
Multidim Syst Sign Process (2012) 23:469–498
DOI 10.1007/s11045-012-0176-5

Contour extraction in medical images using initial
boundary pixel selection and segmental contour following

Roy Chaoming Hsu · Din Yuen Chan ·
Cheng-Ting Liu · Wei-Chieh Lai

Received: 15 February 2011 / Revised: 22 December 2011 / Accepted: 9 January 2012 /
Published online: 22 February 2012
© Springer Science+Business Media, LLC 2012

Abstract In today’s health care, an imaging system plays an important role throughout
the entire clinical process from diagnosis and treatment planning to surgical procedures and
follow-up studies of disease. Boundary detection is a technique used to segment an object
within a region of interest in the medical image for further clinical applications. Contour
extraction is one of the most important boundary detection methods. In this paper, an object
contour extraction for gray-level medical images using automatic initial boundary pixel selec-
tion and tracing of a segmental contour based on the boundary pixels obtained by the initial
boundary pixel selection is proposed. Experimental results on artificial images of convex
and deep concave objects, and real CT and MRI images show that, in comparing with other
existing methods, a more detailed and accurate contour can be obtained using the proposed
object contour extraction method. This has low computational complexity, which will benefit
applications to clinical diagnosis, treatment, surgery, and follow up studies.

Keywords Boundary detection · Contour extraction · Snake · Medical imaging · ROI

1 Introduction

In medical images, the detection of object boundaries within a region of interest (ROI) can
provide valuable information for diagnosis, treatment and other follow up studies of disease.
Contour extraction is a classical boundary detection method regarded as a pre-processing
for further image applications in medical images (Handels et al. 2010; Lehmann et al. 2004;
Somkantha et al. 2010). Contour extraction methods could be categorized into edge-based
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(Canny 1986), region-based (Fu and Mui 1981), model-based (Kass et al. 1988), and trac-
ing-based (Whithey et al. 2009; Chan and Hsu 2008). The edge-based method is the most
commonly used boundary detection method. Recently, Suzuki et al. (2004) proposed an edge
detector by combining with an artificial neural network for extracting left ventricular contours
from left ventriculograms. Conventional edge-based methods detect the object’s boundary
efficiently using gradient operator, such as the Sobel operator (Gonzalez and Woods 2008),
but closed contour results are not guaranteed which means these operators might not be very
useful for applications in medical images. Region-based methods, on the other hand, set
seed points in the image such that many objects can be classified according to homogeneous
values around the seed points. An active contour model (Kass et al. 1988), a.k.a. snake,
is a prominent model-based method for extracting object contours. Applications of snake
have been widely used for extracting closed object contours in medical images (Pang et al.
2005; Yan and Kassim 2006). The snake extracts a closed contour using the idea of internal
and external energy, where the internal energy smoothes the contour model and the external
energy strengths contour model of the object. The most critical limitation in the conventional
snake is that the initial boundary pixels, or snaxels, have to be selected around the object
manually for increasing the accuracy and speed of convergence. Therefore, Xu and Prince
(1998), and Sakalli et al. (2006) modified the external energy function to reduce convergence
time and enhance extending the range of the traditional snake. However, most snake models
are still very time consumption due to its computation complexity.

Tracing-based methods offer an alternative in constructing a closed contour in object
boundary detection (Chen and Siy 1987; Chan and Hsu 2008; Banerjee et al. 2010). Chen
and Siy (1987) proposed a contour tracing method by defining three stages which were edge
detection, starting point parameter determination, and forward/backward boundary tracing.
The first step of Chen and Siy’s work is to detect edges of an object through the Sobel oper-
ator or other gradient operating mask. The second step finds the pixel as a starting point by
a statistic method. Finally, the method traces the boundary with multi-directions from each
starting point. In Chen and Siy’s tracing method, certain conditions must be met to determine
whether boundary tracing is finished or not and the direction of tracing is decided using gra-
dient information. However, if convergence cannot be achieved in that direction, the tracing
direction would be changed to the opposite to the original direction in searching for a closed
contour. Hence, Chen and Siy’s tracing method might fail to construct a closed contour if
the image contains a large level of noise. Chan and Hsu (2008) presented a concise, robust
shape-preserving contour tracing scheme for efficiently extracting a highly representative one
pixel-width closed contour for the profiles of heterogeneous objects from digitally processed
images regardless of noise existence. However, in developing the contour tracing scheme,
the fundamental assumption is made that the object pixels have already been separated from
the background pixels via some ordinary image segmentation processing, where a threshold-
ing technique (Otsu 1979) is usually adopted. In other words, the contour tracing scheme is
designed for processing the images within which heterogeneous objects have already been
distinguished from each other. Recently, Banerjee et al. (2010) proposed a contour following
method for tracing an object’s boundary. The method selected the maximum gradient value
of three search directions as contour point; the search directions can be increased to 5 or 7
whenever required.

Besides contour extraction, graph cut-based minimization for boundary and region seg-
mentation of objects (Boykov and Jolly 2011; Rother et al. 2004) won a lot of popularity
for its applications in image and video editing. The key idea of graph cut is the flexible
definition of widely extracted low-level cues for similarity comparisons in the pixels clus-
tering according to various applications. One cue of the most significant is the color feature
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to support the pixel-based color image segmentation. Yet, relatively, when the portion of
exterior object having close colors to that of its near target object, which the user would like
to segment, the common graph cut processing will possibly mistake the marginal portion of
target object as the part of background. For handling this problem, Lempitsky et al. (2009)
create a special middle box within the user-provided bounding box and the short and long
crossing path is defined inside the middle box and the bounding box, respectively, for intro-
ducing the tightness. And then, when the cost (energy) function associated with neighboring
pixels is minimized for performing the judgment of pixel-attribute being either background
or foreground, the proposed tightness prior for path connection is added as given constraints
into the graph cut framework. The proposed image segmentation with a bounding box prior,
henceforth abbreviated as ISBBR, is viewed as the improved pixel-based graph-cut solu-
tion with realization of merging a tightness-prior opinion. Basically, it can indeed offer very
impressing performance for color image segmentation. Although, the proposed “pinpointing”
procedure is guaranteed to have the polynomial-time complexity via relaxing the integrality
constraints of theoretical graph cut, the high time consuming is still inevitable and it needs the
aid of prior information about foreground pixels in so-called crossing paths. Besides, when
the inner of user-made bounding box is automatically generated with an unsuited (mistaken)
middle box, more false-positives (or even false-negatives) may be caused over traditional
graph-cut algorithm in semantic segmentation.

Certain contour extraction methods often are executed interactively with its users, such as
the snake, however, the methods are very time consuming due to the human-machine inter-
action when large amounts of image data, such as medical images, are being processed and
they are subject to operator’s variability as well. Therefore, in performing contour extrac-
tion for medical images, automatic or semi-automatic methods in reducing laborious manual
work, such as conventional snaxel initialization in active contour model, are preferred. In
an image analysis environment, such as medical images with background noise, automatic
initialization of boundary pixels for contour extracting using a simple algorithm is very diffi-
cult. Recently, methods on automatic initialization of boundary pixels were proposed (Yuen
et al. 1999; Chuang and Lie 2001; Dang et al. 2009; Chan et al. 2009; Delmas et al. 1999;
Bakir and Charfi 2009; Teixeira et al. 2008). Yuen et al. (1999) proposed an initial snaxel
selection method to search initial snaxels around the object, and an energy function to solve
the concave problem and detect multiple objects. The first step of Yuen’s method is to emit
straight lines from the center of gravity, with equivalent angles between each pair of straight
lines. For each straight line, the gradient values of pixels is computed and used to determine
the suitable snaxels whose gradient value should be greater than a threshold value. When an
initialized snaxel cannot be found, the center of gravity will be selected as the initial snaxel
which implies that the image can have multiple objects. Therefore, the initialization snaxels
are classified to different objects and an active contour model is used for tracing multiple
objects. The snaxel initialization of Yuen et al. can efficiently select initial snaxels; however,
the automatic initialization method is designed for an active contour model, which will suffer
from the problem of intensive computational complexity.

In this study, a contour extraction method is proposed for object boundary detection in
gray-level medical images. The proposed method of contour extraction in medical images
comprises two discrete but consecutively integrated mechanisms, namely the initial boundary
pixel selection (IBPS) and the segmental contour following (SCF) (Hsu et al. 2010b). The
IBPS is basically designed to first automatically find the skeleton of an object and determine
the object’s morphological geographic center (OMGC). The IBPS searches the scan-lines
emitting from the OMGC through the end-points of the object skeleton for the initial bound-
ary pixels. These new scan-lines are constructed between each pair of neighboring initial
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boundary pixels. The IBPS then successively selects a new initial boundary pixel along each
new constructed scan-line so as to form a set of initial boundary pixels of the object pro-
file. Following the IBPS, the SCF traces the object contour using the relative direction and
gravitation of gradient (GoG) between any two neighboring initial boundary pixels selected
by IBPS to finally construct a closed contour of the object. The consecutively integrated
IBPS-SCF contour extraction method, designated as ISCEM hereafter, is designed to extract
a closed contour of an entire object contour from the region of interest (ROI) of a noisy
medical image. Contributions of the ISCEM are the following

1. The IBPS extends the initial snaxel selection method (ISSM) of our earlier work (Hsu
et al. 2010a) for an object with deep concavities, such as a U-shape, by integrating the
processes of skeletonization and OMGC search with much improved accuracy in locating
initial boundary pixels for an object.

2. With a few modifications in the IBPS, the ISCEM is extended for contour extraction of
multiple objects without changing the essentiality of structure.

3. Moreover, the IBPS is independent of boundary extraction methods, hence; IBPS also
could be applied to handle the snaxel initialization problem in an active contour model,
i.e., snake, or other contour following methods such as SCF.

4. Besides, the SCF traces the segmented contour between each pair of neighboring initial
boundary pixels and it is particularly suitable for parallel processing when large amounts
of medical imaging data are to be processed simultaneously.

By incorporating the SCF with the IBPS extension, the ISCEM presents a simple but
effective boundary extraction method which delineates the contour of multiple objects with
details and high precision. Yet it requires much less computational time when compared to
a snake.

2 The proposed method

Figure 1 presents the process flow diagram of the ISCEM showing the steps of ROI selection,
IBPS and SCF. In brief, a region of interest (ROI) from a medical image is first selected by
the user. The IBPS then divides an object’s contour into contour segments by finding bound-
ary pixels on scan-lines emitting from the OMGC and going through the end points of the
object skeleton. Following the IBPS, the SCF efficiently decides contour points with lower
computational effort using relative direction and gravitation of gradient between the source
and target boundary pixels.

Fig. 1 The process flow diagram
of the proposed ISCEM

2D medical image 

Initial boundary pixels selection (IBPS) 

Segmental contour following (SCF) 

A closed boundary for the object in ROI 

Region of interest selection 

an ROI image 

a set of initial boundary pixels 
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Fig. 2 The detailed processing
steps of IBPS
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 Whether more initial 
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A set of initial boundary pixels for ROI 
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The user interaction of ROI selecting is similar to the bounding box interaction in the
ISBBR (Lempitsky et al. 2009); however, the bounding box in ISBBR is to obtain the tight-
ness prior in improving the graph-cut algorithm for segmentation of error-prone portions in
complicated color images. On the contrary, ROI selection in our ISCEM is simply employed
in restricting the attention of the image segmentation process to the interior of the ROI, which
mechanism provides high application preference in extracting object contour of gray-level
images especially for medical ones. In our approach, the rectangle initial mask, i.e., ROI,
provided by user needs not be too strict for an adequate tightness to the target object border for
most cases. Rather, our proposed ISCEM is a concise yet robust integrated edge- and tracing-
based mechanism, i.e., IBPS and SCF, respectively. In effect, our algorithm is considerably
simpler than the original prototype graph-cut approach and the ISBBR as well. In summary,
from the aspect of initialization significance in robustness, the ISBBR particularly considers
the employment of tightness prior to the graph-cut approach for pursuing more robustness
against the misleading of background close to the target object. Hence, the segmentation
performance of ISBBR is quite associated with the appropriation of making user-provided
bounding box and the middle box. Relatively, the creation of initial user-defined rectangle
in the proposed ISCEM need not be precise or cautious in comparing to that in the algo-
rithm in ISBBR and the robustness is substantially inherent in the structure of our proposed
ISCEM, which effectively and consecutively incorporates “skeleton” and “divide-and-con-
quer” processes.

2.1 Initial boundary pixel selection (IBPS)

The detailed processing steps of the IPBS are illustrated in Figure 2. The IBPS process com-
mences by selecting a ROI containing a salient object from a medical image. Considering
the task of object contour extraction from the ROI of a medical image, the object of most
interest is located at the center of the ROI such that the position of the center of gravity (CoG)
is often located around the center of the object (Hsu et al. 2010a). However, for an object
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with irregular or deep shape of concavities the CoG might be outside the body of the object
and the ISSM of our previous work (Hsu et al. 2010a), which searches for initial boundary
pixels along the scan-lines emitting from the CoG, might locate some false initial boundary
pixels. Hence, different to the ISSM, the IBPS finds the skeleton of the object from the ROI,
determines the OMGC from the skeleton, and searches for the initial boundary pixels on
the object contour along the initial scan-lines radiating from the OMGC to the end points
of object’s skeleton. Once a ROI image, containing an interested object to be analyzed, is
selected from a medical image, the binarization (Otsu 1979) and skeletonizing (Guo and Hall
1989) are performed on the ROI image to obtain the object’s skeleton, represented as a set
of skeleton pixels, Sn , as the following

Sn = {(xi , yi )|∀(xi , yi ) ∈ skeleton pixels of an object, i = 1, . . . , n} (1)

The object’s skeleton is a good morphological representation of the object’s shape in the ROI
image. The end points of an object’s skeleton e, is a subset of Sn and is represented as

e = {(xi , yi )|∀(xi , yi ) ∈ end points of an object keleton, i = 1, . . . , t} (2)

where the end points in e are obtained by identifying these points in the Sn with their 8-
neighbors having only one point in the Sn . The position of the approximate OMGC, c, can
now be obtained from the end points in the Sn by

c =
{

(xc, yc)|xc =
∑t

i=1 xe,i

t
, yc =

∑t
i=1 ye,i

t
, (xe,i , ye,i ) ∈ e, i = 1, . . . , t

}
(3)

where xe,i and ye,i , respectively, are the coordinates of the end points in the x and y directions,
and t is the total number of end points of the object’s skeleton. A refined OMGC search is
used to locate the final OMGC iteratively according to the following{

OMGC (x, y) = c, if c ∈ Sn

c is considered as a base point, bi , otherwise
(4)

where the base point bi is defined as the starting point for searching the final OMGC. If
c /∈ Sn , three scenarios are considered, as shown in Fig. 3, in obtaining the final OMGC
by scanning along the x and y directions from the position of c for locating the point(s) on
the skeleton. Assuming that the located skeleton points along the x and y direction, respec-
tively, are bx,i , i = 0, 1, . . . , n, and by, j , j = 0, 1, 2 . . . , m, where n and m, respectively,
is the number of located skeleton points on the x and y directions and the total number of
located skeleton points is n + m = p. Three scenarios for reaching the final OMGC are the
following

1. p = 2 and n = m = 1, as shown in Fig. 3a. If the bxx and byy , respectively, are the x
and y coordinates of bx,1, and by,1, the final position of OMGC is

OMGC = (bxx , byy) (5)

2. p = 3 and either n = 1 or m = 1, as shown in Fig. 3b. The located skeleton point with
n=1 or m= 1 is selected as the final OMGC, i.e.,

OMGC =
{

bx,n, if n = 1
by,m else if m = 1

(6)

3. p = 4 and n = m = 2, as shown in Fig. 3c. The base point bi is regarded as the final
MOGC.
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Fig. 3 Scenarios for identifying the OMGC a p = 2, and n = m = 1, b p = 3, and either n = 1, or m = 1,
and c p = 4, n = m = 2

Figure 4 shows the detailed processing steps in searching for the initial boundary pixels
by the IBPS. The objects’ skeleton, the OMGC, and the end-points of the object’s skeleton are
shown in Fig. 4a. The IBPS then sets the OMGC as the origin of the scan-lines and t initial
scan lines Li , i = 1.2.3 . . . t , where t is the number of the end-points of object’s skeleton,
are decided by emitting from the OMGC toward each end-point of the object’s skeleton, as
shown in Fig.4b.

In general, a boundary pixel, i.e., edge, of an object has a larger gradient value than the
non-edges. Hence, in IBPS a 3 × 3 gradient-based operator, such as the Sobel operator, is
masked on pixels along each scan-line from the end point to the boundary of a ROI in cal-
culating the pixels’ gradient, and the candidates for initial boundary pixels are determined
by the criteria that the gradient of pixels on the scan line are larger than a pre-determined
threshold and that the position of the initial boundary pixel is the nearest one to the end-point.
The criteria of determining boundary pixels is describe as
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Fig. 4 Establishment of the scan-lines and initial boundary pixels selection: a an object with OMGC, skeleton
and the end points of skeletonei , b n initial scan-lines Li are emitting from the OMGC through every end
point of skelonton ei , and the initial boundary pixel Si is selected along each scan-lines, c mid-point between
Si and Si+1, Mi , is determined to generate a new scan-line with new scan distance, d, for searching the new
initial boundary pixels. d The complete set of initial boundary pixels Sn obtained by the IBPS

Sn =
⎧⎨
⎩

C Pi , if (gradient value of scanned pixels > threshold)
and (the distance to end point is minimum)

Drop, otherwise
(7)

where C Pi , i = 1, . . ., t, is an array of initial boundary pixels. In (7), the threshold of the
gradient value for each scan-line is selected by the gradient value of the pixel having the top
20% of pixels with highest ranked gradient values, i.e. gradient histogram, in each scanning
segment. The solid dots on the convex tops along the scan-lines of Fig. 4b are the deter-
mined initial boundary pixels by (7). In order to obtain better resolution and more accuracy
of the segmental contour following (SCF) results and to avoid noise effect in the ROI image,
the number of initial boundary pixels can be increased iteratively by the following iterative
initialization step to yield a complete set of initial boundary pixels, there having
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Ntotal = t × 2p (8)

of them where Ntotal is decided by t and p, the number of initial scan-lines and iteration
times, respectively.

To increase the numbers of initial boundary pixels, the iterative initialization step in IBPS
finds the middle point, denoted as M<p>

i , between a pair of initial boundary pixels, Si and
Si+1, selected in the previous initialization. The M<p>

i is then used as the base point to
generate a new scan-line L<p>

i , as shown in Fig. 4c. The position of M<p>
i is given by

(
xM<p>

i
, yM<p>

i

)
=

{
(x, y)|x =

(
xsi+1 + xsi

)
2

, y =
(
ysi+1 + ysi

)
2

, i = 1, . . . , t

}
(9)

where i is the index number of the scan-line and p is the iteration time. The new scan-line
L<p>

i is in the direction of the normal vector to
−−−→
Si Si+1 as shown in Fig.4c, and the linear

equation normal to
−−−→
Si Si+1 is calculated by the following

y − y<p>
i = m1

(
x − x<p>

i

)
(10)

where m1 is the slope of new scan-line L<p>
i , (x, y) represents positions on the scan-line

L<p>
i , and

(
x<p>

i , y<p>
i

)
represents current position of middle point M<p>

i . If, m2 is the

slope of
−−−→
Si Si+1. m1is perpendicular to m2 and is given by m1 = −1/m2. According to the

theory of linear equations, m2 is formulated as m2 = yi+1−yi
xi+1−xi

. The more initial boundary
pixels, iteratively selected by the iterative initialization step, are, the closer the new initial
boundary pixels are to each other. Hence, the scan distance on the scan line can be decreased
in each iteration and is given by

d = D

2p−1 (11)

where D denotes default scanning distance and dwill be decreased to half the distance of
D in each iteration. After executing the IBPS process, the complete set of initial boundary
pixels, Sn , are found as shown in Fig. 4d and the SCF is applied for the object contour
extraction.

2.2 Segmental contour following (SCF)

To completely extract a closed object contour, the SCF is executed following the IBPS in
the proposed ISCEM. The segmented contours, connected by any two neighboring initial
boundary pixels, which were obtained by IBPS, will be extracted to form the complete
closed contour of an object. The SCF employs the concept of gravitational force in combi-
nation with relative direction information between two neighboring initial boundary pixels
in tracing along the object boundary. The flow chart of the SCF is shown in Fig. 5.

Figure 6 shows how the SCF proceeds by using the set of initial boundary pixels, obtained
by IBPS, which separates the closed object contour into a segmented contour set, Si j i ∈
1, . . . , N − 1, j = i + 1, as shown in Figure 6a, where each segmented contour between
two neighboring initial boundary pixels is synchronously traced and linked through the SCF.
Figure 6b demonstrates the relative direction from two neighboring initial boundary pixels,Si

to Si+1, with Si and Si+1 regarded as source and target boundary points, respectively. The
relative direction, defined as the direction from source point Si aiming at target point Si+1,
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 Initial boundary pixels set by IBPS 

Calculating the relative direction for each pair of source 

and target boundary pixels 

Selecting the corresponding mask and calculating the 
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No 
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Fig. 5 Flowchart of the SCF mechanism
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Fig. 6 The illustration of the SCF operation: a the initial boundary pixels obtained by the IBPS, b the relative
direction among each pair of original and target contour pixels in tracing the possible contours in clockwise
direction

can be derived by examining the sign of Dx and Dy , the distance between xi and xi+1, yi

and yi+1, respectively, per calculation by{
Dx = xi+1 − xi

Dy = yi+1 − yi
(12)
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Table 1 Nine states with the corrosponding relative direction

State S S–E E N–E Null position N N–W W S–W

Dx 0 + + + 0 0 − − −
Dy + + 0 − 0 − − 0 +

Note: + positive, 0 zero, − negative, S south, N north, E east, and W west, Null position means the origin and
target points are the same one, i.e. segmented contour is found

A B
C

B A
C

B A C A
B
C

B
C A C A B

C
A B

C
A
B

Fig. 7 Eight directional masks corresponding to the 8 relative directions

where (xi , yi ) and (xi+1, yi+1) denote the positions of Si and Si+1, respectively. Dx and Dy

are signed integer numbers and their sign is used to determine the relative direction from Si

to Si+1 as show in Table 1.
According to Table 1, the relative direction is classified with nine states and, except for

the null position state, i.e., the target boundary pixel, each state is mapped to a directional
mask, as shown in Fig.7.

In each directional mask, the center position of the mask is the source point, Si , and A,
B, C are the three candidate boundary pixels in the relevant directions, where one of the
candidate pixels will be selected as boundary pixel and replaced as origin point for the next
contour.

Under normal conditions without strong noise embedded in the image, the boundary pixel
has a large intensity gradient which is caused by distinct intensity difference between the
object and background. For selecting and tracing boundary pixels, the original pixel and target
pixel are treated as two objects having gravitation force between them. According to New-
ton’s law of gravitation, the heavier mass of an object and smaller distance between objects
would have the larger magnitude of gravitation. Hence, in the SCF, the intensity gradient of
pixels is regarded as the mass of an object. In selecting the next boundary pixel among the
three candidate boundary pixels in the directional mask, the gravitation force between each
candidate boundary pixels and the target pixel is calculated as the following

F(p) (xi , yi ) = ∇ f p (xi , yi )√(
d2

x + d2
y

) , p ∈ A, B, C (13)

where p is any one of the 3 candidate pixels in the directional mask, and ∇ f p (xi , yi ) denotes
the intensity gradient of pixel p at the position (xi , yi ). In (13), the denominator represents
distance between a candidate boundary pixel and a target boundary pixel (xi+1,yi+1). In each
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Fig. 8 The process flow diagram
of the ISCEM extension for
multiple object contour extraction
within a ROI image

2D medical image  

Segmental contour following (SCF) 

The closed boundaries of the objects in ROI

Selecting a ROI from medical image  

A ROI image with multiple objects 

Sets of initial boundary pixels 

Initial boundary pixel selection (IBPS) with 

multiple objects clustering (MOC) 

Fig. 9 The process flow diagram
of the IBPS-MOC

A ROI image with multiple objects  

Identifying the object and the background into two subsets 

Performing skeletonizing for both object and background  

Clustering object skeleton 

Specifying border of scanning for each cluster 

Performing IBPS for each cluster within the border 

iteration in tracing the boundary pixel within the segmented contour, the candidate boundary
pixel with largest F(p)(xi , yi ) value among three candidate boundary pixels is selected as
boundary pixel and replaces the source point and the SCF proceeds until the target boundary
point is reached within this segmented contour. Noting that the SCF is executed among any
pair of neighboring initial boundary pixels selected by the IBPS such that each segmented
contour can be traced and linked synchronously. This means is suitable for parallel processing
in constructing a closed object contour within the ROI of medical images.

2.3 Extension of the ISCEM for multiple objects within a ROI image

By integrating a simple yet effective multiple objects clustering (MOC) algorithm with the
IBPS, the ISCEM can be further extended for contour extraction of multiple objects within
a ROI image. Figure 8 shows the process flow diagram of the extension of the ISCEM for
multiple objects within a ROI image.

The IBPS with MOC, indicated in the inserted yellow rectangle of the process flow dia-
gram in Fig. 8 and shown in Fig. 9 with detailed steps, is the key process for extending the
ISCEM for multiple object contour extraction. The IBPS with MOC, named IBPS-MOC
hereafter, first identifies the object and the background into two subsets and performs skel-
etonizing for both object and background. The IBPS-MOC then clusters the object skeleton
pixels into sets of skeleton pixels with each object morphologically represented by each set
of skeleton pixels, and the scanning border for each skeleton cluster is determined by the
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background skeleton created in the previous step. The IBPS-MOC finally applies the IBPS
to each cluster of skeleton with the pre-determined scanning border for the initial bound-
ary pixels. Following the IBPS-MOC, the SCF traces the contour segments for each object
to complete the contour extraction for multiple objects. The ISCEM extension for multiple
objects is conducted on some real medical images and the results are presented in the next
section.

The development of the ISCEM not only is particularly dedicated to the object contour
extraction in medical images, but the consecutively incorporated edge-based initial bound-
ary pixel searching along radiating scan-lines from the OMGC with the segmental contour
following also is quite appropriate for gray-level medical images. In general, medical images
are of gray scale with sparse gray levels, so an effective edge-based segmentation algorithm
can be more suitable over the region-based segmentation ones. In addition, the inside of many
human organs has clutters, their neighboring background textures appear relatively homog-
enous. Theoretically, skillful scanning for capably indicating representative object boundary
edge nodes is the key issue for initial segmenting the object profile in a medical image. In this
study, we incorporate two different scanning ways to increase the robustness of the IBPS.
The first is scanning in radiation from the object’s morphological geographic center. Due
to neutralization by averaging effects and iterative searching, while finding the OMGC, the
selection of a center can be robust against random noise, which is much more commonly met
than burst noise in medical images. And our proposed IBPS is quite concise yet effective for
the representation of objects in medical images with the radial scanning in multiple objects
clustering (MOC). This technique can help in obtaining robustness of clustering skeleton
pixels into groups in skeleton medical images.

3 Experimental results

3.1 Initial boundary pixel selecting results

To exam the accuracy of IBPS, artificial images with convex and a deep concave object
are generated, as shown in Fig. 10. Because the positions of correct boundary are implic-
itly determined when the images are created, the accuracy of boundary point selection by
the IBPS, can hence be evaluated by comparing with other existing methods. Figure 10a
and c, respectively, show the original artificial convex and deep concave object images and
Fig. 10b and d, respectively, show white Gaussian noise-added artificial convex and deep con-
cave object images with SNR at 20.6 dB. The skeletons of the artificial convex and deep con-
cave object images, obtained by the binarization and skeletonizing of the IBPS, are shown in
Fig. 10b and d, respectively, as indicated by the white lines inside the images.

Experimental results of initial boundary pixel selection by the IBPS, the ISSM of our
previous work, and method of Yuen et al. are shown in Fig.11. In IBPS, 6 and 4 initial
scan-lines (end points) with 2 and 3 iterations are selected in determining 24 and 32 initial
boundary pixels for the convex and deep concave object image, respectively. In ISSM 3,
4 initial scan-lines with 3 iterations are selected in determining 24 and 32 initial boundary
pixels for the convex and deep concave object images, respectively. In the method of Yuen
et al., 24 and 32 scan-lines are used to select the initial boundary pixels on the contours
of the convex and deep concave object images, respectively. Figure 11a, and d demonstrate
the initial boundary pixels selected by IBPS, where almost all the initial boundary pixels
are exactly on the true edge and, even for the deep concave object image, only a few initial
boundary pixels fall out of the true edges. Figure 11, middle column (Fig. 11b, e) and right
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(a) (b)

(c) (d)

Fig. 10 Artificial images with noise-free (a) and the noisy (b) convex object, and with noise-free (c) and the
noisy (d) deep concave object. The SNR in b and d is 25.3 dB

column (Fig. 11c, f), respectively, shows the initial boundary pixels selected, marked as a
thick cross, by the ISSM and method of Yuen et al. for artificial images with convex and
deep concave objects, where some initial boundary pixels are conceived to be erroneously
selected and are far away from the boundary in artificial convex images. The numbers of
erroneously selected initial boundary pixels increased most significantly especially for the
deep concave object image.

To quantitatively compare the accuracy of IBPS, the ISSM, and the method of Yuen et al.,
the true positive is used as the comparing parameter and is defined as the ratio of true detected
initial boundary pixels to total detected initial boundary pixels, whose results are shown in
Table 2. According to Table 2, the IBPS obtained better accuracy in selecting initial boundary
pixels among other initialization methods for both artificial images. It significantly outper-
forms other initialization methods especially for the artificial deep concave object image.

To further evaluate the relative locations of initial boundary pixels selected by IBPS, the
ISSM, and Yuen’s method, and their influence on the convergence of snake, mean distances,
d , and standard deviation, σ , between each neighboring initial boundary pixels are computed
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Fig. 11 Locations of initial boundary pixels for the two kinds of noisy artificial object images by different
initialization methods with SNR = 25.3 dB: the left column a and d is the result of the proposed IBPS, the
middle one b and e is the result of ISSM, and the right column c and f is the result of Yuen et al.

Table 2 Accuracy comparison
of the IBPS, ISSM and Yuen
et al. of the initial boundary pixel
selection in terms of true positive

Image\method IBPS ISSM Yuen et al.

Convex object 23/24 20/24 13/24

Deep concave object 27/32 16/32 11/32

Table 3 Statistical comparison of the initial boundary pixels selected by IBPS, ISSM and method of yuen
et al. in terms of mean distance and standard deviation between each pair of selected neighboring boundary
pixels

Method IBPS ISSM Yuen et al.

Image\parameters d σ d σ d σ

Convex object 18.3 2.41 19.1 2.75 28.2 13.4

Deep concave object 23.4 2.94 34.6 13.9 40.3 17.9

as shown in Table 3 for both artificial images with convex and deep concave objects. The
values of mean distance and standard deviation of each pair of neighboring boundary pixels
selected by the IBPS are far smaller than these of the ISSM and the method of Yuen et al.,
which indicates that the initial boundary pixels selected by IBPS are closely and evenly
located. By inspecting Fig. 11 and Table 3, one can find that the Yuen et al. method searches
farthest edge pixels along each angle-fixed scan-line, hence it lacks flexibility and is easily
affected by noise. The ISSM achieves better initial boundary pixels in comparison with that
of Yuen et al. for the artificial concave image, however, the ISSM fails to precisely locate the
initial boundary pixels for the deep convex image because the scan-lines are emitted from
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Fig. 12 The snake results for the artificial noisy convex and deep concave object images with SNR = 25.3
dB using the initialization results. The left, middle and right columns are the snake results using the initial
boundary pixels selected by the IBPS, the ISSM, and the method of Yuen et al., respectively

the calculated CoG of the image which is out of the object’s body. The IBPS on the contrary
finds the initial boundary pixels by first searching the scan-lines emitting from the OMGC,
which is inside the object’s body, toward end points of a skeleton, and the searching distance
of boundary pixel of each new scan-line is decreased in the iteration such that better accuracy
in selecting initial boundary pixels can be achieved.

To demonstrate the influence of the set of initial boundary pixels, selected by IBPS, ISSM,
and by the method of Yuen et al., in obtaining a closed object contour, the initialization results
are further utilized for running snake. In executing snake, the locations of initial boundary
pixels are gradually changed and controlled to close to the object contour, therefore the
closer the selected initial boundary pixels are to the real object contour, the faster the snake
converges and the higher the precision for the closed contour extracted with respect to the
object’s real contours. The extracted contour of snake utilized the initial boundary pixels,
i.e., snaxels, selected by IBPS, ISSM, and the Yuen et al. method for the artificial convex
and object images as shown in Fig.12. The left, middle, and right columns of Fig. 12 show,
respectively, the snake results utilizing the initial snaxels obtained by the IBPS, the ISSM,
and Yuen et al. Experimental results again demonstrate that the object contour extracted by
snake for the artificial convex and deep concave object images utilizing the initial boundary
pixels selected by IBPS is much closer to the real object’s contour than those of both the
ISSM and the Yuen et al. method because a lot of the initial boundary pixels selected by
ISSM and Yuen et al. method are far from the true boundary such that an expanded closed
object contour with extrusion is obtained when the snake converges.

To quantitatively compare the influence of the set of initial boundary pixels, selected by
different initialization methods, in obtaining a closed object contour by the snake, the false
positive is used as the comparing parameter and is defined as the ratio of the number of
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Table 4 The false positive of the
extracted contours by the snake
using initial boundary pixels
selected by different methods for
the two artificial images

Images Initialization methods (%)

IBPS ISSM Yuen et al.

Convex object 10.5 16.9 44.0

Deep concave object 11.9 70.5 76.5

Fig. 13 Real medical images for testing the proposed ISCEM. a A CT image showing two regions of interest,
where the dimension in pixel of ROI (1) is 184 × 140 and ROI (2) is 126 × 133. b The MR image of brain
core with one region of interest, ROI (3) with the dimensionality of 91 × 118

false detected initial boundary pixels to the number of total detected boundary pixels. The
results of false positive of the three comparing methods for the convex and deep concave
artificial images are shown in Table 4. According to Table 4, the IBPS has the smallest false
positive among other initialization methods for extracting a contour by running the snake for
both artificial images and significantly outperform other initialization methods especially for
artificial deep concave object image.

To test the effectiveness of IBPS, the ISSM, and the method of Yuen et al. for real medical
images, a CT image of pulmonary embolism and a T2 weighted MR image of the brain
showing cortex, lateral ventricle, and falx cerebri, as shown in Fig. 13a and b, respectively,
are used. This test CT medical image comes from a well-known medical database, Med-
Pix, a free online medical image database, with image number 55,164, while the test MR
image comes from Magnetic Resonance—Technology Information Portal. Three regions are
selected as the regions of interest (ROI), two from the CT image and 1 from the MR image,
and are numbered, within which the contour of the enhanced white objects in the ROIs are
to be extracted.

Each of the ROI images with enhanced white object is processed by the IBPS, the ISSM,
and the method of Yuen et al. for selecting the initial boundary pixels, i.e., snaxel initializa-
tion, and the results are shown in Fig. 14 with the marked red crosses representing locations
of initial boundary pixel selected. Figure 14a–c, d–f, and g–i respectively, show the initial
boundary pixels selected by the IBPS, the ISSM, and the method of Yuen et al. for ROI(1)
and ROI(2) of the CT medical image, and ROI(3) of the MR medical image. By comparing
with the ISSM, and Yuen et al. results of Fig. 14d–f, and g–i, respectively, it can be easily
identified that the initial boundary pixels selected by IBPS, as in Fig. 14a–c, are much closer
to the object’s boundary in all three ROIs, while many of the snaxels selected by ISSM and
the method of Yuen et al. are located in the darker background area. In examining the results
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Fig. 14 The experimental results of the initial boundary point selection for the three ROIs from real CT and
MR image of Fig 13. The upper row a–c shows the results of the IBPS for the three ROIs. The middle row
d–f is the results of ISSM. The bottom row g–i is the results of Yuen et al.

of initial boundary pixels selected by the IBPS, the ISSM, and the method of Yuen et al., the
results shown in Fig. 14b, and e appear critical because the lower left of the test ROI (2) image
exhibiting a shading tissue occulted by a target object. By the proposed IBPS, the contour
extraction of the target object in the lower left area can still be easily accomplished; however,
the ISSM tends to extract the contour of the outer shading tissue. This is because the IBPS
searches the boundary pixel along the scan line, connected by OMGC and the end point of
object skeleton, from the end point toward the boundary and finds the nearest pixel, having
greater gradient value than a pre-determined threshold, to the end point. On the contrary,
the ISSM searches the boundary pixel along the scan line emitting from CoG and finds the
farthest pixel, having greater gradient value than a pre-determined threshold, from the CoG.

The results of initial boundary pixels selected by the IBPS, the ISSM, and the method of
Yuen et al. for the three ROIs from CT and MR medical images, as in Fig. 14, are again used
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Fig. 15 The experimental results of running the snake using the initial boundary points in Fig. 14. The upper
row (a–c), the middle row (d–f), and the bottom row (g–i), respectively, show the snake results using the initial
boundary points selected by the IBPS, ISSM, and method of Yuen et al.

to run the snake in obtaining a closed object contour and the results are shown in Fig. 15 for
visual comparison. Figure 15a–c, d–f, and g–i, respectively, show the snake result with initial
boundary pixels selected by the IBPS, the ISSM, and the method of Yuen et al. By comparing
Fig. 15a–c with Fig. 15d–f and g–i, it can be easily indicated that the snake results of the
method of Yuen et al. are expanded with extrusion because many initial boundary pixels
selected by the method of Yuen et al. are located far away from the distinct object boundary
due to the noise and background influence. The snake results using snaxel initialization of
the ISSM achieve a closer and smoother contour than those results obtained using the method
of Yuen et al. On the other hand, the snake result using the IBPS selected initial boundary
pixels, obtains a much more accurate contour than the other methods, which are noticeable
by the extracted contour in upper part of object in Fig 15a, and c, and in the lower tail part of
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Fig. 16 Contour extraction result of SCF and Chen and Siy’s boundary tracing method for artificial convex
object image with SNR = 28.8 dB. a Contour extraction result of SCF and b the magnified portion around
corner of (a). c Contour extraction result of Chen and Siy’s boundary tracing method, and d the magnified
portion around corner of (c)

Fig. 15b. It again demonstrates that the accurate initial boundary pixels selected by the IBPS
leads to a better snake result for real medical image as well.

3.2 Segmental contour following results

To investigate the accuracy and effectiveness of SCF for contour extraction, experimental
results of SCF and Chen and Siy’s boundary tracing method (Chen and Siy 1987) for the
artificial images of convex shape are first compared using the same set of initial boundary
pixels selected by the IBPS. Figure 16 shows the results of contour extraction, as pixels
shown in red, for the artificial images of convex shape with white Gaussian noise added. The
SNR is 28.8 dB. The left-hand side of Fig.16a and c, respectively, demonstrates the contour
extracted for the artificial convex shape image for SCF and Chen and Siy’s method, while
the right-hand side of Fig. 16 is the magnified corner portion of tracing results inside the
rectangle in the left figure. Experimental results of Fig. 16a and c exhibit that the SCF traces
on the real object boundary in constructing a closed object contour matching to the object’s
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Table 5 Quantitative
comparison in terms of true
positive for the artificial convex
shape image with different levels
of white Gaussian noise added

Methods SCF (%) Chen and Siy’s method (%)
SNR\precision (dB)

28.8 98 84

25.2 97 83

20.6 95 83

true contour, while there are some detected pixels by Chen and Siy’s method which deviate
from the true boundary.

Table 5 shows the quantitative comparison in terms of true positive by testing SCF and
Chen and Siy’s boundary tracing method utilizing the initial boundary pixels selected by
the IBPS for the artificial convex shape image with different levels of white Gaussian noise
added. The true positive is defined as the ratio of the number of true detected boundary pixels
to the total number of detected boundary pixels. By examining Table 5, the true positives
of contour extraction result by SCF is about 12∼14% better than those of Chen and Siy’s
tracing method for the artificial convex shape image with different levels of white Gaussian
noise added. It again demonstrates the advantage of SCF in integrating the intensity gradient
and relative direction for contour tracing, which provides more local structure information
when compared to Chen and Siy’s tracing method, which relies on magnitude of gradient
only in determining contour direction.

To further examine the effectiveness and efficiency of the ISCEM for contour extraction
in a real medical image of Fig. 13, the extraction results of SCF are comparing with Chen and
Siy’s tracing method using the same set of initial boundary pixels selected by IBPS for the 3
ROIs images from the medical images. To compare with the contour extraction results of the
ISCEM, the contour extraction method of ISSM + SCF from our recent work is conducted as
well for the three ROI images. Contour extraction results of three ROI images for the three
comparing methods are shown in Fig.17. Figure 17a–c, and d–f, respectively, show the results
of the proposed SCF, and the Chen and Siy’s boundary tracing method utilizing the same set
of initial boundary pixels selected by IBPS. The contour extraction results of ISSM + SCF of
our previous work for the three ROI images are presented in Fig. 17g–i. By examining on the
contour extraction results of Fig. 17, one can see that the closed object contour of each ROI
image is extracted by SCF utilizing the initial boundary pixels found by the IBPS However,
unlike the closed contour extraction result of the artificial convex images, Chen and Siy’s
tracing method fails to obtain the closed object contour for the three real medical ROI images.
The contour extraction results of the proposed ISCEM (i.e., IBPS+SCF) in Fig. 17a–c and
those of ISSM+SCF resulting in Fig. 17g–i have the comparable extraction results; however,
the ISCEM traces more details of the object’s contour with much higher precision than from
ISSM+SCF, as shown in the right waist part in Fig. 17a, lower right tail part in Fig. 17b,
and upper concave part in Fig. 17c. Table 6 shows the execution time for three comparing
methods of the proposed ISCEM, the ISSM+SCF, and the IBPS+Chen and Siy’s method,
where the proposed ISCEM has comparable computational time with that of IBPS+Chen
and Siy’s method. The ISCEM only takes about one third of the ISSM+SCF computational
time, which is significantly decreased due to the efficiency of binarization and skeletonizing,
and OMGC computing. By examining the contour extraction results of Fig. 17 and Table 6
for the three comparing method, one sees that the ISCEM has the advantage of extracting
a closed object contour with high definition and precision at a significant time decrease for
real medical images in comparing with the ISSM+SCF of our earlier work. And even though
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ROI 1 ROI 2 ROI 3

IBPS 
+ 

SCF 

(c)(b)(a)

IBPS 
+ 

Chen 

(f)(e)(d)

ISSM 
+ 

SCF 

(i)(h)(g)

Fig. 17 Contour extraction results of a–c SCF, and d–f Chen and Siy’s boundary tracing method using the
same set of initial boundary pixels selected by IBPS for each ROI in medical images of Fig. 13. g–i Contour
extraction results of SCF using initial boundary pixels selected by ISSM for each ROI in medical images of
Fig. 13

a closed contour for artificial object is obtained by Chen and Siy’s boundary tracing method,
yet it fails to produce a closed contour for real medical images possibly due to the noise, and
the local structure complexity between the object and background with larger computational
time than the proposed ISCEM.

3.3 Results of ISCEM extension for multiple objects within a ROI image

Experiment of the ISCEM extension for multiple objects within a ROI image is performed
for multiple objects in CT images as shown in Fig. 18 and the related results on the output
of each step in Fig. 9 for the ROI medical image of Fig. 18a are shown in Fig. 19.
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Table 6 Execution time measurement of boundary extraction from three comparing methods for three ROIs
in medical image, the unit of the execution time is in millisecond (ms)

ROI Methods (ms)

IBPS+SCF IBPS+Chen and Siy ISSM+SCF

1 90 102 255

2 74 97 233

3 65 78 168

Fig. 18 The tested CT imageries for the ISCEM extension for multiple objects. a The selected ROI 1 showing
the vertebra body and vertebra spinous process from the CT image, b the selected ROI 2 with two enhanced
objects from the CT image of pulmonary embolism

Figure 18a and b, respectively, show the selected ROI 1 (region of vertebra body and ver-
tebra spinous process) from a CT image and the selected ROI 2 with two enhanced objects
from the CT image of pulmonary embolism in Fig. 13. Figure 19 shows the experimental
results of each step in Fig. 9 for the ROI 1 image with two objects. Figure 19a and b, respec-
tively, show the original ROI image with two objects and the result of step 1, identifying the
object and background into two subjects. Figure 19c and d, respectively, show the result of
performing skeletonizing on the object and on the background, as is specified in step 2. The
scanning border of each cluster, as the step 4 of the Fig. 9, is hence obtained by the skeleton
of the background and is shown in Fig. 19d. Figure 19e and f, respectively, show the cluster
of object skeleton, the 3rd step in Fig. 9, and the result of the IBPS-MOC, the last step in
Fig. 9. Figure 20 shows the experimental results of the proposed ISCTM extended to multiple
objects for the two ROIs in Fig. 18. The left column (Fig. 20a and d) is the result of clustering
a skeleton with a distinct border in separating each skeleton cluster. The middle column (Fig.
20b and e) shows the sets of initial boundary pixels, indicated with red and blue “x” sign,
selected by IBPS and with OMGCs indicated with dark “+”sign. The right column (Fig. 20c
and f) is the result of SCF utilizing the initial boundary pixels selected by the IBPS-MOC,
i.e., the contour extraction results of ISCEM extended to multiple objects for real medical
images, whose contour is indicated by red and blue color for different objects. In examining
the results of multiple object contour extraction, the case shown in Fig. 20d appears criti-
cal because the test ROI image exhibiting two extreme contiguous tissues of an organ with
background clutters. By the proposed scheme, the contour extraction of the two contiguous
tissues can still be easily accomplished without a-priori human-supporting knowledge. In
short, increased computational complexity of the IBPS-MOC merely is rare or unnoticeable,
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Fig. 19 The experimental results of each step of the proposed IBPS-MOC, as in Fig. 9, for an example ROI
image with two objects. a and b, respectively, show the original ROI image with two objects and the result
of step 1, identifying the object and background into two subjects. c and d, respectively, show the result of
performing skeletonizing on the object and on the background, as specifying in the step 2. The scanning border
of each cluster, as the step 4 of the Fig. 9, is hence obtained by the skeleton of the background and is shown
in d. e and f, respectively, show the clusters of object skeleton, as the 3rd step in Fig. 9, and the result of the
IBPS-MOC, as the last step of Fig. 9

even when the content of the medical image exhibits noticeable complication. This is because
the mechanism of proposed IBPS-MOC is quite regular and concise. By examining Figs. 8, 9
and 20, one can see with only a few modifications to the IBPS with multiple objects cluster-
ing, that the extension of ISCEM can efficiently and effectively extract contours for multiple
objects within a ROI image with much higher precision.

To prove the feasibility and novelty of the proposed ISCEM and ISCEM-MOC, more ROI
images are selected from the original medical images, as shown in Fig. 21, and tested using
the ISCEM and ISCEM-MOC, and the experimental results are shown in Fig. 22.

Figure 22a, b, and c, respectively, shows the results of object skeleton, the IBPS results,
and the ISCEM/ISCEM-MOC results of the ROI images, where the results of the ROI images
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Fig. 20 The experimental results of the proposed ISCTM with extension to multiple objects within a ROI
image. The left column a and d is the result of clustering a skeleton with a distinct border in separating each
skeleton cluster, the middle column b and e shows the sets of initial boundary pixels selected by IBPS with
OMGCs, and the right column c and f is the result of SCF utilizing the initial boundary pixels selected by the
IBPS-MOC

with two objects, selected from the right medical image of the first column in Fig. 21, are
shown in the ROI images of the third and the fourth column of the second row in Fig. 22a–c.
By examining the object skeleton and IBPS results of Fig. 22a and b, respectively, one sees
that the IBPS/IBPS-MOC can easily and automatically obtain object skeleton(s) with at least
6 end points and the initial boundary pixels even for object(s) with long strip shape such
as the four ROI images in the second row of Fig. 22a. The experimental results of Fig. 22c
shows that accurate object contours are delineated by the proposed ISCEM/ISCEM-MOC,
where the contour extraction of the two contiguous tissues of an organ, in the ROI images of
the third and the fourth column of the second row in Fig 22c, can still be easily accomplished
without a-priori human-supporting knowledge. The experimental results on these ROI med-
ical images again provide the evidence that the proposed ISCEM/ISCEM-MOC not only
is novel to the area of multiple objects contour extraction in medical images, but it is also
effective, efficient, and accurate in extracting object(s) contour in medical images.

In summary, the globally optimized contour extraction algorithms such as the graph
cut/grabcut and snake discussed in Sect. 1 may truly yield better precision at the cost of
time for the object contour extraction in medical images. However, the proposed ISCEM/
ISCEM-MOC could achieve the similar precision for the same ROI images with the reduced
computational complexity and computing time due to the inherent conciseness and robustness
of the consecutive yet tightly integrated IBPS and SCF structure. Basically, the designing of
an efficient algorithm can be considered as solving a constrained optimization problem. The
processing cost including the structure complexity of the algorithm and the computational
time, and so forth is minimized subject to an acceptable accuracy or adequate precision
(a rational limitation or requirement). For object contour extraction in grey-level medi-
cal images, the ISCEM/ISCEM-MOC, a regular structure and concise processing flow of
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Fig. 21 Medical images with selected ROI, as indicated by the rectangular boxes, for testing the proposed
ISCEM and ISCEM extended to multiple objects, where two selected ROI images with two objects are selected
from the right medical image of the first column

proposed algorithm subject to such a limitation (requirement), could be granted to reach
a solution of a constrained optimization algorithm by observing the experimental results.
So, strictly speaking, the graph cut/grabcut model and the snake ones are considered as
quite different approaches from the proposed one from the aspect of accomplishing specified
goal (issue) and source-dependent applicability (fitness). Besides, execution of a concise and
efficient algorithm for medical images on a medical computer/server tends to conserve more
energy (i.e., attain higher power-saving effect), produce less hazardous gas emitting from a
working motherboard and maintain the nominal environmental temperature, which comply
with the current issue and trend of green computing and green IT. Moreover, considering
execution of the concise, energy-efficient yet effective ISCEM/ISCEM-MOC for gray-level
medical images over a large scale of computers/servers equipped at clinics, hospitals, med-
ical schools, and physical examination centers, not only the objective of accurate contour
extraction for gray-level medical images are attained but the purpose of environmentally
sustainable computing also would be served.
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Fig. 22 The experimental results of the proposed ISCEM and ISCEM extended to multiple objects. a, b, and
c, respectively shows the results of object skeletons, the IBPS and the ISCEM, where the results of the ROI
images with two objects, selected from the upper right medical image in Fig. 21, are shown in the lower right
of a, b, and c
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4 Conclusions

In this paper, an initial boundary pixel selection (IBPS) and segmental contour following
(SCF), proposed for object contour extraction within ROI in gray-level medical images, is
presented. The IBPS automatically searches efficiently for initial boundary pixels along ini-
tial scan lines and then iteratively generates new scan lines in between the previous pairs
of initial boundary pixels for searching for initial boundary pixels. Following the IBPS, the
SCF effectively traces each segmented contour formed by a pair of neighboring initial bound-
ary pixels found by the IBPS, by employing the concept of gravitational force and relative
direction, in constructing a closed object contour. The major contributions of the proposed
object extraction method are the automatic initialization of initial boundary points and the
efficiency in synchronously searching and following each segmented contour in constructing
a closed contour with high precision. Moreover, with a few modifications in the IBPS, the
ISCEM is extended for contour extraction of multiple objects without changing the overall
structure. Besides, the IBPS has the characteristics of being independent of boundary detec-
tion methods, hence, IBPS can also be applied to handle the contour initialization problem
in an active contour model or for other contour following methods. Consequentially, since
the proposed ISCEM possesses a highly regular structure for object(s) contour extraction of
medical images, its complexity is only slight raises with an increase of the processed medical
image complexity.
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