q1 + Q2 + (αh − αl + 1)Q3 + Z̄ + N1 + NT
1 + αhX11 + (αh − αl )Y11 − 2kq koĀT

1 GĀ1, (50d)

μ13 = −N1 + NT
2 + M1 − S1 + αhX12 + (αh − αl )Y12 − 2kq koĀT

1 GĀd1 , (50e)

μ22 = −P2 + Q4 + Q5 + (βh − βl + 1)Q6 + Ẑ + U1 + UT
1 + βhC11 + (βh − βl )D11 − 2kq koĀT

2 GĀ2, (50f)

μ24 = −U1 + UT
2 + V1 − W1 + βhC12 + (βh − βl )D12 − 2kq koĀT

2 GĀd2 , (50g)

μ33 = −Q3 − N2 − NT
2 + M2 + MT

2 − S2 − ST
2 + αhX22 + (αh − αl )Y22 − 2kq koĀT

d1
GĀd1 , (50h)

μ44 = −Q6 − U2 − UT
2 + V2 + VT

2 − W2 − WT
2 + βhC22 + (βh − βl )D22 − 2kq koĀT

d2
GĀd2 , (50i)

Ā1 = A1 + �A1, Ā2 = A2 + �A2, Ād1 = Ad1 + �Ad1 , Ād2 = Ad2 + �Ad2 , (50j)

ξ3(i, j) =
[
xT (i, j + 1) xT (i + 1, j) xT (i − α(i), j + 1) xT (i + 1, j − β( j))

xT (i − αl , j + 1) xT (i − αh , j + 1) xT (i + 1, j − βl ) xT (i + 1, j − βh ) f T (y(i, j))
]T

, (50k)

ξ4(i, j, l) =
[

xT (i, j + 1) xT (i − α(i), j + 1) ηT
1 (l, j + 1)

]T
, (50l)

ξ5(i, j, l) =
[

xT (i + 1, j) xT (i + 1, j − β( j)) ηT
2 (i + 1, l)

]T
. (50m)

It may be observed that the identities (38–43) and (46–49) help to impose tighter bounding
on �V (x(i, j)). Further, for the nonlinearities given by (2), the quantity δ (see (50b)) is
nonnegative (Kandanvli and Kar 2010; Kar and Singh 2001a, 2004).

From (50a), it is clear that �V (x(i, j)) < 0 for ξ3(i, j) �= 0 if μ < 0, (8) and (9) hold
true and �V (x(i, j))= 0 only when ξ3(i, j) = 0.

To complete the proof of the theorem, it now remains to show that for any initial conditions
satisfying (4), x(i, j) → 0 as i → ∞ and/or j → ∞. It follows from (29) and �V (x(i, j)) ≤
0 that

V̄ (x(i + 1, j + 1)) + Ṽ (x(i + 1, j + 1)) ≤ V̄ (x(i, j + 1)) + Ṽ (x(i + 1, j)). (51)

Let D(r) denote the set defined by

D(r)
�={(i, j) : i + j = r, i ≥ 0, j ≥ 0} . (52)

For any nonnegative integer r ≥ max {K , L}, it follows from (51) and the initial condition
(4) that

∑
(i+ j)∈D(r+1)

V (x(i, j)) =
∑

(i+ j)∈D(r+1)

[
V̄ (x(i, j)) + Ṽ (x(i, j))

]

= V̄ (x(r + 1, 0)) + V̄ (x(r, 1)) + V̄ (x(r − 1, 2)) + · · · + V̄ (x(2 , r − 1))

+ V̄ (x(1 , r)) + V̄ (x(0 , r + 1)) + Ṽ (x(r + 1 , 0)) + Ṽ (x(r, 1))

+ Ṽ (x(r − 1, 2)) + · · · + Ṽ (x(2 , r − 1)) + Ṽ (x(1 , r)) + Ṽ (x(0 , r + 1))

≤ V̄ (x(r + 1 , 0)) + V̄ (x(r − 1, 1)) + V̄ (x(r − 2, 2)) + · · · + V̄ (x(1 , r − 1))

+ V̄ (x(0 , r)) + V̄ (x(0 , r + 1)) + Ṽ (x(r + 1, 0)) + Ṽ (x(r, 0)) + Ṽ (x(r − 1, 1))
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+ · · · + Ṽ (x(2 , r − 2)) + Ṽ (x(1 , r − 1)) + Ṽ (x(0 , r + 1)) + V̄ (x(r, 0))

+ Ṽ (x(0, r)) − V̄ (x(r, 0)) − Ṽ (x(0, r))

=
∑

(i+ j)∈D(r)

V (x(i, j)), (53)

where the equality sign holds only when∑
(i+ j)∈D(r)

V (x(i, j)) = 0. (54)

In the above derivation, the fact that x(i, r + 1) = 0, i = −αh,−αh + 1, . . . , 0, x(r +
1, j) = 0, j = −βh,−βh + 1, . . . , 0, x(r, 0) = 0, x(0, r) = 0, and the positive
definiteness of the function V (x(i, j)) have been used. Denote h = max{αh, βh}. Inequality
(53) implies that the energy stored at all points along the D(r + 1) to D(r − h + 1) (i.e., all
points in D(r + 1) ∪ · · · ∪ D(r − h + 1)) is less than the energy stored at the points along
the D(r) to D(r − h) (i.e., all points in D(r) ∪ · · · ∪ D(r − h)). From (53), we obtain

lim
r→∞

∑
(i+ j)∈D(r)

V (x(i, j)) = 0. (55)

Consequently,

lim
i+ j→∞ ‖x(i, j)‖ = 0. (56)

Thus, by Definition 1, the conditions μ < 0, (8) and (9) are sufficient conditions for the
global asymptotic stability of system (1–4). Using Schur’s complement, the condition μ <

0 is equivalent to⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ̃11 0 μ̃13 0 S1 −M1 0 0 kq Ā
T
1 G − Z̄ −kq

√−2koĀ
T
1 G

∗ μ̃22 0 μ̃24 0 0 W1 −V1 kq Ā
T
2 G − Ẑ −kq

√−2koĀ
T
2 G

∗ ∗ μ̃33 0 S2 −M2 0 0 kq Ā
T
d1

G −kq
√−2koĀ

T
d1

G

∗ ∗ ∗ μ̃44 0 0 W2 −V2 kq Ā
T
d2

G −kq
√−2koĀ

T
d2

G
∗ ∗ ∗ ∗ −Q1 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ −Q2 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Q4 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q5 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ [{(ko/2kq ) − 2}G
+ P1 + P2 + Z̄ + Ẑ]

√−ko/2G

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −kq G

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(57a)

where

μ̃11 = −P1 + Q1 + Q2 + (αh − αl + 1)Q3 + Z̄ + N1 + NT
1 + αhX11 + (αh − αl)Y11,

(57b)

μ̃13 = −N1 + NT
2 + M1−S1 + αhX12 + (αh − αl)Y12, (57c)

μ̃22 = −P2 + Q4 + Q5 + (βh − βl + 1)Q6 + Ẑ + U1 + UT
1 + βhC11 + (βh − βl)D11,

(57d)

μ̃24 = −U1 + UT
2 + V1 − W1 + βhC12 + (βh − βl)D12, (57e)

μ̃33 = −Q3 − N2 − NT
2 + M2 + MT

2 − S2 − ST
2 + αhX22 + (αh − αl)Y22, (57f)
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μ̃44 = −Q6 − U2 − UT
2 + V2 + VT

2 − W2 − WT
2 + βhC22 + (βh − βl)D22. (57g)

Now, using (3a), (57) can be rewritten in the following form:

M + H̄FĒ + Ē
T

FT H̄
T

< 0, (58a)

where

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ̃11 0 μ̃13 0 S1 −M1 0 0 kq AT
1 G − Z̄ −kq

√−2koAT
1 G

∗ μ̃22 0 μ̃24 0 0 W1 −V1 kq AT
2 G − Ẑ −kq

√−2koAT
2 G

∗ ∗ μ̃33 0 S2 −M2 0 0 kq AT
d1

G −kq
√−2koAT

d1
G

∗ ∗ ∗ μ̃44 0 0 W2 −V2 kq AT
d2

G −kq
√−2koAT

d2
G

∗ ∗ ∗ ∗ −Q1 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ −Q2 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Q4 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q5 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ [{(ko/2kq ) − 2}G
+P1 + P2 + Z̄ + Ẑ]

√−ko/2G

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −kq G

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(58b)

H̄
T = [

0 0 0 0 0 0 0 0 kq HT G − kq
√−2koHT G

]
, (58c)

Ē = [
E1 E2 Ed1 Ed2 0 0 0 0 0 0

]
. (58d)

It may be noted that the matrix inequality (58a) along with (8) and (9) can, in principle,
be solved using the MATLAB toolbox (Boyd et al. 1994; Gahinet et al. 1995). However,
it would be tedious to satisfy (58a) for all admissible uncertainties. To avoid this problem,
using Lemma 1, we express (58a) as

M + ε−1H̄H̄
T + εĒ

T
Ē < 0, (59)

where ε > 0. The equivalence of (59) and (7) follows trivially from Schur’s complement.
This completes the proof of Theorem 1.

Remark 1 Theorem 1 provides a delay-dependent global asymptotic stability condition for
the 2-D system described by (1–4). The conditions in Theorem 1 are in LMI framework and
can easily be solved using Matlab LMI Toolbox (Boyd et al. 1994; Gahinet et al. 1995).

Remark 2 In the proof of Theorem 1, the utilization of (38–43) and (46–49) enables to
estimate the upper bound on the forward difference of the Lyapunov function in a better
way, without a need for using bounding inequalities (Gao et al. 2004; Jiang et al. 2005; Liu
et al. 2006; Zhu and Yang 2008). The matrix variables N, M, S, U, V, W,X,Y,C and D in
Theorem 1 are the degrees of freedom which are beneficial in the reduction of conservatism
of the stability condition. It may be mentioned that the method based on introducing such
slack matrix variables has been extensively used in the derivation of delay-dependent results
for time-delay systems (Feng et al. 2010; He et al. 2008; Kandanvli and Kar 2010).

Remark 3 Note that (7) is dependent on the values of ko and kq . For a given 2-D system
described by (1–4), it may happen that the system is globally asymptotically stable for a set
of values of ko and kq , while the system may show unstable behavior for another set of values
of ko and kq . Theorem 1 may also be helpful to determine the values of ko and kq that would
be required to guarantee the global asymptotic stability of the class of systems described by
(1–4).
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Remark 4 Theorem 1 solves the stability problem for time-varying delay in a range given
by (1c) with 0 < αl ≤ αh and 0 < βl ≤ βh . In practice, the time-varying delay often lies in
a range, in which the lower bound is not zero. The results pertaining to the situation where
0 ≤ αl ≤ αh and 0 ≤ βl ≤ βh can be worked out by employing a 2-D Lyapunov function of
the form (20–28) with Z2 = Q1 = Z4 = Q4 = 0 and setting S = W = 0, Y = D = 0.

For the constant delay case, the lower and upper delay bounds in (1c) become identical
(i.e., αl = αh = α and βl = βh = β). In this case, as a direct consequence of Theorem 1,
we have the following result.

Corollary 1 The system (1–4) with 0 < α(i) = α and 0 < β( j) = β is globally
asymptotically stable if there exist appropriately dimensioned matrices Pi = PT

i > 0

(i = 1, 2), Q = QT > 0, Q̄ = Q̄
T

> 0, a diagonal matrix G > 0 and a positive scalar ε

satisfying⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−P1 + Q
+ εET

1 E1)
εET

1 E2 εET
1 Ed1 εET

1 Ed2 kq AT
1 G −kq

√−2koAT
1 G 0

∗ (−P2 + Q̄
+ εET

2 E2)
εET

2 Ed1 εET
2 Ed2 kq AT

2 G −kq
√−2koAT

2 G 0

∗ ∗ −Q + εET
d1

Ed1 εET
d1

Ed2 kq AT
d1

G −kq
√−2koAT

d1
G 0

∗ ∗ ∗ −Q̄ + εET
d2

Ed2 kq AT
d2

G −kq
√−2koAT

d2
G 0

∗ ∗ ∗ ∗ [{(ko/2kq ) − 2}G
+ P1 + P2]

√−ko/2G kq GH

∗ ∗ ∗ ∗ ∗ −kq G −kq
√−2koGH

∗ ∗ ∗ ∗ ∗ ∗ −εI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

< 0. (60)

Proof Taking αl = αh = α, βl = βh = β and choosing

Q1 = σ1I, Q2 = σ2I, Q3 = Q, Q4 = σ3I, Q5 = σ4I, Q6 = Q̄, Z1 = σ5I/α,

Z2 = σ6I/α, Z3 = σ7I/β, Z4 = σ8I/β, X11 = σ9I/α, X22 = σ10I/α, Y11 = σ11I/α,

Y22 = σ12I/α, C11 = σ13I/β, C22 = σ14I/β, D11 = σ15I/β, D22 = σ16I/β,

X12 = 0, Y12 = 0, C12 = 0, D12 = 0, N = 0, M = 0, S = 0, U = 0, V = 0, W = 0,

(61)

for sufficiently small positive scalars σi (i = 1, 2, . . . , 16), the conditions in Theorem 1
reduces to (60). This completes the proof. �
Remark 5 Corollary 1 provides a delay-independent condition for the global asymptotic
stability of a class of 2-D state-delayed uncertain discrete systems involving both overflow
and quantisation nonlinearities. It is worth mentioning that the limit cycle-free realizability
condition provided by Corollary 1 pertaining to 2-D state-delayed uncertain FMSLSS model
(under various combinations of overflow and quantisation) has not been mentioned, to the
best of authors’ knowledge, in any previous works.

Remark 6 A result analogous to Theorem 1 (or Corollary 1) also holds true for the other
class of 2-D systems described by the Roesser (1975) model.

4 Illustrative example

In this section, we shall demonstrate the application of our proposed criterion (Theorem 1)
for the stability analysis of thermal processes in chemical reactors, heat exchangers and
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pipe furnaces, which can be expressed in the following partial differential equation with
time-delays (Xu and Yu 2009a,b)

∂θ(x, t)

∂x
= −∂θ(x, t)

∂t
− a0θ(x, t) − a1θ(x, t − τ), (62)

where θ(x, t) is the temperature at space x ∈ [0, x f ] and time t ∈ [0,∞), τ is the time delay,
a0 and a1 are real coefficients. Taking

θ(i, j) = θ(i�x, j�t) (63)

and applying

∂θ(x, t)

∂x
∼= θ(i, j) − θ(i − 1, j)

�x
,

∂θ(x, t)

∂t
∼= θ(i, j + 1) − θ(i, j)

�t
(64)

for both derivatives in (64), it is easy to verify that (62) can be expressed in the following
discrete form:

θ(i, j + 1) =
(

1 − �t

�x
− a0�t

)
θ(i, j) + �t

�x
θ(i − 1, j) − a1�tθ(i, j − β( j)),

(65)

where β( j) = int(τ/�t + 1), int(·) is the integer function.
By setting xT (i, j) = [

θT (i − 1, j) θT (i, j)
]
, (65) can be converted into the following

FMSLSS model:

x(i + 1, j + 1) =
[

0 1
0 0

]
x(i, j + 1) +

[
0 0
�t
�x

(
1 − �t

�x − a0�t
)
]

x(i + 1, j)

+
[

0 0
0 0

]
x(i − α(i), j + 1) +

[
0 0
0 −a1�t

]
x(i + 1, j − β( j)).

(66)

In the presence of nonlinearities and uncertainties, system (66) fits into the format of
(1–4). Let a0 = 5, a1 = 1.2,�x = 0 · 4,�t = 0 · 1, 3 ≤ α(i) ≤ 7 and 3 ≤ β( j) ≤ 7.
Assume that the present system is subjected to parameter uncertainties of the form (3) with

H =
[

0
0.1

]
, E1 = E2 = [

0.01 0
]

and Ed1 = Ed2 = [
0 0.01

]
. Let the nonlineari-

ties belong to the sector [ko, kq ] = [−1, 1] which includes two’s complement, saturation,
zeroing, triangular, magnitude truncation, combination of two’s complement and magnitude
truncation, combination of saturation and magnitude truncation, combination of zeroing and
magnitude truncation, combination of triangular and magnitude truncation, etc. We wish to
determine whether the system under consideration is globally asymptotically stable. Using
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the Matlab LMI Toolbox (Boyd et al. 1994; Gahinet et al. 1995) it turns out that (7–9) are
feasible for the following values of unknown parameters

P1 =
[

1.6200 −0.5808
−0.5808 7.9670

]
, P2 =

[
3.0991 0.9011
0.9011 6.8801

]
, Q1 =

[
0.1787 −0.0416

−0.0416 0.2426

]
,

Q2 =
[

0.1819 −0.0439
−0.0439 0.2505

]
, Q3 =

[
0.0744 −0.0372

−0.0372 0.1420

]
, Q4 =

[
0.1753 −0.0406

−0.0406 0.2434

]
,

Q5 =
[

0.1782 −0.0435
−0.0435 0.2557

]
, Q6 =

[
0.0626 −0.0540

−0.0540 0.6891

]
, Z1 =

[
0.0101 −0.0044

−0.0044 0.0174

]
,

Z2 =
[

0.0244 −0.0101
−0.0101 0.0420

]
, Z3 =

[
0.0101 −0.0040

−0.0040 0.0187

]
, Z4 =

[
0.0245 −0.0094

−0.0094 0.0450

]
,

X =

⎡
⎢⎢⎣

0.0360 −0.0111 −0.0007 0.0003
−0.0111 0.0525 0.0003 −0.0012
−0.0007 0.0003 0.0073 −0.0035
0.0003 −0.0012 −0.0035 0.0134

⎤
⎥⎥⎦ ,

Y =

⎡
⎢⎢⎣

0.0671 −0.0191 −0.0003 0.0001
−0.0191 0.0958 0.0001 −0.0005
−0.0003 0.0001 0.0194 −0.0080
0.0001 −0.0005 −0.0080 0.0336

⎤
⎥⎥⎦ ,

C =

⎡
⎢⎢⎣

0.0663 0.0200 −0.0007 0.0315
0.0200 0.0833 0.0002 0.0305

−0.0007 0.0002 0.0067 −0.0044
0.0315 0.0305 −0.0044 0.0328

⎤
⎥⎥⎦ , D =

⎡
⎢⎢⎣

0.1176 0.0314 −0.0001 0.0535
0.0314 0.1445 0.0003 0.0522

−0.0001 0.0003 0.0181 −0.0093
0.0535 0.0522 −0.0093 0.0643

⎤
⎥⎥⎦ ,

N =

⎡
⎢⎢⎣

−0.0029 0.0012
0.0012 −0.0049
0.0033 −0.0014

−0.0014 0.0056

⎤
⎥⎥⎦ , M =

⎡
⎢⎢⎣

0.0003 −0.0001
−0.0001 0.0004
−0.0208 0.0083
0.0083 −0.0354

⎤
⎥⎥⎦ , S =

⎡
⎢⎢⎣

0.00004 −0.00004
−0.00004 0.0001

0.0142 −0.0050
−0.0050 0.0229

⎤
⎥⎥⎦ ,

U =

⎡
⎢⎢⎣

−0.0027 0.0011
0.0013 −0.0051
0.0033 −0.0013

−0.0011 0.0058

⎤
⎥⎥⎦ , V =

⎡
⎢⎢⎣

−0.0003 0.0031
−0.0005 0.0036
−0.0206 0.0082
0.0076 −0.0346

⎤
⎥⎥⎦ , W =

⎡
⎢⎢⎣

0.0003 −0.0019
0.0002 −0.0019
0.0144 −0.0044

−0.0044 0.0221

⎤
⎥⎥⎦ ,

G =
[

2.7003 0
0 8.0467

]
, ε = 2.2916. (67)

Thus, according to Theorem 1, the 2-D system under consideration is globally asymptot-
ically stable.

5 Concluding remarks

A delay-dependent criterion (Theorem 1) for the global asymptotic stability of uncertain
2-D discrete systems described by the FMSLSS model with interval-like time-varying state-
delays under various combinations of quantisation and overflow nonlinearities is proposed.
The proposed stability conditions are given in a numerically efficient LMI framework. An
example demonstrating the effectiveness of the presented method is given. The 2-D results
discussed in this paper can easily be extended to m-D (m > 2) systems.

It is known that the extension of the 1-D Lyapunov function to the 2-D case can be
broadly classified into two different types: the 2-D Lyapunov function whose coefficients
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are constant (Agathoklis et al. 1989; Anderson et al. 1986; El-Agizi and Fahmy 1979; Xiao
et al. 1997) and the 1-D Lyapunov function whose coefficients are functions of a complex
variable (Agathoklis 1987; Fornasini and Marchesini 1980; Lu and Lee 1985; Sendaula
1986). The use of constant Lyapunov functions, in general, causes conservativeness of the
stability results. The approach in Lu and Lee (1985) permits to reduce the problem of estab-
lishing stability of 2-D linear Roesser (1975) model to the existence of positive definite
Hermitian solution of a 1-D Lyapunov equation with a complex parameter. However, one
should expect noticeable complications to carry out the stability analysis of 2-D dynamics
in presence of parameter uncertainties, time-varying delays, quantisation/overflow nonlin-
earities using frequency dependent Lyapunov functions. The strategy adopted in this paper
is to exploit quadratic Lyapunov function with constant coefficients. The computation of
the evolution of the Lyapunov function along the trajectories of the system leads to com-
putationally efficient stability conditions. In this context, it may be mentioned that the 2-D
constant coefficient Lyapunov functions have been widely used for the stability analysis of
2-D systems and many significant results have been obtained (Chen 2009, 2010a,b; Chen and
Fong 2006, 2007; Du and Xie 1999; El-Agizi and Fahmy 1979; Feng et al. 2010; Hinamoto
1993, 1997; Kar 2008, 2010, 2012; Kar and Singh 1997, 1999, 2000, 2001a,b, 2004, 2005;
Leclerc and Bauer 1994; Liu 1998; Liu and Michel 1994; Lu 1994a,b, 1995; Ooba 2000;
Paszke et al. 2004, 2006; Peng and Guan 2009a; Peng and Guan, 2009b; Singh 2005; Tzafes-
tas et al. 1992; Wang and Liu 2003; Xiao and Hill 1996; Xu et al. 2005; Xu and Yu 2006,
2009a,b). Using constant coefficient Lyapunov functions, it has been established in El-Agizi
and Fahmy (1979) that normal form 2-D digital filters described by Roesser (1975) model
are free from overflow oscillations. Normal form structures of digital filters represent an
important class of systems having low sensitivities to tolerances in the coefficients and low
output roundoff noise. The necessary and sufficient conditions for the asymptotic stabil-
ity of the positive 2-D linear systems have been established successfully in Chu and Liu
(2007); Kaczorek (2002, 2007); Kaczorek (2009) using constant coefficient Lyapunov func-
tions.

It is expected that Theorem 1 can be applied to some useful classes of realistic 2-D
systems as a global asymptotic stability test. The presented stability results can be improved
further by making use of frequency dependent Lyapunov functions together with more precise
characterisation of uncertainties, nonlinearities and delays. Further investigation is required
to reduce the gap between ‘sufficiency’ and ‘necessity’ for a 2-D system to be globally
asymptotically stable, which occurs in the present approach.

Acknowledgments The authors wish to thank the reviewers for their constructive comments and suggestions.
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