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Abstract Intensive signal processing applications appear in many application domains
such as video processing or detection systems. These applications handle multidimensional
data structures (mainly arrays) to deal with the various dimensions of the data (space, time,
frequency). A specification language allowing the direct manipulation of these different
dimensions with a high level of abstraction is a key to handling the complexity of these appli-
cations and to benefit from their massive potential parallelism. The Array-OL specification
language is designed to do just that. We introduce here an extension of Array-OL to deal
with states or delays by the way of uniform inter-repetition dependences. We show that this
specification language is able to express the main patterns of computation of the intensive
signal processing domain.

Keywords Multidimensional signal processing · Dataflow · Synchronous dataflow ·
Array-OL · Data parallelism

1 Introduction

Computation intensive multidimensional applications are predominant in several application
domains such as image and video processing or detection systems (radar, sonar). By multi-
dimensional, we mean that they manipulate primarily multidimensional data structures such
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as arrays. For example, a video is a 3D object with two spatial dimensions and one temporal
dimension. In a sonar application, one dimension is the temporal sampling of the echoes,
another is the enumeration of the hydrophones and others such as frequency dimensions can
appear lately during the computation. Actually, such an application manipulates a stream of
3D arrays.

Dealing with such applications presents a number of difficulties:

• They are often massively parallel and to be able to benefit from this massive parallelism,
it must be fully expressed.

• Only a few models of computation are multidimensional (and thus allow to express the
full potential parallelism of the applications) and none of them are widely used.

• The patterns of access to the data arrays are diverse and complex. They are actually the
main problem when trying to optimize these applications.

• Scheduling these applications with bounded resources and time is challenging, especially
in a parallel and distributed context.

As we will see in Sect. 2, there has been a few attempts to design specification languages
or models of computation for this application domain. The challenge for these languages
is to provide a way to specify multidimensional data accesses without compromising the
usability of the language and if possible provide a way to statically schedule these applica-
tions on parallel hardware platforms. The features that a good language for multidimensional
intensive signal processing ought to possess are a way to access the multidimensional data
structures via sub-arrays, the support of sliding windows, the possibility to deal with cyclic
data accesses, the possibility to deal with several sampling rates in the same specification and
some way to express delays or simple stateful computations such as recursive filters. These
features should be directly available in the language to allow the programmer to express the
full potential parallelism of his application.

We propose here an extension of the Array-OL model of specification to deal with state
or delay modeling. We call this new language Array-OL with delays. After a review of the
current language proposals for multidimensional signal processing in Sect. 2, we recall the
bases of Array-OL in Sect. 3 and present our extension in Sect. 4.

2 Related work

Only a few models of computation (MoC) have attempted to propose formalisms to model
and statically schedule multidimensional signal processing applications.

Table 1 presents a comparison of several languages (or models of computation) dedicated
to signal processing. This comparison highlights the suitability of the various languages for
intensive multidimensional signal processing. The main comparison criteria are the allowed
data structures (mono dimensional data flows or multidimensional arrays) and the expressivi-
ty of the access functions to these data structures. The class of applications these languages are
able to deal with is also constrained by the control flow mechanisms they allow. As a common
point, all these languages permit static scheduling in order to build efficient implementations.
We have deliberately not included the dynamic variants of SDF or general purpose parallel
programming languages though some of their features could be interesting in our context.

Most of the compared languages are based on SDF (Synchronous Data Flow) or on
its multidimensional extension, MDSDF (Multi-dimensional Synchronous Data Flow). A
detailed comparison of MDSDF, GMDSDF and Array-OL (without delays) is available in
Dumont and Boulet (2005). In Sect. 2.1 we make a more pragmatic comparison between
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Table 1 Suitability of various models of computation for intensive signal processing

MoC Data type Access type Access generality Control
structures
DelaysSliding Sub/over Non //

windows sampling to the axes

SDF (Lee and Messerschmitt
1987a,b)

1D sub-array − − +

CSDF (Bilsen et al. 1995) 1D sub-array − − +
MDSDF (Lee 1993; Chen

and Lee 1995)
mD sub-array − + − +

GMDSDF (Murthy 1996;
Murthy and Lee 2002)

mD sub-array − + + +

WSDF (Joachim Keinert and
Haubelt 2005; Keinert
et al. 2006)

mD sub-array + + − +

Array-OL (Demeure et al.
1995; Demeure and Del
Gallo 1998)

cyclic mD sub-array + + + −

Array-OL cyclic mD sub-array + + + +
with delays

Stream-IT (Thies et al. 2002) 1D sub-array + + +
Alpha (Le Verge et al. 1991;

de Dinechin et al. 1995)
polyhedra affine + + + +

Sisal (Gaudiot et al. 2001;
Attali et al. 1995)

mD sub-array + + − +

SaC (Scholz 2003) mD sub-array + + + +

Concerning the data type column, 1D means that the scheduling considers mono-dimensional data streams
(that may carry multidimensional arrays as in StreamIT), mD means that these data streams are replaced by
multidimensional arrays, cyclic mD means that some dimensions of these multidimensional arrays may be
cyclic and polyhedra means that the language handles convex polyhedra of integer points. A “+” in a column
means that the feature is supported, a “−” that it is not

the Array-OL model and the class of SDF models, including the recently proposed WSDF
(Windowed Synchronous Data Flow) model. We then present in Sect. 2.2 some other lan-
gages that have been proposed for various purposes and that have some nice features for the
intensive signal processing domain.

The goals of Array-OL and the class of models based on multi-dimensional SDF are sim-
ilar and although they are very different on their form, they share a number of principles such
as:

• Data structures should make the multiple dimensions visible.
• Static scheduling should be possible with bounded resources.
• The application domain is the same: intensive multidimensional signal processing appli-

cations.

As can be seen in the table, Array-OL with delays can easily deal with all the following
requirements of the application domain:

• Access to multidimensional arrays by regularly spaced sub-arrays: Intensive multidimen-
sional signal processing is characterized by extremely regular and parallel data treatment.
In order to fully express all the characteristics of such applications, it is essential to com-
pletely and correctly describe all this regularity.
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• Ability to deal with sliding windows: Sliding window algorithms are fundamental parts
of signal processing systems. Many of the well known data flow models have difficulties
manipulating key concepts for describing such applications, like multiple data consump-
tion and border processing.

• Ability to deal with cyclic array dimensions: In the case of some applications where certain
spatial dimensions may represent physical tori—like hydrophones around a submarine—
the ability to specify cyclic array dimensions is crucial. Also after a discrete Fourier
transform, the frequency dimension is cyclic. To deal with bands of frequencies—as
when removing some jamming by nullifying a band of frequencies in a software radio
application—the ability to address in a cyclic way a range of indices is very important.

• Ability to sub/over sample the arrays: Application constrains may cause certain compo-
nents to consume arrays that represent sub/over samples of the available arrays. Thus the
MoC should be able to deal with different rates of production or consumption of the data.

• Hierarchical specification to deal with complex systems: A hierarchical specification is
mandatory to model complex applications. It favors modularity and component reuse
while allowing the structuring of the application at different granularity levels.

• Expression of delays: Delays and self-loops are needed to allow tasks to maintain state
information in a data-flow language (for example to deal with recursive filters).

SDF allowing hierarchical contructions implies that all the extensions also allow such
constructions.

The possibility to define sub-arrays that are not parallel to the axes is possible with
Array-OL and GMDSDF though it may not be necessary for the multidimensional signal
processing domain. In both cases it is a consequence of the generality of the approach. The
control flow mechanisms are very limited in Array-OL. More complex mechanisms based
on mode automata have been proposed by Labbani et al. (2006, 2005) and are under imple-
mentation in Gaspard2 (DaRT Team LIFL/INRIA 2008).

2.1 SDF and its extensions

2.1.1 SDF

The SDF (Synchronous Data Flow) model was created and developed by Edward A. Lee since
1986 in order to model simple dataflow systems. Lee has integrated the model in his well-
known modeling and simulation environment for embedded systems: Ptolemy. In SDF, an
application is described as an oriented graph; each node consumes data on its incoming edges
and produces data on its outgoing edges, edges representing one-dimensional data streams.
In order to make an SDF application statically defined, two restrictions were introduced to
the SDF model:

• first, any node (named “actor” in Ptolemy) always consumes and produces the same
amount of “tokens” (data elements) at each execution, amount known at modeling time;

• secondly, the values of data cannot influence the control flow.

The static definition property associated to SDF applications implies extremely interesting
consequences. It makes it possible to schedule the application at modeling time, to have a
deterministic execution, to detect deadlocks and to execute the application with the use of a
bounded amount of memory.

The delays are another important characteristic of the SDF model. A delay is a set of
initial tokens on an edge. The production of tokens by the task located just before it on the
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edge will be offset, but the consumption of the task located just after it will not change. A
delay causes the consumption task to initially take the values already present on the edge
before consuming the result of the production task.

Delays allow SDF to express cyclic graphs and an eventual blockage in the specification
can be statically detected.

A state is a special delay, expressed with an self-loop with delay on an actor, which allows
the actor to use the result of a certain iteration in a future one. Of course for the first iterations
there must be a default value, same as with delays. With a state, it is possible to describe
mathematical operations like the discrete integration or IIR filters.

Applications described with SDF have the major advantage of being statically defined,
but the restrictions on the model together with the mono-dimensionality aspect drastically
reduce the set of applications that it can be describe. There are two directions of evolution
for the SDF model in order to extend its domain of applicability. The first is the introduction
of multi-dimensionality explored with the Multi-Dimensional SDF(MDSDF) and its exten-
sions (GMDSDF, WSDF) and the second direction is by playing with the restrictions, by
allowing parameterized token manipulation (parameterized dataflow) or the introduction of
functionality modes when modeling an application (Cyclo Static Data Flow, Scalable Syn-
chronous Data Flow, Blocked Data Flow). What we must note is that all these evolutions,
being designed to be compatible with the SDF model and in the same time keep as much as
possible the static definition property, tend to get extremely complicated to manipulate (as
we will see later the case of GMDSDF).

In this paper we are interested only in the first type of extension, the one based on the
introduction of multi-dimensionality; the second is similar in goal with the control extension
of Array-OL mentioned earlier. The SDF level allows us to model 1-D streams by specify-
ing the dependences between the actors. The tokens carried by these streams can be simple
values but they can also be vectors or arrays. This type of multidimensionality is not appro-
priate for representing and manipulating complex multidimensional applications where some
data arrays may be produced and consumed in different way, the classical example is the
corner-turn where a 2D array is produced in rows and consumed in columns.

2.1.2 MDSDF

MDSDF was first introduced to provide a way to express the number of tokens produced and
consumed in a stream with more than one dimension. The principles of MDSDF are quite
similar to those of SDF. On each task we just have to specify the number of data consumed
and produced on each dimension. Although some MDSDF applications can still be modeled
in SDF by a linearization of the dimensions, the description is more complicated to under-
stand and for most of real multi-dimensional applications it is impossible to specify in SDF
how to build the precedence graph.

2.1.3 GMDSDF

The MDSDF model allows the use of multidimensional streams but the consumption and
production of data is restricted to be parallel with the axes. In an attempt to remove these
restrictions, Praveen K. Murthy and Edward A. Lee have proposed another extension named
GMDSDF (Generalized Multidimensional Synchronous Dataflow). The idea is to produce
points on a lattice having a form decided by a special actor named source and that can be
modified by two other actors (decimator and expander). More details on how these actors
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can be found in Murthy and Lee (1995). What is important to point-out is that the extensions
introduced in GMDSDF made it extremely difficult to solve the system of equations needed
to compute the static scheduling. In order to compute this scheduling a lot of simplifications
are needed, described by Lee only for 2-D applications. Although GMDSDF is an extension
of MDSDF, it seems that the most convenient way to compute the scheduling is to con-
sider the GMDSDF applications as those of MDSDF (the simplifications proposed represent
reductions to generalized rectangles).

As Murthy and Lee said in their paper (Murthy and Lee 2002): “the definition of a
GMDSDF will not be easy to use in a programming environment” and they have not imple-
mented the model in PtolemyII. In our opinion, one of the problems is that only the expander
and the decimator can change the so-called lattices. So the modifications of the lattices and
the computations on the data of these lattices are done by actors which are at the same level
of modeling. The consumption of data on these lattices has to be very regular and does not
allow to take care of more complicated patterns of data access.

2.1.4 Windowed synchronous data flow

Windowed synchronous data flow is a recent model of computation based on MDSDF elab-
orated specially to deal with algorithms having sliding window functionalities, an important
part of any image processing system. As major lacks in previous data-flow models we can
mention the impossibility of having multiple data consumption and border processing. This
model abstracts important characteristics of sliding window algorithms and leads to more
precise representations but all this by the use of new concepts like virtual tokens, effective
tokens, virtual token union, window translation, border processing, etc. All the additional
concepts make the modeling extremely complicated and might even lead to ambiguities. The
model has the advantage of keeping the static definition property and it can be used as a
basis to solve many important questions about scheduling and buffer estimation of many
important static image processing algorithms but this with the cost of overcomplicating the
specifications and restricting the applicability of the model to sliding window algorithms.

2.2 Other languages

2.2.1 StreamIt

We just mention the StreamIt programming language and compilation infrastructure, specif-
ically engineered for modern streaming systems. It is designed to facilitate the programming
of large streaming applications, as well as their efficient mapping.

The StreamIt vision focuses on programmability, domain specific optimizations and archi-
tecture specific optimizations. It is an attractive programming model because of a simple
mapping from specification to implementation, but it has as a major draw-back its lack of
expressiveness due to the manipulation of only mono-dimensional streams.

2.2.2 Alpha

An other language worth mentioning is Alpha, a functional language based on systems of
recurrent equations (Karp et al. 1967). Alpha is based on the polyhedral model, which is
extensively used for automatic parallelization and the generation of systolic arrays. Alpha
shares some principles with Array-OL:
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• Data structures are multidimensional: union of convex polyhedra for Alpha and arrays
for Array-OL.

• Both languages are functional and single assignment.

With respect to the application domain, arrays are sufficient and more easily handled by
the user than polyhedra. Some data access patterns such as cyclic accesses are more easily
expressible in Array-OL than in Alpha.

2.2.3 Sisal

Sisal (Stream and Iteration in a Single Assignment Language) is a single assignment func-
tional language designed with the goal of providing a general-purpose user interface for
a wide range of parallel processing platforms. Its semantics define the dynamic of a data-
flow graph, Sisal expressions evaluate and return values based solely on the values bound
to their formal arguments and constituent identifiers. The initial Sisal definition [version
1.2 Gaudiot et al. (2001)] is based on the one-dimensional array model. In this definition
arrays could be constructed by the concatenation of the inner dimension arrays to build a
single one-dimension array, favoring optimizations such as vectorization. The disadvantages
of this design are that arrays must be stored contiguous in memory and that the inner vectors
must always have the same size.

The initial definition has been extended in Attali et al. (1995) to allow multi-dimen-
sional semantics. To express potentially infinite sequences with non-strict semantics and to
provide pipelined parallelism, streams can be designed in Sisal. In the semantics for the
multi-dimensional arrays, the subarrays can have different sizes. Differently from the initial
version, the second one attempts to express array accesses in a structural way rather than
element by element. Placement specification can be used to map the values of a subarray into
a geometrically defined subset of the original array, to describe diagonal components using
a dot notation or an arbritrary placement of values when an array is used as vector subscript.
Nonetheless, predefined subarray accesses remain parallel with the axes or diagonal and in
order to express structures like cyclic accesses, subarray placement must be defined element
by element.

Array-OL can express more complex subarray structures than the structural array expres-
sions of Sisal.

2.2.4 SaC

The expressive power of Sisal does not stands out very much against that of imperative
languages. SaC (Scholz 2003) (Single Assignment C) is a language that tries to integrate
n-dimensional arrays with constant access time into imperative languages. It picks up on the
design principles of Sisal but introduces the n-dimensional arrays as the major data structures.

An array in SaC is represented by a one-dimensional data vector which contains its ele-
ments and a shape vector which defines its structure, by specifying the number of axes (or
the dimensionality) and the number of elements (index range) along each axis of the array.
Using the reshape built-in primitive a n-dimensional array can be defined or redefined by
changing its shape.

Similar to other array languages, SaC suggests using compound array operations which
apply uniformly to all the elements or to the elements of the coherent subarrays. Programming
array computations can be made decidedly more concise, comprehensible, and less suscepti-
ble to errors using compound array operations rather than nesting of loops that traverse array
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elements with specific starts, stops and strides. These operations usually involve decompos-
ing arrays into subarrays and re-assembling them in a different form. In SaC the chosen
approach is to provide sufficiently versatile language constructs which allow to specify in a
concise and efficiently executable form shape-invariant compound operations, based on the
so-called WITH-loop. These constructs have the important benefit of being general-enough
and all compiler optimizations concerning efficient code generation for array operations can
be concentrated on this single construct.

These constructions can be used to express the subarray accesses available with Array-OL
but these construction must be defined by the user if not available in the libraries.

The last three imperative functional languages presented before in addition to Array-OL
and the other visual languages can express arbitrary array placements by the use of element
by element accesses. Array-OL does not manipulate the indices directly but accesses the
arrays through sub-arrays. On the one hand that restricts the application domain but on the
other hand that makes it more abstract and more focused on the main difficulty of intensive
signal processing applications: data access patterns.

3 Array-OL

As a preliminary remark, Array-OL is only a specification language, no rules are speci-
fied for executing an application described with Array-OL , but a scheduling can be easily
computed using this description as is shown in Boulet (2008) where the author describes in
details the semantics of Array-OL and gives the definition of a statically schedulable kernel
of Array-OL.

3.1 Principles

The initial goal of Array-OL is to give a mixed graphical-textual language to express multidi-
mensional intensive signal processing applications. As said before, these applications work
on multidimensional arrays. The complexity of these applications does not come from the
elementary functions they combine, but from their combination by the way they access the
intermediate arrays. Indeed, most of the elementary functions are sums, dot products or Fou-
rier transforms, which are well known and often available as library functions. The difficulty
and the variety of these intensive signal processing applications come from the way these
elementary functions access their input and output data as parts of multidimensional arrays.
The complex access patterns lead to difficulties to schedule these applications efficiently
on parallel and distributed execution platforms. As these applications handle huge amounts
of data under tight real-time constraints, the efficient use of the potential parallelism of the
application on parallel hardware is mandatory.

From these requirements, we can state the basic principles that underly the language:

• All the potential parallelism in the application has to be available in the specification,
both task parallelism and data parallelism.

• Array-OL is a data dependence expression language. Only the true data dependences are
expressed in order to express the full parallelism of the application, defining the minimal
partial order of the tasks. Thus any schedule respecting these dependences will lead to
the same result. The language is deterministic.

• It is a single assignment formalism. No data element is ever written twice. It can be read
several times, though. Array-OL can be considered as a first order functional language.
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• Data accesses are done through sub-arrays, called patterns.
• The language is hierarchical to allow descriptions at different granularity levels and to

handle the complexity of the applications. The data dependences expressed at a level (be-
tween arrays) are approximations of the precise dependences of the sub-levels (between
patterns).

• The spatial and temporal dimensions are treated equally in the arrays. In particular, time
is expanded as a dimension (or several) of the arrays. This is a consequence of single
assignment.

• The arrays are seen as tori. Indeed, some spatial dimensions may represent some physi-
cal tori (think about some hydrophones around a submarine) and the frequency domains
obtained by discrete Fourier transforms are toroidal.

The semantics of Array-OL is that of a first order functional language manipulating mul-
tidimensional arrays. It is not a data flow language but can be projected on such a language.
Array-OL does not handle streams but arrays of values. In the absence of delays all the ele-
ments of these arrays could be consumed or produced in parallel. The environment or the
execution platform can impose an order and a granularity on these elements thus leading to
a stream but the choice of the granularity of the computation is left to the compiler (or the
system engineer) and not the programmer (ex: with the same Array-OL specification, a video
represented as a 3D array of pixels can be computed as a flow of frames or a flow of rows or
even a flow of pixels).

As a simplifying hypothesis, the application domain of Array-OL is restricted. No com-
plex control is expressible and the control is independent of the value of the data. This is
realistic in the given application domain, which is mainly data flow. Some efforts to couple
control flows and data flows expressed in Array-OL have been done in Labbani et al. (2005)
but are outside the scope of this paper.

The usual model for dependence based algorithm description is the dependence graph
where nodes represent tasks and edges dependences. Various flavors of these graphs have
been defined. The expanded dependence graphs represent the task parallelism available in
the application. In order to represent complex applications, a common extension of these
graph is the hierarchy. A node can itself be a graph. Array-OL builds upon such hierarchi-
cal dependence graphs and adds repetition nodes to represent the data-parallelism of the
application.

Formally, an Array-OL application is a set of tasks connected through ports. The tasks
are equivalent to mathematical functions reading data on their input ports and writing data
on their output ports. The tasks are of three kinds: elementary, compound and repetition. An
elementary task is atomic (a black box), it can come from a library for example. A compound
is a dependence graph whose nodes are tasks connected via their ports. A repetition is a task
expressing how a single sub-task is repeated.

All the data exchanged between the tasks are arrays. These arrays are multidimensional
and are characterized by their shape, the number of elements on each of their dimensions.1

A shape will be noted as a column vector or a comma-separated tuple of values indifferently.
Each port is thus characterized by the shape and the type of the elements of the array it reads
from or writes to. As said above, the Array-OL model is single assignment. One manipulates
values and not variables. Time is thus represented as one (or several) dimension of the data
arrays. For example, an array representing a video is three-dimensional of shape (width of

1 A single point, seen as a 0-dimensional array is of shape (), seen as a 1-dimensional array is of shape (1),

seen as a 2-dimensional array is of shape

(
1
1

)
, etc.
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Fig. 1 Downscaler example

frame, height of frame, frame number). We will illustrate the rest of the presentation of Array-
OL by an application that scales an high definition TV signal down to a standard definition
TV signal. Both signals will be represented as a three dimensional array.

3.2 Task parallelism

The task parallelism is represented by a compound task. The compound description is a
simple directed acyclic graph. Each node represents a task and each edge a dependence con-
necting two conform ports (same type and shape). There is no relation between the shapes
of the inputs and the outputs of a task. So a task can read two two-dimensional arrays and
write a three-dimensional one. The creation of dimensions by a task is very useful, a very
simple example is the FFT which creates a frequency dimension. We will study as a running
example a downscaler from high definition TV to standard definition TV (Fig. 1). Here is the
top level compound description. The tasks are represented by named rectangles, their ports
are squares on the border of the tasks. The shape of the ports is written as a t-uple of positive
numbers or ∞. The dependences are represented by arrows between ports.

There is only one limitation on the dimensions: there must be at most one infinite dimen-
sion by array. Most of the time, this infinite dimension is used to represent the time, so having
only one is quite sufficient.

Each execution of a task reads one full array on its inputs and writes the full output arrays.
It’s not possible to read more than one array per port to write one. The graph is a dependence
graph, not a data flow graph.

So it is possible to schedule the execution of the tasks just with the compound description.
But it’s not possible to express the data parallelism of our applications because the details of
the computation realized by a task are hidden at this specification level.

3.3 Data parallelism

A data-parallel repetition of a task is specified in a repetition task. The basic hypothesis is
that all the repetitions of this repeated task are independent. They can be scheduled in any
order, even in parallel.2 The second one is that each instance of the repeated task operates
with sub-arrays of the inputs and outputs of the repetition. For a given input or output, all
the sub-array instances have the same shape, are composed of regularly spaced elements
and are regularly placed in the array. This hypothesis allows a compact representation of the
repetition and is coherent with the application domain of Array-OL which describes very
regular algorithms.

2 This is why we talk of repetitions and not iterations which convey a sequential semantics.
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Fig. 2 Horizontal filter repetition task

As these sub-arrays are conform, they are called patterns when considered as the input
arrays of the repeated task and tiles when considered as a set of elements of the arrays of
the repetition task. In order to give all the information needed to create these patterns, a tiler
is associated to each array (ie each edge). A tiler is able to build the patterns from an input
array, or to store the patterns in an output array. It describes the coordinates of the elements
of the tiles from the coordinates of the elements of the patterns. It contains the following
information:

• F : a fitting matrix.
• o: the origin of the reference pattern (for the reference repetition).
• P: a paving matrix.

3.3.1 Visual representation of a repetition task

The shapes of the arrays and patterns are, as in the compound description, noted on the ports.
The repetition space indicating the number of repetitions is defined itself as an multidimen-
sional array with a shape. Each dimension of this repetition space can be seen as a parallel
loop and the shape of the repetition space gives the bounds of the loop indices of the nested
parallel loops. An example of the visual description of a repetition is given in Fig. 2 by the
horizontal filter repetition from the downscaler. The tilers are connected to the dependences
linking the arrays to the patterns. Their meaning is explained below.

3.3.2 Building a tile from a pattern

From a reference element (ref) in the array, one can extract a pattern by enumerating its
other elements relatively to this reference element. The fitting matrix is used to compute the
other elements. The coordinates of the elements of the pattern (ei) are built as the sum of the
coordinates of the reference element and a linear combination of the fitting vectors as follows

∀ i, 0 ≤ i < spattern, ei = ref + F · i mod sarray (1)
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where spattern is the shape of the pattern, sarray is the shape of the array and F the fitting
matrix.

In the following examples of fitting matrices and tiles, the tiles are drawn from a refer-
ence element in a 2D array. The array elements are labeled by their index in the pattern, i,
illustrating the formula ∀ i, 0 ≤ i < spattern, ei = ref + F · i. The fitting vectors constituting
the basis of the tile are drawn from the reference point.

A key element one has to remember when using Array-OL is that all the dimensions of
the arrays are toroidal. That means that all the coordinates of the tile elements are computed
modulo the size of the array dimensions. The following more complex examples of tiles are
drawn from a fixed reference element (o as origin in the figure) in fixed size arrays, illustrating
the formula ∀ i, 0 ≤ i < spattern, ei = o + F · i mod sarray.

3.3.3 Paving an array with tiles

For each repetition, one needs to design the reference elements of the input and output pat-
terns. A similar scheme as the one used to enumerate the elements of a pattern is used for
that purpose.

The reference elements of the reference repetition are given by the origin vector, o, of
each tiler. The reference elements of the other repetitions are built relatively to this one. As
above, their coordinates are built as a linear combination of the vectors of the paving matrix
as follows

∀ r, 0 ≤ r < srepetition, refr = o + P · r mod sarray (2)

where srepetition is the shape of the repetition space, P the paving matrix and sarray the shape
of the array. Here are some examples (Figs. 3–8).

Fig. 3 Sparse tile. There are here 3 elements in this tile because the shape of the pattern is (3). The indices
of these elements are thus (0), (1) and (2). Their position in the tile relatively to the reference point are thus
F · (0) = (0

0
)
, F · (1) = (3

0
)
, F · (2) = (6

0
)

Fig. 4 Complex tile (sparse on a dimension and diagonal on the second). This last example illustrates how
the tile can be sparse, thanks to the

( 2
0

)
fitting vector, and non parallel to the axes of the array, thanks to the( 1

1

)
fitting vector
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Fig. 5 A sparse tile aligned on the axes of the array

Fig. 6 The use of modulo. The pattern is here mono-dimensional, the fitting builds a diagonal tile that wraps
around the array because of the modulo

Fig. 7 Row paving. This figure represents the tiles for all the repetitions in the repetition space, indexed by
r. The paving vectors drawn from the origin o indicate how the coordinates of the reference element refr of
the current tile are computed. Here the array is tiled row by row

Fig. 8 A 2D pattern tiling exactly a 2D array

3.3.4 Summary

We can summarize all these explanations with one formula. For a given repetition index
r, 0 ≤ r < srepetition and a given index i, 0 ≤ i < spattern in the pattern, the corresponding
element in the array has the coordinates
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Fig. 9 The tiles can overlap and the array is toroidal

o + (P F) · r
i

modsarray, (3)

where sarray is the shape of the array, spattern is the shape of the pattern, srepetition is the shape
of the repetition space, o is the coordinates of the reference element of the reference pattern,
also called the origin, P is the paving matrix whose column vectors, called the paving vec-
tors, represent the regular spacing between the patterns, F is the fitting matrix whose column
vectors, called the fitting vectors, represent the regular spacing between the elements of a
pattern in the array.

3.3.5 Linking the inputs to the outputs by the repetition space

The previous formulas explain which element of an input or output array one repetition con-
sumes or produces. The link between the inputs and outputs is made by the repetition index, r.
For a given repetition, the output patterns (of index r) are produced by the repeated task from
the input patterns (of index r). These pattern elements correspond to array elements through
the tiles associated to the patterns. Thus the set of tilers and the shapes of the patterns and
repetition space define the dependences between the elements of the output arrays and the
elements of the input arrays of a repetition. As stated before, no execution order is implied
by these dependences between the repetitions (Fig. 9).

To illustrate this link between the inputs and the outputs, we show in Fig. 3 several repeti-
tions of the horizontal filter repetition. In order to simplify the figure and as the treatment is
made frame by frame, only the first two dimensions are represented.3 The sizes of the arrays
have also been reduced by a factor of 60 in each dimension for readability reasons.

As we have just seen, Array-OL is indeed able to deal with any number of dimensions,
sliding windows, different production and consumption rates, cyclic array dimensions and
non parallel to the axes data access patterns. Considering that it is a hierarchical language, it
only lacks a way to express delays and states.

3 Indeed, the third dimension of the input and output arrays is infinite, the third dimension of the repetition
space is also infinite, the tiles do not cross this dimension and the only paving vector having a non null third

element is

⎛
⎝ 0

0
1

⎞
⎠ along the infinite repetition space dimension.
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4 Delays

4.1 Modeling delays

As shown earlier, in order to express the information needed for a complete specification of
data-flow algorithms, languages like Array-OL are based on special formalisms. One of the
common aspects in most of those languages is the component-based approach. The applica-
tion is seen as a set of tasks that are connected and communicate through arrays. To maintain
the data-flow semantics, no cycles are allowed in the graph representing the connections
between tasks. Together with the single assignment constraint, that makes it impossible for
tasks to maintain state information.

In this context, the concept of delay available in SDF and its extensions is of great impor-
tance to a data-flow language by allowing the construction of self-loops (states in SDF)
into an application. A complete data-flow language must be able to express such self-loop
constructions. For Array-OL, being a more expressive language than SDF and its multidi-
mensional extensions, the delay concept is in consequence more complex. In SDF, a delay
is an initial token or sample on the arc. In MDSDF delays are also multidimensional tuples
and represent initial rows and columns. This means that the production of data is offset by
the corresponding values while the consumption of data is not offset. This allows a special
construction named state where an actor consumes tokens produced by itself but at a previous
iteration. Rather than expressing initial tokens available on a connection, we have chosen
to express uniform dependences between repetitions of the same component that we call
inter-repetition dependences (Fig. 10).

4.2 Introductory example

To be able to represent loops containing inter-repetition dependences, we add the possibility
to model uniform dependences between tiles produced and tiles consumed by a repeated
component. A graphical representation can be seen in Fig. 11.

Formally an inter-repetition dependence connects an output port (pout in the figure) of a
repeated component with one of its input ports (pin in the figure). The shape of the connected
ports must be identical. The dependence connector is tagged with a dependence vector d
that defines the dependence distance between the dependent repetitions. This dependence is
uniform, which means identical for all the repetitions. When the source of a dependence is
outside the repetition space, a default value is used. This default value is defined by a default
connector connected to the same input port pin.

When saying that a repetition r depends on another rdep it means that at the execution
time repetition r will receive as input on port pin values produced by rdep on its output port
pout. When a repetition takes values from a default connector it means that it will receive as
input on port pin values from a port connected with a default connector with pin (or a tile of
such a port if the default connector has an associated tiler as we will see later).

For the simple discrete integration example shown in Fig. 11 the patterns (and also the
tiles) are single points. The uniform dependence vector d = (1) tells that each repetition
r depends on repetition rdep = r − d = r − (1). In this case, the inter-repetition depen-
dence is used to express that the output value of a repetition is used as input by the next
repetition. Each repetition will take as input two values on its two ports, an input value
from the tile and the result of the previous repetition. These values are added and pro-
vided on the output port which will serve as an input for the next repetition, and so on.
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Fig. 10 Linking the input and outputs of the horizontal filter

Fig. 11 A simple inter-repetition
dependence. The self-loop
represents the dependence
inter-repetition, while the dotted
connector represents the default
connector

To start the computation, a default value of 0 is taken for repetition r = 0 as indicated
by the default connector. The computations are here sequentialized by the inter-repetition
dependence.
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Fig. 12 In the mono-dimensional repetition space, the d = (1) inter-repetition dependence expresses that
each repetition depends on its precedent. For the first one, the depending repetition is outside the repetition
space, so it will use the default value as input

The inter-repetition dependence presented earlier is just a simple example used to illustrate
the concepts of uniform dependence and default connector. The Array-OL with delays lan-
guage allows the construction of much more complex structures, like multiple inter-repetition
dependences or stride dependences. By combining them through the hierarchical structure
of an application we can achieve complex dependences as we will see later on (Fig. 12).

4.3 Inter-repetition dependence definition

A complete inter-repetition dependence that, in the context of Array-OL with delays, allows
the construction of complex dependences through hierarchy levels consists of the two ele-
ments used in the previous example (the uniform dependence vector and the default con-
nector) to which we add some observations. First, the default connector can be connected
to a port of the component containing the inter-repetition dependence. In this way we can
establish connections between dependences found on different hierarchy levels. Second, the
default connector can connect ports with different shapes, in which case we need a tiler
on the connector to express the exact element-to-element relations. The tiler on the default
connector allows having multiple default connectors to an inter-repetition dependence–from
which only one is valid for each repetition needing a default value. A simple example for
the applicability of such a construction is a two dimensional repetition space for which rep-
etitions can have different default values in function of the direction in which we exit the
repetition space (north, south, east or west).

4.3.1 Definition (inter-repetition dependence)

The formal specification of a complete inter-repetition dependence consists of:

• a repeated component c within a srepetition repetition space,
• an inter-repetition dependence dep with the dependence vector d; dep connects an output

port pout to an input port pin (pout and pin have the same shape s and both belong to c),
• a set of n default connectors defi (0 ≤ i < n) connecting pin to an output port pi

(0 ≤ i < n) of other components,
• each default connector defi has an associated tiler Ti , except the last one that may be

lacking a tiler (in which case pn−1 must have the same shape as pin); t represents the
number of default connectors tagged with a tiler (n − 1 ≤ t ≤ n)

When computing the dependences, we have:

∀ r, 0 ≤ r < srepetition, rdep = r − d (4)

and if the dependent repetition is inside the repetition space (0 ≤ rdep < srepetition) then the
repetition r depends on rdep (the values produced by repetition rdep on port pout are consumed
by repetition r on port pin); otherwise repetition r takes its inputs from one of the default
connectors.
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In this case and when having more than one default connectors for an inter-repetition
dependence, a selection between the available default connectors must be done. This selec-
tion is done in function of the repetition index r and the tilers associated to the default
connectors. For each tiler a reference element will be computed, in the same way as for a
normal tiler but without the use of modulo:

∀ i, 0 ≤ i < t, refi = oi + Pi · r, (5)

where oi and Pi are the origin and the paving of the tiler Ti .

4.3.2 Validity property

The specification of the tilers of the default connectors must be done in such a way that for
all the repetitions that need inputs from the default connectors, at most one of the computed
references refi (0 ≤ i < t) is inside the shape of its corresponding port pi . This valid refer-
ence refv thus verifies that 0 ≤ refv < sv , where sv is the shape of the port pv . This reference
together with the corresponding tiler Tv will be used to compute the tile to be passed to the
input port pin of the repetition r as the set of indices ei verifying

∀ i, 0 ≤ i < s, ei = refv + Fv · i mod sv (6)

where s is the shape of pin and sv is the shape of pv .
If none of the computed references is valid then the default connector not tagged with a

tiler will be chosen. The exclusion between the tilers can be easily verified with the help of
polyhedral algebra.

The tiler construction for the default connectors in order to allow only a valid one for each
repetition might seem complicated but actually in real applications we do not need to use
complicated default connectors. In most cases, the exclusion between the different default
connectors is done by using the same tiler and just shifting the origins. An example and more
details of such a construction are available in the next section in Fig. 17.

4.4 Multi-dimensional example

To better illustrate the concepts introduced in Array-OL with delays we present a more com-
plex multi-dimensional example. This example also allows us to show how the inter-repetition
dependences act when refactoring based on Array-OL transformations intervenes.

It is out of the scope of this paper to present these transformations, the whole set of trans-
formations (fusion, tiling, change paving, collapse) and their implementation are described
in Dumont (2005) and Soula et al. (2001). A great care has been taken in these transformations
to ensure that they do not modify the semantics of the specifications. They only change the
way the dependences are expressed in different hierarchical levels but not the precise element
to element dependences. What is more important to this paper is to show that the semantics
of inter-repetition dependences in Array-OL with delays are capable of expressing complex
dependences like the ones computed after a refactoring stage (the dependences before and
after such transformations must express the same exact dependences between repetitions in
order not to modify the semantics of the application).

Inter-dependences interact with the transformations by the propagation of inter-repeti-
tion dependences through the part of the application involved in the transformation (this
may mean inter-repetition dependence propagation, hierarchy transfer, modification but also
dependence fusion).
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Fig. 13 A subset of Downscaler application, just the vertical filter for a single frame. An inter-repetition
dependence has been added on the first dimension of the repetition space with a stride of 2

Fig. 14 Inter-repetition
dependences in the 2D repetition
space of our example

The application chosen is a subset of the downscaler application: just a repetition on which
we have added an inter-repetition dependence on the first dimension of the repetition space
with a stride of 2 (Fig. 13). This causes each repetition of the elementary filter task to have an
additional input, the result from another repetition of the same component. The dependence
vector (2, 0) specifies horizontal dependences like shown in Fig. 14. The first two vertical
columns of the repetition space have dependences outside the repetition space, therefore they
will use the default values.

We can see in the Fig. 15 the same application after a tiling transformation for splitting the
repetition space into blocks which has the effect of introducing a hierarchy level and splitting
the repetition space between the two levels. After the transformation, the initial dependence
must be modified to be adapted to the new application structure. It is split between the two
hierarchy levels, remaining the same as before inside a block. In complement, in order to keep
the dependences between repetitions from different blocks, a dependence between blocks on
the higher hierarchy level was introduced. The dependence between elements found inside
different blocks is done by connecting the two dependences with a default connector tagged
with a tiler which has the role of making the correct correspondences between depending
repetitions found in different blocks. This tiler is similar to the output tiler of the lowest
hierarchy level but with a different origin computed in function of the dependence as a dif-
ference between the reference of the depending block and the reference of the dependence
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Fig. 15 The same application after a tiling transformation for splitting the repetition space into (5, 4)-blocks

Fig. 16 Inter-repetition dependences after block splitting. We show on the left only parts of the repetition
space: In block (1, 0) we have all the repetitions that depend on repetitions inside the same block, in block
(1, 1) repetitions that depend on repetitions found in another block and in block (0, 0) repetitions that will use
the default value. On the right, we show the inter-repetition dependences between the blocks

window—the dependence window for a block is a block of the same dimensions that con-
tains all the depending repetitions for this block (like shown in Fig. 16). The similarity
between the tilers is obvious when analyzing in more details the structure: the two tilers must
have the same array dimensions (caused by being connected by the higher level inter-repeti-
tion dependence), the same pattern dimension (connected by the lower level inter-repetition
dependence) and also having the same repetition space.

As an observation for the dependence between blocks, blocks (0, 1) and (0, 0) depend on
blocks outside the repetition space, therefore they will use blocks filled with default values
which are copies of the default value found on the initial default connector.4 The choice of

4 They are just virtual copies at specification time, in order to reduce the memory requirements at execution
no real copies are needed.
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Fig. 17 The same application, the same transformation, the only difference is the dependence vector which
is now a diagonal one. We have chosen not to over-charge the figure with redundant information that are the
same as in Fig. 15 (tilers, default connector); changes appear only for the inter-repetition dependences

using such blocks is due to the constraint to have ports with identical shapes at the two ends
of an inter-repetition dependence. The copy of the initial default values is expressed by the
associated tiler which build a pattern larger than the array by replication. The zeros from the
paving and fitting in the tiler, except for the last column of the fitting, express that the array of
dimension (4) corresponds to the last dimension of the pattern, while on the other dimension
of the fitting and paving, this array will be duplicated.

More complex inter-dependence through the hierarchy structures can be imagined, a sim-
ple variation in the inter-dependence vector in our example could cause the repetitions from
a block to depend on repetitions from more that one block. This means that we need more
than one inter-dependence between blocks and for each block dependence a connection to
the lower level dependence. This case is presented in Fig. 17, where we have the result of the
same transformation as before applied to the same application except for the initial depen-
dence vector which is now a diagonal one of (1, 1). The different dependence vector has an
impact only on the inter-dependence repetitions elements and in this way we have a clear
separation between the transformations and the inter-repetition dependences (Fig. 18).5

The dependence window of block (1, 1) intersects three other neighbor blocks (Fig. 19)
and therefore we have three dependences between blocks, and three default connectors at the
lowest hierarchy level in order to make the selection of the appropriate dependence block.

5 This is extremely important because they do not interfere with the automatic transformations engine, we
need just a post-refactoring stage for an automatic inter-repetition dependence transformation to the new
application structure.
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Fig. 18 Dependences between repetitions for the diagonal inter-repetition dependence. Just some random
repetitions are shown in the figure

Fig. 19 Same diagonal dependences after block splitting on the left. Triple dependence between blocks on
the right

The selection is done by the tilers on the default connectors, tilers being similar to each
other and to the output tiler as before, with the exception of the origins. The different origins
ensure the exclusive selection of the default connectors (the origin represent the difference
between the reference of the depending block and the reference of the dependence window).
As the absolute of the difference between any two origins exceeds, on at least one dimension,
the size of the array (the same array shape for all the tilers) and the same paving matrix for
the three tilers guaranties that for a repetition just one tiler will have a valid reference.

4.4.1 Proof of tiler exclusion

Presuming that for a repetition r having the dependence repetition outside the repetition space
we have one tiler (Tv) from the default connectors that produces a reference element inside
the array dimensions.
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refv = ov + Pv · r (7)

and

0 ≤ refv < s. (8)

For any other tiler Ti we have

∀ i, 0 ≤ i < t, i �= v, refi = oi + Pi · r (9)

and we have identical paving matrices and array dimensions, while the difference between
the two origins is δi :

Pi = Pv, oi = ov + δi . (10)

Replacing into Eq. 9 we have

refi = ov + δi + Pv · r = δi + refv. (11)

As by hypothesis |δi | �< s, either refi �≥ 0 or refi �< s, which means that tiler i is not
valid. ��

4.5 Discussion

The Array-OL specification language allows much more complex constructions than SDF
and its multidimensional extensions. The only restriction was expressing delays but with
the inter-repetition dependence extension we can say that Array-OL has become a language
capable of expressing not only delays or states but much more complex dependences. All
this makes in our opinion Array-OL with delays a “complete” multi-dimensional intensive
signal processing specification language.

Furthermore, the inter-repetition dependences are capable of expressing complex depen-
dences connected through the hierarchy levels, extremely important to Array-OL in the con-
text of Array-OL transformations, key tools when talking about refactoring, optimizations
and scheduling with Array-OL (Amar et al. 2005). These transformations were extensively
studied and their functionality was formalized, proved and implemented into a refactoring
tool using a formalism based on linear algebra designed specially for Array-OL.6 A com-
parative study between these transformations and the loop transformations in the context
of program optimizations can be found in Glitia and Boulet (2008). As already said, these
transformations are not influenced by the inter-repetition dependences. The transformations
engine acts on redistributing repetitions through the application hierarchy and it guaranties
not to modify the semantics of the application. Inter-repetition dependences, like shown in
the examples, are capable of expressing dependences after such transformations also without
modifying the semantics of the application.

By combining inter-repetition dependences with the hierarchical structure of Array-OL
we can construct non-uniform dependences. An example of such construction could be a
two-dimensional repetition space with a linear dependence on each row (each element
depends on the precedent) while the first element depends on the last element of the previous
row to express a Z-shaped dependence chain.

6 ODT (Opérateurs de Description de Tableau in French)—Array Description Operators in English—more
details in bibliography (Soula 2001; Dumont 2005).
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Inter-repetition dependences are modeled in Array-OL using the same concepts available
in Array-OL, like repetition space, tilers (paving, fitting, origin) etc. and in this way there
was no need to add too many new concepts.

Another very important property of SDF and its extensions is the possibility to statically
schedule the applications they describe. As said before, there exists a restriction of Array-
OL that is schedulable statically as explained in Boulet (2008). Most reasonable Array-OL
applications are actually in that restriction. Scheduling loop nests with uniform dependences
is well known since the work of Darte and Robert (1994). Using these two results together it
is thus possible to schedule statically most applications specified with Array-OL with delays.

5 Conclusion

We have presented in this paper the Array-OL multidimensional specification model and
compared it to the other models designed for intensive signal processing applications such as
video processing and detection systems. In order to allow the construction of structures like
delays and states, the concept of inter-repetition dependence was introduced in Array-OL.
The formalism of this concept based on the same structures as Array-OL is presented in the
paper. The resulting specification model, Array-OL with delays, is thus able to express mul-
tidimensional signal processing applications with the common patterns of this application
domain: sliding windows, over- and sub-sampling, cyclic array dimensions, states, delays and
hierarchy while providing an expression of the full potential parallelism of the applications
thanks to its dedicated langage-level features.

As a complement, inter-repetition dependences can be used not only to model appli-
cations with delays and states but also for specifying repetitive architectures and control
structures based on mode automata. Indeed, the Array-OL with delays concepts are used in
the MARTE (Modeling and Analysis of Real-Time and Embedded systems) standard UML
profile (ProMarte partners 2008) (Repetitive Structure Modeling chapter) not only to model
applications but also hardware architectures and the distribution of applications on architec-
tures (Array-OL concepts can be extended to express the mapping of repetitive applications
on repetitive architectures) and also to express control structures into applications.

When talking about architectures and inter-repetition dependences there are some slight
differences. Array-OL is used to model repetitive architectures, like a grid of processors.
In such cases, to express the connections between different processors in the grid, we
can use inter-repetition dependences. To be able to express cycle connections in an archi-
tecture model, an inter-repetition dependence can be tagged as cyclic, in which case the
dependence repetition is calculated using modulo and there is no need for default
connectors.

The concept of inter-repetition dependence is also a base component when modeling con-
trol. In Labbani et al. (2006, 2005) control is expressed by mode automata using inter-repetition
dependences.

Everything presented in this paper (Array-OL with delays, refactoring transformations,
hardware architecture and distribution modeling, control with mode automata) is imple-
mented in the model-driven engineering framework Gaspard2 to codesign intensive signal
processing applications on systems-on-chip. The specification language of Gaspard2 is a
subset of MARTE based on Array-OL with delays from which can be derived cosimulation
code in SystemC (Piel et al. 2008), verification code in synchronous languages (Yu et al.
2008; Gamatié et al. 2008), or synthesis code in VHDL Le Beux et al. (2007); Sébastien Le
Beux et al. (2008).
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