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Abstract The impulse response coefficients of a two-dimensional (2-D) finite impulse
response (FIR) filter naturally constitute a matrix. It has been shown by several research-
ers that, two-dimension (2-D) based algorithms that retain the natural matrix form of the
2-D filter’s coefficients are computationally much more efficient than the conventional one-
dimension (1-D) based algorithms that rearrange the coefficient matrix into a vector. In this
paper, two 2-D based algorithms are presented for the weighted least squares (WLS) design of
quadrantally symmetric 2-D FIR filters with arbitrary weighting functions. Both algorithms
are based on matrix iterative techniques with guaranteed convergence, and they solve the
WLS design problems accurately and efficiently. The convergence rate, solution accuracy
and design time of these proposed algorithms are demonstrated and compared with existing
algorithms through two design examples.

Keywords 2-D FIR filter · 2-D based algorithm · Linear operator · Weighted least squares
design

1 Introduction

Two-dimensional (2-D) digital filters have been widely applied in image processing, sonar
and radar signal processing, geophysical signal processing and so on (Lim 1990; Lu and
Antoniou 1992). The minimax and weighted least squares (WLS) are two frequently used
criterions for optimal designs of 2-D finite impulse response (FIR) filters. Usually, a WLS
design obtains smaller energy of the magnitude error and consumes less time than a minimax
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design, although it may result in larger maximum magnitude error than the minimax design.
In addition, a WLS design may obtain solutions close to the minimax filter by choosing a
proper weighting function or by using an iterative reweighting technique. Therefore, efficient
and numerically stable WLS algorithms are considerably important for further research of
2-D FIR filter design.

High computational complexity is a major problem encountered in optimal designs of 2-D
FIR filters. Unlike the conventional one-dimension (1-D) based design algorithms that rear-
range the filter’s coefficient matrix into a vector, two-dimension (2-D) based algorithms retain
the 2-D filter’s coefficient matrix in its natural form, leading to a considerable reduction in
computational complexity and memory space. However, up to the authors’ knowledge, most
of the design algorithms for 2-D FIR filters advanced so far, such as Gislason et al. (1993), Lu
(2002), Tzeng (2007), Lai and Cheng (2007), Shyu et al. (2011), Lu and Hinamoto (2011), are
1-D based. This has greatly limited the capability of fast designing 2-D FIR filters, especially
with high orders.

Several 2-D based algorithms for 2-D FIR filter designs have been reported in the litera-
ture, see, e.g., Zhu et al. (1997), Hsieh et al. (1997), Gu and Aravena (1994), Aravena and
Gu (1996), Zhao and Lai (2010, 2011). In Zhu et al. (1997), an analytical solution to the
unweighted LS design of 2-D FIR filters has been obtained. But the unweighted LS solution
usually has heavy magnitude overshoot near the cutoff frequency of the frequency response.
The iterative 2-D based WLS algorithm proposed by Hsieh et al. (1997) for the minimax
design of 2-D FIR filters is efficient but may not converge. Gu and Aravena (1994) devel-
oped two iterative algorithms for the WLS design of 2-D FIR filters. But the weight function
can only be 0- and 1-valued. In Aravena and Gu (1996), they presented other two WLS
algorithms, a fix point algorithm and a conjugate gradient algorithm, where the weighting
functions can be arbitrarily nonnegative valued. Their algorithms are much more efficient
than the conventional 1-D based algorithms, but the design time is still long. In addition,
only equally spaced frequency grid can be used in their algorithms. Recently, the authors
developed a 2-D based algorithm in Zhao and Lai (2011) for the WLS design of quadrantally
symmetric FIR filters based on a matrix iterative technique. The algorithm converges very
fast, but the weighting function is two-valued.

In this paper, we will investigate the WLS design of 2-D FIR filters with arbitrary weight-
ing functions and present two matrix iterative algorithms for the design problem. Some
preliminary results of the first algorithm were presented in Zhao and Lai (2010). Simulation
results in Zhao and Lai (2010) show that the algorithm is more efficient and flexible than
those of Aravena and Gu (1996) in general, especially for rectangular filters. However, we
find that the iteration number of the algorithm increases dramatically with the filter order
and transition band width for several types of 2-D filters, such as elliptic and fan filters. In
this paper, we introduce an appropriate scalar parameter into the algorithm to reduce the
spectral radius of corresponding iterative operator, resulting in an improved algorithm with
a faster convergence rate. In addition, we observe from simulations that the improved algo-
rithm returns more accurate solutions. Two design examples are presented to demonstrate the
effectiveness of the algorithms. Comparisons with existing algorithms in terms of iteration
number, design time and design accuracy are provided.

This paper is organized as follows. In Sect. 2, the WLS design problem of 2-D quadran-
tally symmetric FIR filters is formulated as an optimization problem with a cost function
expressed in terms of the filter’s coefficient matrix, and a theorem for the uniqueness condi-
tion of the optimal solution to the design problem is established. The two efficient 2-D based
algorithms for the WLS design problem are presented in Sect. 3. An iterative procedure
for the largest eigenvalue of a nonnegative, compact, and self-adjoint operator defined on a
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finite-dimensional Hilbert space is also developed in Sect. 3. In Sect. 4, two design examples
are provided to demonstrate the properties of the presented algorithms and comparisons are
made with existing algorithms. Finally, the conclusions are drawn in Sect. 5.

2 WLS design problem of 2-D quadrantally symmetric FIR filters

Consider an N1 × N2 2-D FIR filter with real impulse response {h(n1, n2), n1 =
0, 1, . . . , N1 − 1; n2 = 0, 1, . . . , N2 − 1}, whose frequency response can be expressed
as

H(e jω1 , e jω2) =
N1−1∑

n1=0

N2−1∑

n2=0

h(n1, n2)e
− j (n1ω1+n2ω2), (1)

where ω1 and ω2 are the horizontal and vertical frequencies, respectively. For convenience,
the frequency response (1) is often expressed in terms of its magnitude and phase responses
as

H(e jω1 , e jω2) = G(ω1, ω2)e
jϕ(ω1,ω2),

where G(ω1, ω2) is the magnitude response and ϕ(ω1, ω2) is the phase response, both of
which are real functions of ω1 and ω2. It is well known that if the impulse response h(n1, n2)

satisfies the restriction: h(n1, n2) = h(n1, N2 −1−n2) = h(N1 −1−n1, n2), then the phase
response ϕ(ω1, ω2) is a linear function of ω1 and ω2, and the magnitude response G(ω1, ω2)

is symmetric with respect to both of the ω1 and ω2 axes. Such 2-D filters are referred to as
quadrantally symmetric filters.

We can write the magnitude response of a quadrantally symmetric filter in a vector-matrix
form as

G(ω1, ω2, A) = φT (ω1, N1)Aφ(ω2, N2) (2)

where the superscript “T” denotes the transpose operation, φ(ω, N ) is a vector given by

φ(ω, N ) =
⎧
⎨

⎩

[
1√
2
, cos(ω), cos(2ω), . . . , cos

( N−1
2 ω

)]T
, for odd N ,

[
cos

(
ω
2

)
, cos

( 3ω
2

)
, . . . , cos

( N−1
2 ω

)]T
, for even N ,

(3)

and A= (ai j ) is a real coefficient matrix related to the impulse response h(n1, n2). It follows
from (2) and (3) that the dimension of matrix A is L1 × L2, where

Lk =
{

Nk/2, for even Nk

(Nk + 1)/2, for odd Nk
; k = 1, 2.

The entries of A are completely determined by the impulse response {h(n1, n2)}, and vice
versa. For example, if both N1 and N2 are even, the entries of A, ai j ’s, are related to h(n1, n2)

by

ai j = 4h(L1 − i, L2 − j), i = 1, 2, . . . , L1; j = 1, 2, . . . , L2.

Due to the quadrantal symmetry, we only need to consider the approximation of the
desired frequency response on the quarter-plane � = {(ω1, ω2)|0 ≤ ω1 ≤ π; 0 ≤ ω2 ≤ π}
for the design of quadrantally symmetric filters. We discretize � by an M1 × M2 rectangular
frequency grid defined by � = {(ω1i , ω2 j )|i = 1, 2, . . . , M1; j = 1, 2, . . . , M2}, where
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0 ≤ ω1i ≤ π, 0 ≤ ω2 j ≤ π,ω1i �= ω1k for i �= k, and ω2 j �= ω2l for j �= l. It should be
pointed out that we don’t assume uniform frequency grid �. This implies that ω1i , ω2 j can
take arbitrary values satisfying 0 ≤ ω1i , ω2 j ≤ π . Let the desired magnitude response be
denoted by D(ω1, ω2) , a real-valued function of ω1 and ω2. Then, the sum of the weighted
square errors between the desired and designed magnitude responses is formulated as

E(A) =
M1∑

i=1

M2∑

j=1

W (ω1i , ω2 j )|G(ω1i , ω2 j , A) − D(ω1i , ω2 j )|2, (4)

where W (ω1, ω2) is a nonnegative weighting function. Without loss of generality, we assume
that maxi, j {W (ω1i , ω2 j )} = 1.

In order to represent E(A) in a matrix form, we define the following matrices and vectors:

D = (di j ), di j = D(ω1i , ω2 j ); (i = 1, 2, . . . , M1; j = 1, 2, . . . , M2)

W = (wi j ), wi j = W (ω1i , ω2 j ); (i = 1, 2, . . . , M1; j = 1, 2, . . . , M2)

W( 1
2 ) = (

√
wi j ); (i = 1, 2, . . . , M1; j = 1, 2, . . . , M2)

pi = ϕ(ω1i , N1), i = 1, 2, . . . , M1; q j = ϕ(ω2 j , N2); j = 1, 2, . . . , M2

P = [p1, p2, . . . , pM1 ]; Q = [q1, q2, . . . , qM2 ].

Then, Eq. (4) can be rewritten as

E(A) = ‖(PT AQ − D) ◦ W( 1
2 )‖2

F , (5)

where the notation ‖∗‖F and “◦” denotes the Frobenius norm of a matrix and the Hadamard
matrix product, respectively.

The WLS design of the 2-D quadrantally symmetric filter with coefficient matrix A is to
minimize the sum of the weighted square errors, E(A), with respect to A, i.e.,

min
A

E(A). (6)

Theorem 1 The cost function E(A) in (6) is a convex function. Further, it is strictly convex
if and only if

‖(PT XQ) ◦ W( 1
2 )‖F �= 0 (7)

for all X ∈ R
L1×L2 with X �= 0, where R

L1×L2 denotes the collective of all L1 × L2 real
matrices.

Theorem 1 was originally given in Zhao and Lai (2010) without proof. We now give a rigorous
proof of the theorem as follows.

Proof In order to show the convexity of E(A), it is only required to prove that the following
inequality holds for any matrices A, B ∈ R

L1×L2 and any scalar λ ∈ (0, 1).

[λE(A) + (1 − λ)E(B)] − E(λA + (1 − λ)B) ≥ 0. (8)
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Using (4) and noting that G(ω1i , ω2 j , X) = pT
i Xq j for any matrix X ∈ R

L1×L2 , we have

[λE(A) + (1 − λ)E(B)] − E(λA + (1 − λ)B)

= λ

M1∑

i=1

M2∑

j=1

wi j |pT
i Aq j − di j |2 + (1 − λ)

M1∑

i=1

M2∑

j=1

wi j |pT
i Bq j − di j |2

−
M1∑

i=1

M2∑

j=1

wi j |λpT
i Aq j + (1 − λ)pT

i Bq j − di j |2

= λ

M1∑

i=1

M2∑

j=1

wi j |pT
i Aq j − di j |2 + (1 − λ)

M1∑

i=1

M2∑

j=1

wi j |pT
i Bq j − di j |2

−
M1∑

i=1

M2∑

j=1

wi j |λ(pT
i Aq j − di j ) + (1 − λ)(pT

i Bq j − di j )|2

=
M1∑

i=1

M2∑

j=1

λwi j |pT
i Aq j − di j |2 +

M1∑

i=1

M2∑

j=1

(1 − λ)wi j |pT
i Bq j − di j |2

−
M1∑

i=1

M2∑

j=1

wi j [λ2(pT
i Aq j − di j )

2 + (1 − λ)2(pT
i Bq j − di j )

2

+ 2λ(1 − λ)(pT
i Aq j − di j )(pT

i Bq j − di j )]

= λ(1 − λ)

M1∑

i=1

M2∑

j=1

wi j |pT
i (A − B)q j |2

= λ(1 − λ)‖[PT (A − B)Q] ◦ W( 1
2 )‖2

F ≥ 0. (9)

In addition, we can see from (9) that for any matrices A, B ∈ R
L1×L2 with A �= B, the

inequality (8) becomes strict if and only if ‖ (PT XQ) ◦ W( 1
2 ) ‖F �= 0 for all nonzero matrix

X ∈ R
L1×L2 . This completes the proof. 
�

The strict convexity of the cost function E(A) guarantees the uniqueness of the opti-
mal solution to problem (6). Throughout the paper, we assume that E(A) is strictly convex,
i.e., the condition (7) holds. The optimality condition of the optimization problem (6) is
d E(A)/dA = 0, or, from Zhao and Lai (2010),

P[(PT AQ) ◦ W]QT = P(D ◦ W)QT . (10)

For the unweighted case, i.e., wi j = 1 for all i = 1, 2, . . . , M1 and j = 1, 2, . . . , M2, the
coefficient matrix A to be determined can be obtained analytically by

A = (PPT )−1PDQT (QQT )−1 (11)

provided that both PPT and QQT are nonsingular. It is not difficult to verify that the function
spaces spanned by the base

{ 1/
√

2, cos(ω), cos(2ω), . . . , cos((N − 1)ω/2)}, for odd N ,

or

{ cos(ω/2), cos(3ω/2), . . . , cos((N − 1)ω/2)}, for even N ,
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satisfy the Haar condition, which means that the matrices P and Q are of full ranks if M1 ≥ L1

and M2 ≥ L2. In practical design, the density of the frequency grid should be set to M1 ≥ 2N1

and M2 ≥ 2N2. Therefore the matrices PPT and QQT are positive and nonsingular.

3 Efficient 2-D based algorithms

In this section, two efficient 2-D based algorithms are presented for the WLS design problem
(6) of quadrantally symmetric 2-D FIR filters with arbitrary nonnegative weighting functions.
Both algorithms are based on the optimality condition (10) and solve for the coefficient matrix
A by iterative methods. The first algorithm is a basic one, some preliminary results of which
were presented in Zhao and Lai (2010), and the second algorithm is an improved version of
the basic algorithm.

3.1 Matrix iterative algorithm I

By replacing the matrix W in the left hand side of (10) by (U + W − U), where U is a
unit-entry matrix with the same size as W, we get

P[(PT AQ) ◦ (U + W − U)]QT = P(D ◦ W)QT , (12)

or,

(PPT )A(QQT ) + P[(PT AQ) ◦ (W − U)]QT = P(D ◦ W)QT ,

which motivates the following iterative matrix equation for the solution matrix of the opti-
mality condition (10).

An+1 = (PPT )−1P[D ◦ W + (PT AnQ) ◦ (U − W)]QT (QQT )−1. (13)

In order to establish the convergence of the above iterative equation, we introduce two
bounded linear operators T1 and T2 on the matrix space R

L1×L2 , defined respectively by

T1(X) = (PPT )−1P[(PT XQ) ◦ W]QT (QQT )−1,

T2(X) = (PPT )−1P[(PT XQ) ◦ (U − W)]QT (QQT )−1,

satisfying the relation T2 = T0 − T1, where T0 represents the identity operator on R
L1×L2 .

Then, we can rewrite the iterative equation (13) in a compact form as

An+1 = D̂ + T2(An), (14)

where

D̂ = (PPT )−1P(D ◦ W)QT (QQT )−1. (15)

It has been verified in Zhao and Lai (2010) that both T1 and T2 are compact self-adjoint
operators, and thus all of their eigenvalues are real numbers. Moreover, because the operators
T1 and T2 are defined on the finite-dimensional space R

L1×L2 , the numbers of eigenvalues
of T1 and T2 are both finite, and their spectra, denoted by σ(T1) and σ(T2), are sets of all
eigenvalues of T1 and T2 respectively. Then, a sufficient condition for the convergence of
iterative equation (14) can be described by

rσ (T2) = max{|λ|, λ ∈ σ(T2)} < 1, (16)

where rσ (∗) represents the spectrum radius of an operator.
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Further, we define the following two quantities for a bounded self-adjoint linear operator
T defined on a Hilbert space H:

m(T ) = inf〈x,x〉=1
〈T (x), x〉, x ∈ H, (17)

M(T ) = sup
〈x,x〉=1

〈T (x), x〉, x ∈ H, (18)

where the notation 〈∗, ∗〉 represents an inner product defined on the Hilbert space H. Then,
from the basic linear operator theories (see,e.g., Gohberg et al. 2003), m(Ti ) and M(Ti ) are
the smallest and largest eigenvalues of Ti (i = 1, 2).

The following lemma is a key lemma for the convergence of the iterative equation (14).

Lemma 1 0 < m(T1) ≤ M(T1) ≤ 1, and 0 ≤ m(T2) ≤ M(T2) < 1.

Proof Firstly, we define an inner product on the matrix space R
L1×L2 by

〈X, Y〉1 = tr{(PT XQ)T (PT YQ)}, (19)

where tr{∗} represents the trace of a matrix. Noting that matrices P and Q are of full ranks,
it is not difficult to verify that (19) is indeed an inner product of X and Y.

Then, for any nonzero matrix X �= 0 ∈ R
L1×L2 , we have

〈T1(X), X〉1 = tr{[PT T1(X)Q]T (PT XQ)}
= tr{(PT XQ)T PT T1(X)Q}
= tr{(PT XQ)T PT (PPT )−1P[(PT XQ) ◦ W]QT (QQT )−1Q}
= tr{QT (QQT )−1Q(QT XP)PT (PPT )−1P[(PT XQ) ◦ W]}
= tr{(PT XQ)T [(PT XQ) ◦ W]}
= ‖(PT XQ) ◦ W( 1

2 )‖2
F

It follows from definition (17) that m(T1) ≥ 0. If m(T1) = 0, zero would be an eigen-
value of T1, i.e., 0 ∈ σ(T1). Then there is a X �= 0 such that T1(X) = 0 · X = 0 and thus
〈T1(X), X〉1 = 0, which is contradictory to condition (7). Consequently, m(T1) > 0.

Similarly, it can be obtained that

〈T2(X), X〉1 = tr{(PT XQ)T [(PT XQ) ◦ (U − W)]} ≥ 0, (20)

noting that all entries of matrix U − W are nonnegative. Equation (20) means m(T2) ≥ 0.
From T1 = T0 − T2, we have

M(T1) = sup
〈X,X〉1=1

〈T1(X), X〉1

= sup
〈X,X〉1=1

〈X − T2(X), X〉1

= 1 − inf〈X,X〉1=1
〈T2(X), X〉1

= 1 − m(T2) ≤ 1.

In the same way, we can obtain

M(T2) = 1 − m(T1) < 1,

which completes the proof. 
�

123



424 Multidim Syst Sign Process (2013) 24:417–434

Lemma 1 shows that T1 is a positive operator with rσ (T1) ≤ 1, and T2 is a nonnegative
operator with rσ (T2) < 1. It follows immediately that:

Theorem 2 Given an initial matrix A0, let {An} be the matrix sequence generated by the
iterative equation (14), then the sequence {An} converges.

One of the good choices for the initial matrix A0 is D̂ given in (15). Then the matrix
iterative algorithm I can be described as follows:

Matrix Iterative Algorithm I
Step 1: Given the frequency grid �, the filter lengths N1, N2, and an error tolerance ε > 0, construct the desired
magnitude matrix D and the weighted matrix W. Compute the matrices P and Q. Let P̂ = (PPT )−1P, Q̂ =
(QQT )−1Q. Compute the matrix D̂ by (15). Let A0 = D̂, Ŵ = U − W and n = 0.
Step 2: Let An+1 = D̂ + P̂[(PT AnQ) ◦ Ŵ]Q̂. If ‖ An+1 − An ‖F < ε, terminate the algorithm. Otherwise,
let n = n + 1 and repeat this step.

3.2 Matrix iterative algorithm II

Compared with existing algorithms, the matrix iterative algorithm I achieves great improve-
ment in design time (Zhao and Lai 2010). However, from a large number of design examples
we observe that the iteration number of the matrix iterative algorithm I fast increases with
the filter size and the transition band width for certain types of 2-D filters, e.g., elliptic filters
and fan filters.

From the iterative equation (14), it can be seen that the convergence rate of the matrix iter-
ative algorithm I is mainly determined by the spectral radius of T2, i.e., rσ (T2). The smaller
the rσ (T2) is, the faster the matrix iterative algorithm I converges. This motivates us to seek
other iterative operators possessing smaller spectral radius than rσ (T2).

To this end, we introduce a positive real parameter μ > 0 into the matrix equation (12) as

P[(PT AQ) ◦ (W − 1

μ
U + 1

μ
U)]QT = P(D ◦ W)QT .

Then we have

A = (PPT )−1P[μD ◦ W + (PT AQ) ◦ (U − μW)]QT (QQT )−1,

which suggests the following iterative equation for the solution of Eq. (10)

An+1 = (PPT )−1P[μD ◦ W + (PT AnQ) ◦ (U − μW)]QT (QQT )−1. (21)

Define a linear operator T3 on the matrix space R
L1×L2 by

T3(X) = (PPT )−1P[(PT XQ) ◦ (U − μW)]QT (QQT )−1.

It is not difficult to verify that the operators T3 and T1 satisfy T3 = T0 − μT1. Hence, T3 is
a bounded, compact and self-adjoint operator. In addition, the iterative equation (21) can be
rewritten as

An+1 = μD̂ + T3(An), (22)

with the same D̂ as in (15).
Clearly, for the special case of μ = 1, we have T3 = T2. Now, we want to seek an optimal

value μ∗ of the parameter μ > 0, at which the spectral radius of T3, rσ (T3), achieves its
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minimal value. Obviously, the minimal value of rσ (T3), i.e. the value of rσ (T3) at μ∗ is
definitely not larger than rσ (T2), which is equal to the value of rσ (T3) at μ = 1. In practice,
the minimal value of rσ (T3) is always less than rσ (T2). Then, once the optimal μ is found
and applied to (22), the convergence rate of the iterative equation (22) will be undoubtedly
faster than the matrix iterative algorithm I.

Theorem 3 The spectral radius of operator T3 attains its minimal value at

μ = 2

m(T1) + M(T1)
.

Proof Firstly, according to definition (17), we have

m(T3) = inf〈X,X〉1=1
〈T3(X), X〉1

= inf〈X,X〉1=1
〈X − μT1(X), X〉1

= 1 − μ sup
〈X,X〉1=1

〈T1(X), X〉1

= 1 − μM(T1)

In a similar way, we can obtain

M(T3) = 1 − μm(T1).

The above results indicate that 1 − μM(T1) and 1 − μm(T1) are the smallest and largest
eigenvalues of T3, respectively. Consequently, the spectral radius of operator T3 is a function
of the parameter μ > 0, as given by

rσ (T3, μ) = max{|1 − μM(T1)|, |1 − μm(T1)|}, μ > 0.

Noting that 0 < m(T1) ≤ M(T1) ≤ 1, it can be easily obtained that

rσ (T3, μ) =

⎧
⎪⎨

⎪⎩

max{1 − μM(T1), 1 − μm(T1)} 0 < μ ≤ 1
M(T1)

,

max{μM(T1) − 1, 1 − μm(T1)} 1
M(T1)

< μ ≤ 1
m(T1)

,

max{μM(T1) − 1, μm(T1) − 1} 1
m(T1)

< μ

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − μm(T1), 0 < μ ≤ 1
M(T1)

,

1 − μm(T1),
1

M(T1)
< μ ≤ 2

m(T1)+M(T1)
,

μM(T1) − 1, 2
m(T1)+M(T1)

≤ μ ≤ 1
m(T1)

,

μM(T1) − 1, 1
m(T1)

< μ

=
{

1 − μm(T1), 0 < μ ≤ 2
m(T1)+M(T1)

,

μM(T1) − 1, 2
m(T1)+M(T1)

≤ μ.

Obviously, 1 − μm(T1) and μM(T1) − 1 are respectively monotonically decreasing and
increasing functions of μ, which implies that rσ (T3, μ) attains its minimal value at

μ = 2

m(T1) + M(T1)
.

The proof is complete. 
�
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In order to compute the optimal μ that makes rσ (T3) attain its minimal value, we need
to compute m(T1) and M(T1) first. From the proof of Lemma 1 we know that m(T1) =
1 − M(T2). Then, if we have obtained the largest eigenvalues of T1 and T2, i.e., M(T1) and
M(T2), the optimal μ can be computed by

μ = 2

1 − M(T2) + M(T1)
.

To this end, we present in the following a procedure to iteratively compute the largest
eigenvalue of a nonnegative, compact and self-adjoint operator T defined on a finite dimen-
sional Hilbert space H.

Procedure 1
Step 1: Given an initial point x0 in the space H, set k = 1.
Step 2: Let yk = T (xk−1).
Step 3: Let

xk = yk√〈yk , yk 〉 .

Step 4: Let γk = 〈xk , T (xk )〉, k = k + 1, and return Step 2.

It can be proved that the limit of the sequence {γk} generated by the above procedure is
just the largest eigenvalue of T, i.e., limk→∞ γk = M(T ). To this end, we need the following
theorem (Gohberg et al. 2003).

Theorem 4 Suppose T is a compact self-adjoint operator on Hilbert space H. There exist
an orthonormal system u1, u2, . . . of eigenvectors of T with corresponding eigenvalues
λ1, λ2, . . . such that for all x ∈ H,

T (x) =
∑

k

λk〈x, uk〉uk .

Because the Hilbert space H is finite-dimensional and T is nonnegative, T has a finite num-
ber of eigenvalues and all its eigenvalues are nonnegative. We assume T has s eigenvalues
described by λ1 ≥ λ2 ≥ · · · ≥ λs ≥ 0 with corresponding eigenvectors u1, u2, . . . , us

satisfying Theorem 4. Then, y1 obtained in Step 2 can be written as

y1 =
s∑

i=1

λiαi ui ,

where αi = 〈x0, ui 〉, i = 1, 2, . . . , s, according to Theorem 4. Consequently, x1 in Step 3 is
given by

x1 = y1√〈y1, y1〉 =
∑s

i=1 λiαi ui√
〈∑s

i=1 λiαi ui ,
∑s

i=1 λiαi ui 〉
.

Considering the orthonormality of the eigenvectors u1, u2, . . . , us , i.e.,

〈ui , u j 〉 =
{

0, i �= j

1, i = j
,
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we have

x1 =
∑s

i=1 λiαi ui√∑s
i=1 λ2

i α
2
i

.

In view of T (ui ) = λi ui for i = 1, 2, . . . , s, we further have

xk =
∑s

i=1 λk
i αi ui√∑s

i=1 λ2k
i α2

i

.

Therefore, γk in Step 4 is given by

γk = 〈xk, T (xk)〉 = 〈∑s
i=1 λk

i αi ui ,
∑s

i=1 λk+1
i αi ui 〉∑s

i=1 λ2k
i α2

i

=
∑s

i=1 λ2k+1
i α2

i∑s
i=1 λ2k

i α2
i

.

Dividing simultaneously by λ2k
1 α2

1 the numerator and denominator of the right hand side of
the above equation, we have

γk = λ1 + ∑s
i=2 λi (

λi
λ1

)2k(
αi
α1

)2

1 + ∑s
i=2(

λi
λ1

)2k(
αi
α1

)2
.

It then follows from λ1 ≥ λ2 ≥ · · · ≥ λs ≥ 0 that limk→∞ γk = λ1 = M(T ).
Combining the iterative equation (22) with Procedure 1, we finally obtain the following

improved iterative algorithm:

Matrix Iterative Algorithm II
Step 1: Given the frequency grid �, the filter lengths N1, N2, and two error tolerances ε1 > 0, ε2 > 0,
construct the desired magnitude matrix D and the weighted matrix W. Compute matrices P and Q. Let
P̂ = (PPT )−1P, Q̂ = (QQT )−1Q. Compute matrix D̂ by (15). Let A0 = D̂ and n = 0.
Step 2: Given an integer K > 0, let X0 = D̂, X̃0 = D̂, W̃ = U − W and k = 1. Compute

Yk = T1(Xk ) = P̂[(PT Xk−1Q) ◦ W]Q̂, Xk = Yk√〈Yk , Yk 〉1
,

Ỹk = T2(X̃k ) = P̂[(PT X̃k−1Q) ◦ W̃]Q̂, X̃k = Ỹk√
〈Ỹk , Ỹk 〉

1

.

Step 3: If ‖ Xk − Xk−1 ‖F + ‖ X̃k − X̃k−1 ‖F < ε1 or k > K , let

μ = 2

1 − 〈X̃k , T2(X̃k )〉2 + 〈Xk , T1(Xk )〉1
, Ŵ = U − μW,

and go to Step 4. Otherwise let k = k + 1 and repeat Step 3.
Step 4: Let An+1 = μD̂+ P̂[(PT AnQ)◦Ŵ]Q̂. If ‖ An+1 −An ‖F < ε2, terminate the algorithm. Otherwise,
let n = n + 1 and repeat this step.

In the above algorithm, the optimal μ described by Theorem 3 is obtained through Steps 2
and 3 (correspond to Procedure 1). It is easy to verify that the amount of computation required
in Step 2 of each iteration is about 2 times of that required in Step 4. If the number of iterations
required in Step 2 is too large, the efficiency of the entire algorithm will decrease. Thus, an
integer K, which is generally set as 15, is used to limit the largest number of iterations in
Step 2.
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Table 1 Comparison of Algorithms I and II with the CG algorithm for filters of different sizes in Example 1

Filter size Algorithm I Algorithm II CG Algorithm

Nit Tcpu (s) RI Nit Tcpu (s) RI I Nit Tcpu (s) Rc

19 × 21 39 0.036 1.051 × 10−7 24 (13) 0.045 1.774 × 10−8 12 0.27 4.278 × 10−10

41 × 41 118 0.53 6.571 × 10−6 70 (9) 0.33 1.476 × 10−6 20 1.58 1.066 × 10−8

55 × 56 295 2.1 9.408 × 10−5 179 (9) 1.5 2.550 × 10−5 36 3.6 2.285 × 10−7

71 × 81 1,225 18.45 4.081 × 10−3 883 (6) 12.8 1.317 × 10−3 75 18.48 1.857 × 10−6

4 Simulations and comparisons

In this section, we show properties of the two proposed algorithms and compare them with
existing algorithms through two design examples. In all algorithms, we use the same fre-
quency grid � with M1 = 4N1 and M2 = 4N2. The matrix iterative algorithm I has been
shown in Zhao and Lai (2010) to be very fast for designing rectangular filters. Thus in this
paper, we consider 2-D filters of other types, e.g., elliptic and fan filters.

Example 1 Design of elliptic FIR filters with the same specifications as in Zhao and Lai
(2010). The passband �p and stopband �s are described as follows:

�p =
{

(ω1, ω2)| ω2
1

(0.4π)2 + ω2
2

(0.5π)2 ≤ 1

}
,

�s =
{

(ω1, ω2)| ω2
1

(0.45π)2 + ω2
2

(0.55π)2 ≥ 1, ω1 ≤ 1, ω2 ≤ 1

}
.

The weights on �p,�s , and the transition band are 1, 0.25, and 0, respectively.

We conduct the design with the matrix iterative algorithm I, the matrix iterative algorithm
II, and the conjugate gradient (CG) algorithm in Aravena and Gu (1996). In Algorithm I and
the CG algorithm, the error tolerance is taken to be ε = 10−5. In Algorithm II, the two error
tolerances are taken to be ε1 = 10−3 and ε2 = 10−5, respectively. Filters with different sizes
have been designed, and Table 1 lists the numbers of iterations Nit , the design time Tcpu and
the relative errors RI , RI I and Rc defined respectively by

RI = EI − E

E
, RI I = EI I − E

E
, Rc = Ec − E

E
, (23)

where EI , EI I , Ec and E represent the cost function values obtained by Algorithm I, Algo-
rithm II, the CG algorithm and the 1-D WLS method in Gislason et al. (1993), respectively.
For Algorithm II, the iteration numbers needed to obtain the optimal μ in Step 2 are in the
bracket just behind the iteration numbers required in Step 4. Table 2 lists the maximum pass-
band errors (E p) and minimum stopband attenuations (As) obtained by the three algorithms.

It can be found from Table 1 that Algorithms I and II need less design time although more
iterations than the CG algorithm, and that Algorithm II consumes less design time, requires
fewer iterations, and obtains more accurate solutions than Algorithm I. From Table 2, we
find that the resulting filters obtained by the three algorithms have almost the same maximum
passband errors and minimum stopband attenuations. Figure 1 shows the magnitude response
of filter with size 19 × 21.
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Table 2 Maximum passband errors and minimum stopband attenuations obtained by Algorithms I and II and
the CG algorithm for filters of different sizes in Example 1

Filter size Algorithm I Algorithm II CG Algorithm

E p As (dB) E p As (dB) E p As (dB)

19 × 21 2.039 × 10−1 8.498 2.039 × 10−1 8.497 2.039 × 10−1 8.497

41 × 41 8.801 × 10−2 15.093 8.801 × 10−2 15.093 8.801 × 10−2 15.092

55 × 56 4.965 × 10−2 19.554 4.965 × 10−2 19.556 4.964 × 10−2 19.555

71 × 81 2.885 × 10−2 24.837 2.884 × 10−2 24.836 2.883 × 10−2 24.835

Fig. 1 Magnitude response of
the 19 × 21 elliptic filter in
Example 1

It should be pointed out that only uniform spaced frequency grid can be used in the CG
algorithm, while Algorithms I and II do not have this limitation. This makes the presented
algorithms more flexible. For example, the frequency grid may always include the frequen-
cies at the passband and stopband edges as the grid points in our algorithms, no matter what
the grid density is taken as. For a uniform grid, however, the band edges may be excluded
from the grid if the grid density is not properly chosen. This may result in large error at the
band edges.

Example 2 Design of N × N fan FIR filters with passband �p and stopband �s in the first
quadrant

�p = {(ω1, ω2) | 0 ≤ ω1 ≤ ω2 tan β, 0 ≤ ω2 ≤ π},
�s = {(ω1, ω2) | � ≤ ω1 ≤ π, 0 ≤ ω2 ≤ (ω1−�)

tan β
},

as shown in Fig. 2, where β = π/6 and � is a parameter used to control the width of the
transition band. The weights on the passband, stopband and transition band are taken to be
1, 0.5 and 0, respectively.

In this example, we use the matrix iterative algorithms I and II to design the fan filters. At
first, we design filters of different sizes with the same transition band width (� = 0.06π). The
design results are listed in Table 3. From the table, we see that both algorithms can design the
filters very efficiently. Although the iteration numbers required by both algorithms increase
with filter size, Algorithms II requires much fewer iterations than Algorithm I because the
iterative operator of Algorithm II has smaller spectral radius than that of Algorithm I. For
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Fig. 2 Frequency bands of the
fan filter in Example 2
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Table 3 Comparison between Algorithms I and II for filters of different sizes with � = 0.06π in Example 2

Filter size Algorithm I Algorithm II

Nit Tcpu (s) RI Nit Tcpu (s) RI I

21 × 21 27 0.014 3.494 × 10−8 17(7) 0.019 6.003 × 10−9

41 × 41 83 0.20 2.068 × 10−6 48(7) 0.17 4.276 × 10−7

61 × 61 312 2.8 1.284 × 10−4 200(6) 1.9 4.587 × 10−5

71 × 71 622 7.8 9.826 × 10−4 402(5) 5.4 3.371 × 10−4

low-order filters, the two algorithms have similar efficiency. But for high-order filters, Algo-
rithm II is more efficient than Algorithm I. Figure 3 illustrates the convergence rates of both
algorithms for the 41 × 41 filter. Evidently, Algorithm II converges faster than Algorithms I.

Then, we design filters of the same size 41×41 but with increasing transition band widths.
Table 4 summaries the design results. It is interesting that the influence of the transition band
width on the convergence is similar to that of the filter order. That is, the increase of the
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Table 4 Comparison of Algorithms I and II for the 41 × 41 filters with different transition band widths in
Example 2

Values of � Algorithm I Algorithm II

Nit Tcpu (s) RI Nit Tcpu (s) RI I

� = 0.04π 37 0.16 1.526 × 10−7 22(5) 0.11 4.428 × 10−8

� = 0.08π 203 0.63 2.536 × 10−5 115(11) 0.41 6.391 × 10−6

� = 0.1π 583 1.4 4.216 × 10−4 375(7) 0.78 1.408 × 10−4

� = 0.12π 1520 4.7 5.088 × 10−3 963(9) 3.0 1.556 × 10−3

Fig. 4 Magnitude response of
the 41 × 41 fan filter with
� = 0.06π in Example 2

transition band width results in corresponding increase of the iteration number. A reason for
this observation is, the increase of the transition band leads to increase of the spectral radius
of the iterative operators of Algorithms I and II, and thus leads to decrease of the convergence
rates of the algorithms.

When the transition band is narrow, the efficiencies of the two algorithms are close to
each other. But with the increase of the transition band width, the efficiency superiority of
Algorithm II over Algorithm II becomes obvious. Figure 4 shows the magnitude response of
the 41 × 41 filter with � = 0.06π .

As a comment, an empirical value of μ instead of its optimal value can also work for
Algorithm II. If we have a good estimation of the optimal μ, we needn’t compute its optimal
value, and then the total computation time could be reduced further. To this end, we examine
the dependence of the optimal μ on the filter size and transition band width. In order to obtain
a value of μ closer to its optimal value, the error tolerance ε1 in Algorithm II is now set to
10−4, and the iteration number limit set by the integer K in Step 2 is removed. We first fix the
transition band width by � = 0.06π . The change of the optimal μ with the filter size N is
shown in Fig. 5. Then we fix the filter size by 41 × 41, the values of the optimal μ versus �

ranging from 0.01π to 0.12π in step of 0.01π are shown in Fig. 6. We can see from the two
figures that the optimal value of μ increases with the filter size and transition band width.

In order to show the dependence of the iteration number on the parameter μ, we show
in Fig. 7 the change of the iteration number required by Algorithm II for the filter with
N = 41, 45 and � = 0.05π, 0.06π when the optimal μ is replaced by some preset μ values
ranging from 1 to 1.9. With the increase of μ, the iteration number decreases gradually at
first and then increases fast when μ is close to 2.
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Fig. 5 Value of μ versus the
filter size N
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Fig. 7 Dependence of the
iteration number on μ
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We find from a large number of simulations that the optimal μ satisfies 1 < μ < 2. For
most 2-D filters of different shapes except for the rectangular filters, for which Algorithm I
is efficient enough, 1.7 is a very good value of μ to replace its optimal value.
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5 Conclusions

Two efficient 2-D based algorithms have been presented in this paper for the WLS design of
2-D FIR filters with arbitrary weighting functions. Both algorithms have been derived from
the optimal condition of the design problem. Efficiencies and design accuracies of these
algorithms have been demonstrated and compared with existing algorithms through design-
ing 2-D filters of different shapes, different orders and with different transition band widths.
Results show that Algorithm II needs fewer iterations than Algorithm I and obtains more
accurate solutions. Comparisons also show that Algorithm II consumes less design time than
the conjugate gradient algorithm of Aravena and Gu (1996).
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