
Speeding Up Fractal Image Compression by Genetic

Algorithms

FARAOUN KAMEL MOHAMED Kamel_mh@yahoo.fr

Department of Computer Science, Evolutionary Engineering and Distributed Information Systems Labora-

tory, EEDIS, University of Sidi Bel-Abbès, Algeria

BOUKELIF AOUED aboukelif@yahoo.fr

Department of Electronics, Communications Networks, Architectures, and Multimedia Laboratory,

University of Sidi Bel Abbès, Algeria

Received November 21, 2002; Revised April 23, 2004; Accepted July 1, 2004;

First online version published in May, 2005

Abstract. The main problem with all fractal compression implementation is execution time. Algorithms

can spend hours to compress a single image. Most of the major variants of the standard algorithm for

speeding up computation time have led to a bad-quality or a lower compression ratio. For example,

the Fisher’s [7] proposed classification pattern greatly accelerated the algorithm, but image quality was

poor due to the search-space reduction imposed by the classification, which eleminates a lot of good

solutions.

By using genetic algorithms to address the problem, we optimize the domain blocks search. We explore

all domain blocks present in the image but not in exhaustive way (like a standard algorithm) and

without omitting any possible block (solution) as a classification pattern does. A genetic algorithm is the

unique method for satisfying these constraints. And it is a way to do be a random search because the

genetic one is directed by fitness selection, which produces optimal solutions.

Our goal in this work is to use a genetic algorithm to solve the IFS inverse problem and to build a

fractal compression algorithm based on the genetic optimization of a domain blocks search. we have

also implemented standard Barnsley algorithm, the Y. Fisher based on classification, and the genetic

compression algorithm with quadtree partitioning. A population of transformations was evolved for

each range block, and the result is compared with the standard Barnsely algorithm and the Fisher

algorithm = based classification.

We deduced an optimal set of values for the best parameters combination, and we can also specify the

best combination for each desired criteria: best compression ratio, best image quality, or quick com-

pression process. By running many test images, we experimentally found the following set of optimal

values of all the algorithm parameters that ensure compromise between execution time and solutions

optimality: Population size = 100, Maximum generations = 20, Crossover rate = 0.7, Mutation

rate = 0.1, RMS limit = 5, Decomposition error limit = 10, Flips and isometrics count = 8.

In our proposed algorithm, results were much better than those obtained both vences and Rudomin [5]

and Lankhorst [4] approaches.

1. Introduction

A major challenge of both theoretical and practical interest is the resolution of
the inverse problem: finding an iterated function system (IFS) whose attractor is a

Multidimensional Systems and Signal Processing, 16, 217–236, 2005

� 2005 Springer ScienceþBusiness Media, Inc., Manufactured in The Netherlands.

target of two-dimensional (2D) shapes [1]. An exact solution can be found in
some particular cases, but in general, no exact solution is known. Because the
function to optimized is complex, most of them make some a priori restrictive
hypotheses, such as use of affine IFS, with a fixed number of functions.
The major inconvenience of the current fractal compression algorithm is its high

computational demands. To find existing redundancies (called self-similarities in
fractal terms), this algorithm must perform many tests and comparisons between
different areas of the compressed image. We cannot find easily similar parts in any
natural images, so algorithm complexity is high, which lead to a slow compression
process.
Genetic algorithms are used when we want to solve an optimization prob-

lem that is multimodal, is multidimensional and has a large search space with
different optima [2]. Such problems do not have deterministic algorithms to
get the global optimum, and if it exists, the algorithm is an exhaustive search
along the solution space, which leads to consuming exponential time and
machine resources. With NP-Hard problems, using a deterministic search
space is impossible. The genetic algorithms traverse the search space using
historical information to guess where to look for better search points. Algo-
rithms of this kind are best suited for the problems described above, and
their use to solve different complexes problem has proved their capacities.
Both exploration of best solutions and exploration of the entire search space
are ensured, and an appropriate optimal solution can be found in reasonable
number of iterations.
The genetic algorithms are principally algorithms are principally destined for

complex problems where no exact solution exists and an exhaustive search of the
related search space leads to an Np-Hard problem, or high computation time [3].
Our goal is to accelerate the compression process by improving the standard com-
pression algorithm with a genetic search technique.
This idea was exploited by some Authors in different ways [4] [5] because

the optimization can be viewed from different angles and be applied on dif-
ferent parameters. Our approach is to use a genetic algorithm to optimize the
search of similarities in the target image. The standard optimization methods
are sufficient for the calculation of related parameters when the similarity is
detected.
On the other hand, the fractal compression algorithm, or more precisely the IFS

inverse problem resolution, can be considered to be a complex problem where no
deterministic and definitive solutions exist. All proposed approaches try to find a
compromise between time executions, reconstruction quality, and compression
ratio. The exhaustive search proposed initially by Barnsley is time consuming [6]
and can take from some hours to some days to compress a single image. The clas-
sification proposed by Fisher [7] accelerates the traditional algorithm, but image
quality is poor due to the search space reduction, and the compromise is always
difficult to find.

MOHAMED AND AOUED218

2. Fractal Compression Implementation

Different algorithms have been proposed to implement the fractal images com-
pression, based on partitioned iterated function systems. The difference is gener-
ally in the way of partitioning images or in the metric used to compare domain
and range blocs, but each algorithm follows the same steps. A general structure
will be given in the following.

2.1. General Structure

A general structure for most proposed fractal compression algorithms, for both
coding and decoding images, can be given by the following:

1. Encoding of an image I

• Set t = some tolerance level
• Partitioning I into uncovered ranges Ri.
• For each uncovered range Ri do

– Search over all Di in the pool domains.
– If there’s a wi such that d(Ri,wi(Di))< t, report wi and compress it using adap-

tive arithmetic coding (or any other lossless compression scheme).
– split Ri into subranges and add them to the list of ranges to be covered.
– If the range can no longer be partitioned, return the minimum d(Ri, wi(Di)).
– Remove Ri from the uncovered list.

2. Decoding of a map w=[wi

• Choose any image I0, and then compute the image wn(I0)=[Wn
i(I0). When

n is big enough, wn(I0)� Iw � I.

2.2. Fractal Coder with Standard algorithm

Algorithm standard-compression (Input I: 256 · 256 gray-scale image, Output W:
Coded IFS)

1. Regularly decompose target image into ranges a blocks with B · B size
(B = 4, 8, or 16)

2. For each range block R in Ranges (I) do
For each domain D block in Dom (I) do

SPEEDING UP FRACTAL IMAGE COMPRESSION BY GENETIC ALGORITHMS 219

Contract the block D;
Compare T(D) to R within RMS
Error and extract s and o parameters;
If RMS < Predefined-limit, then

Write transformation to the output W;
Go to 2;

Else Choose the next possible domain block;
End If;

End For;
End For.

Ranges (I) is the set of all ranges blocks obtained by the partitioning pattern,
Dom(I) is the set of all possible domain blocks that can be obtained from the im-
age according to a ranges blocks size.
The transformation parameters obtained for each block are quantified and

coded on a fix number of bits. For each transformation, we have the following
parameters:

• Xdom and YDom coordinate of the domain block, coded on 8 bits each one.
• The scaling factor S: belongs to [)1, +1] to ensure contraction of the transfor-

mation and can be quantified and coded on 5 bits (determined experimentally).
The quantification formula is given by Scode = round(0.5+S)*(2sbits-1).

• The contrast factor O ranging from 0 to 255, can be quantified and coded
on only 7 bits (optimal quantification)by the formula. Ocode = round
(0.5 + O/(1 + |S|))*(2obits)1).

• The isometric flip parameters take its values between 0 and 7 for 8 possible
flips and rotations. So it can be coded on 3 bits.

So we can code a transformation with all its parameters on 8+8+5+7+3=31
bits. The decoding process is done by applying each transformation from the IFS
to an initial random image I0 after a sufficient number of iterations the recon-
structed image will approximate the original one. For each pixel in I0 the transfor-
mation is applied like the following:

I1½i; j� :¼ S � I0½i; j� þOði : l . . .L; j : 1 . . .HÞ

L and H are the image dimensions.

3. The Standard Genetic Algorithm

Pseudocode for the algorithm is given in Figure 1.

MOHAMED AND AOUED220

4. Genetic Algorithms and the IFS Inverse Problem

Genetic algorithms work with a population of individuals who are iteratively
adapted toward the optimum by means of a random process of selection, recom-
bination, and mutation. During this process, a fitness function measures the qual-
ity of the population, and selection favors those individuals of higher quality.
Most of the evolutionary algorithms described in the literature for solving the IFS
inverse problem follow the optimization problem. In this case, each individual is
an IFS model consisting of a number of transformations, and its fitness is given
by some convenient measure of similarity between the target image and the IFS
attractor.
To generate the IFS code of a given image by the use of genetic algorithms, two

different approaches of representation can be considered:

• Consider the whole IFS of the coded image as an individual, and then iterate
the genetic algorithm on a population of IFS. Each IFS is constituted by a
fix number of transformations (depending on the partition pattern) as genes.

• For each range bloc, we associate a population of transformation as individu-
als. Each transformation (individual) is represented by its parameters as genes.

Figure 1. The standard genetic algorithm.

SPEEDING UP FRACTAL IMAGE COMPRESSION BY GENETIC ALGORITHMS 221

4.1. Our Algorithm: Improving the Standard method with Genetic Algorithms

The fractal compression scheme for a single image can be seen in the following
algorithm.
/* Genetic algorithm for FIC */

1. P ‹ Generate (LIFS) randomly
2. For all LIFS pi 2 P do

Evaluate fitness by applying (pi) to generate an image measuring its distance
(using the L1 or L2 metric) to the original image

3. While termination criteria not met Do

Reproduce pi 2 P according to evaluation
Apply the desired mutation operator
Apply the desired mating operator
Evaluate new LIFS (as above)
Replace the worst old strings with the best new strings.
EndDo

4.2. The Fitness Function

In the case of IFS, the measure of quality for a given transformation is given by
the RMS error between the coded range block, and the domain block determined
by the transformation coordinates Xdom and Ydom, and is transformed with corre-
sponding luminance contrast values. This error is calculated using the root mean
square equation. The fitness function is defined by the value of this error, which is
inversely proportional to the efficiency of the corresponding individual.

4.3. Chromosomes Codification

A chromosome in our algorithm is constituted by five genes, from which only
three genes are submitted to genetic modification, the two others are computed by
the RMS equation. We have the following genes:

• Xdom,Ydom, flip, which are optimized by a genetic search.
• Contrast O, and scaling S, which which are computed directly by RMS equa-

tion.

This will improve both compression speed and reconstruction quality. Figure 2
shows our chromosomal representation of the IFS:

MOHAMED AND AOUED222

4.4. Genetic Operators

In every genetic algorithm, some principal operators must be defined. They oper-
ate on population’s individuals to produce new offspring individuals and to
improve fitness function values in the next generation.
The two principal operators used in our implementation are crossover operator

and mutation operator. Their patterns and structures are presented in the following.

4.4.1. The Crossover Operator

The crossover operator combines two individuals in the current population to
produce two offspring individuals included in the new generation. The main role
of this operator is to create good new solutions based on the characteristics of the
parents. To perform this operation, individuals from the current population are
chosen randomly and proportionally to their fitness value. We apply this operator
with a probability value fixed as a parameter of the algorithm Experimental
results have shown that a value of 0.7 is good to ensure quick convergence of the
algorithm.
We introduced a new pattern of crossover, and we used it in our implementa-

tion and obtained good results. The result coordinates for the offspring individu-
als are obtained by a linear combination of the parents’ coordinates. A random
number a is generated in the interval [0,1]. Then the new coordinates are calcu-
lated according to the following formula:
For the first offspring,

Xdom ¼ a�X1
dom þ ð1� aÞ�X2

dom

Ydom ¼ a�Y1
dom þ ð1� aÞ�Y2

dom

For the second offspring,

Xdom ¼ ð1� aÞ�X1
dom þ ð1� aÞ�X2

dom

Ydom ¼ ð1� aÞ�Y1
dom þ ð1� aÞ�Y2

dom

Figure 2. Choromosomal representation of individual IFS.

SPEEDING UP FRACTAL IMAGE COMPRESSION BY GENETIC ALGORITHMS 223

For the flip gene, we randomly affect a parent’s value to each offspring individu-
als. This crossover pattern is very efficient. It allows us to explore all the image area
if the two parents are in separated regions and to explore the nearest neighborhood
if they are in the same region. So we lead to a good exploitation of the search space.
Figure 3 illustrates the described crossover pattern.

4.4.2. Mutation Operator

Mutation operator is used in all implementations of genetic algorithms to intro-
duce diversity in each population. Mutation is applied to individuals by changing
pieces of their representations. These individuals are randomly selected according
to their fitness value. At each position in the individual, we decide randomly,
using a small mutation probability, whether the gene at this position is to be
changed. This genetic operator allows the algorithm to explore new areas of the
search space and find new possible optimal solution.
In our implementation, a mutation operator is applied to some selected IFSs

from the current population. One of the three genes Xdom,Ydom, and flip is se-
lected randomly and changed with a random generated value. Figure 4 shows the
general pattern of the mutation operator in our algorithm.

4.5. Termination Criteria

Any genetic algorithm must find the optimal solution for a given problem in a fi-
nite number of steps. In our implementation, two criteria can cause the termina-
tion of the algorithm when applied to a given range block:

Figure 3. The crossover operator pattern.

MOHAMED AND AOUED224

• An acceptable value of fitness for the best in individual in the population is
reached;

• A maximum predefined count of generations is reached.

This maximum count is a predefined parameter of the algorithm; it was deter-
mined experimentally and fixed to 20 generations in our implementation.

4.6. The Parameters of the Algorithm

The behavior of the genetic algorithm can be controlled using many initial condi-
tions and parameters. We can control convergence speed, solution quality, and
algorithm evolution when adjusting and modifying these parameters. In our algo-
rithm we have two different sets of parameters; those that control genetic evolu-
tion, and those that control the fractal compression pattern. The set of parameters
of genetic control is given by the following

• Population size: Specify the number of individuals in each generated popula-
tion (constant duraing all steps).

• Crossover rate: Specify the probability used to select individuals submitted to
crossover operator.

• Mutation rate: Specify the probability used to select individuals submitted to
mutation operator.

• Maximum generations: Specify the maximum number of generations to eval-
uate before assuming that a particular run has converged prematurely, and
should be aborted.

Figure 4. Mutation operator schema.

SPEEDING UP FRACTAL IMAGE COMPRESSION BY GENETIC ALGORITHMS 225

The second set of parameters, which control and specify the fractal compression
pattern, is equivalent to the one used in standard compression algorithm. It
controls the partition size, the decomposition pattern, and the transformations
quantification parameters, We have

• The range block decomposition size (used with regular partitioning);
• The lowest block size used for ranges decomposition (in the case of the Quad-

tree pattern);
• The number of flips and isometrics applied to each domain block to be com-

pared with the current range block;
• The decomposition error limit, introduced to improve the Quadtree decompo-

sition pattern, as above mentioned in the Quadtree algorithm descriptions;
• The RMS error limit, which is fixed to decide if a given transformation is

accepted, (The fitness value of the best individual in each population is com-
pared to this value, and if it is lower, the individual is selected as the optimal
solutions, and the algorithm is stopped);

• The number of bits used to quantify and code luminance an contrast parame-
ters, fixed experimentally to 5 and 7 bits, respectively.

Different combinations of these parameters were tested, and different results were
obtained. For the genetic parameters, the mutation rate has generally a small value,
but the crossover rate is generally greater. A high value for the mutation rate will
lead to a Quasi-random population, and the algorithm becomes similar to a random
walk in the search space. The population size is a critic parameter. Large sizes give
fever numbers of generations, but the computation time is high, Small sizes give rel-
atively slow convergence but a reduced computation time for each generation. Both
population size and maximum generation count were determined experimentally
and according to the obtained results for each values combination. In Table 1, the
set of optimal values of all the seven algorithm parameters is given. These values
ensure compromise between execution time and solutions optimality.
For the Quadtree decomposition, we set the lowest blocks size to 4 · 4 pixel to

achieve highest reconstruction quality and to 8 · 8 to obtain acceptable quality
with a high compression ratio.

Table 1. Optimal parameters of our genetic compression algorithm.

Population size 100

Maximum generations 20

Crossover rate From 0.7 to 0.8

Mutation rate 0.1

RMS limit 5.0

Decomposition error limit 10.0

Flips and isometrics count 8

MOHAMED AND AOUED226

4.7. The Structure of the Algorithm

Based on all these elements, the genetic compression algorithm operate on an in-
put image according to the following general steps:
Algorithm Genetic-Compression (Input I 256 · 256 gray-scale image, Output,

W: Coded IFS)

1. Decompose the input image into range blocks according to the used partitioning
pattern;

2. For each block R in Ranges(I) do
Generate a random population of chromosomes (transformations);
While (No optimal domain block is found)

and (population maximum is not reached) do

• Compute fitness value for all individuals;
• Apply crossover operator on population individuals (selected with the cross-

over rate);
• Apply Mutation operator on population individuals (selected with the cross-

over rate);
• Generate the new population;

End Do;
End While;

Write obtained transformation parameters to the output W;
End For;

5. Experimental Results

All tests were executed on a PIII-INTEL 800 MHz with 128 M0 of RAM size.

5.1. Standard Algorithm with Quadtree Partitioning (Table 2)

Table 2. Result for different images with Quadtree blocks decomposition.

Image RMS limit Execution time Quality (dB) Compression ratio

Lena 5.0 1 h 11 m 10 s 32.01 11.48:1

Boat 5.0 l h 27 m 04 s 29.56 8.88:1

Peppers 5.0 1 h 5 m 17 s 33.07 24.56:1

Barb 5.0 1 h 22 m15 s 30.07 10.85:1

SPEEDING UP FRACTAL IMAGE COMPRESSION BY GENETIC ALGORITHMS 227

5.2. Standard Algorithm Improved with Classification (Y. Fisher Approach)
(Table 3)

5.3. Genetic Algorithm with Quadtree Decomposition: The Best Solution

The genetic compression algorithm was used with Quadtree partitioning. Different
parameters were used for each test, and the obtained results are given in both
table forms and graphical forms. Examples of reconstructed images are also given
to illustrate reconstruction quality.
Table 4 shows different performances with different values of RMS error limit

using fixed value for other parameters: population size = 100, mutations
rate = 0.1, crossover rate = 0.7 and maximum generations count = 20.

5.3.1. Effect of Parameters Controlling Fractal Compression

We can see from the Figures 5 and 6 that image quality is inversely proportionate
to RMS error limit. And compression rate is proportionate to that value. The
compromise value acceptable of this parameter is 5.0, and it gives performances.
The used images are Lena and Goldhil. The decomposition level error was equal
to RMS limit to get the real influence of this parameter (Figures 7 and 8).

Table 3. Result for different images with Quadtree blocks decomposition using Fisher’s classification

algorithm.

Image RMS limit Execution time Quality (dB) Compression ratio

Lena 5.0 2 min 55 s 30.05 9.73:1

Boat 5.0 3 min 22 s 25.86 7.9:1

Peppers 5.0 2 min 45 s 29.36 10.16:1

Barb 5.0 4 min 12 s 21.07 8.62:1

Table 4. Different compression results of Lena image while applying different values of RMS error limit.

RMS limit Execution time Quality (dB) Ratio Ranges count

0.0 2 m44 s 35.66 4.29:1 4069

2.0 1 m56 s 35.03 6.35:1 2770

4.0 49 s 34.89 9.28:1 2023

5.0 43 s 34.80 9.82:1 1792

8.0 36 s 34.50 9.95:1 1768

10.0 33 s 30.50 10.05:1 1750

15.0 21 s 22.33 13.66:l 1288

20.0 14 s 19.36 19.34:1 910

25.0 15 s 19.01 26.25:1 670

MOHAMED AND AOUED228

5.3.2. Effect of Parameter Controlling Genetic Evolution

The second parameter to be tested is the population size, Results obtained with
different sizes of Population are illustrated in Table 5. The best value for this
parameter is 100 individual. It is a good compromise between execution speed and
image quality. The same work has been done with both crossover rate and muta-
tion rate. These parameters are less important than RMS error or population size,
but crossover rate must always be greater than mutation one to ensure the best
selection of optimal solutions. All the obtained results are summarized in the
Tables 6, 7 and Figures 9–15.

Figure 5. Lena image quality variation according to RMS limit values.

Figure 6. Lena image compression rate variation according to RMS limit values.

SPEEDING UP FRACTAL IMAGE COMPRESSION BY GENETIC ALGORITHMS 229

Figure 7. Decomposed Lena image with RMS = 5.0 (ratio 9.14:1).

Figure 8. Decomposed Gold Hill image with RMS = 5.0 (ratio 9.14:1).

Table 5. Different compression results of Lena image while applying different values of Population size.

Population size Execution time Quality (dB) Ratio Ranges count

5 9 s 29.62 8.30:1 2119

10 11 s 29.98 8.35:1 2107

20 14 s 30.21 8.72:1 2017

50 23 s 32.11 9.36:1 1879

100 44 s 32.23 9.83:1 1789

250 2 m 24 s 33.74 10.35:1 1699

500 7 m 4 s 34.56 10.83:1 1624

1000 23 m 4 s 35.12 10.97:1 1603

MOHAMED AND AOUED230

Figure 9. Lena image compression time variation according to population size values.

Figure 10. Lena image quality variation according to population size values.

Figure 11. Lena image compression ratio variation according to population size values.

SPEEDING UP FRACTAL IMAGE COMPRESSION BY GENETIC ALGORITHMS 231

Figure 12. Boat image compression time variation according to crossover rate values.

Table 6. Different compression results of Lena image while applying different values of crossover rate.

Crossover rate Execution time Quality (dB) Compression tatio Ranges count

0.2 35 s 31.62 7.9:1 2227

0.3 51 s 30.96 8.08:1 2176

0.4 52 s 30.01 8.13:1 2164

0.5 52 s 30.08 8.13:1 2164

0.6 55 s 30.12 8.18:1 2151

0.7 56 s 29.62 8.24:1 2135

0.8 1 m 3 s 31.06 8.15:1 2158

0.9 1 m 22 s 31.11 8.06:1 2182

Figure 13. Boat image compression ratio variation according to crossover rate values.

MOHAMED AND AOUED232

Table 7. Different compression results of Boat image while applying different values of mutation rate.

Mutation rate Execution time Quality (dB) Compression tatio Ranges count

0.1 56 s 29.62 8.24:1 2135

0.2 58 s 29.65 8.19:1 2148

0.3 1 m 10 s 29.60 7.80:1 1254

0.4 1 m 12 s 29.12 8.24:1 2135

0.5 1 m 10 s 29.10 8.15:1 2159

0.6 1 m 12 s 29.11 8.14:1 2162

Figure 14. Boat image compression time variation according to mutation rate values.

Figure 15. Boat image compression ratio variation according to mutation rate values.

SPEEDING UP FRACTAL IMAGE COMPRESSION BY GENETIC ALGORITHMS 233

6. Optimal Parameter Values

From the previous presented results, we can deduce an optimal set of values for
the best parameters combination, and we can also specify the best combination
for each desired criteria: best compression ratio, best image quality, or quick com-
pression process. The following tables summarize different combinations obtained
from to the previous tests. The compromise is always difficult to find. A global
comparison of the three presented compression algorithms for which best results
are given in the Tables 8, 9, and 10. Table 11 gives optimal parameters to use
for faster compression speed. The last table (Table 12) give a summary of the
obtained results on different images using different implemented algorithms.

Table 9. Parameters for the genetic compression algorithm which give best quality.

Population size 1000

Maximum generations 20

Crossover rate 0.8

Mutation rate 0.1

RMS limit 2.0

Decomposition error limit 5.0

Flips and isometrics count 8

Table 10. Parameters for the genetic compression algorithm which give best ratio.

Population size 500

Maximum generations 20

Crossover rate 0.8

Mutation rate 0.1

RMS limit 10.0

Decomposition error limit 20.0

Flips and isometrics count 8

Table 8. Optimal compromise parameters for the genetic compression algorithm.

Population size 100

Maximum generations 20

Crossover rate 0.7

Mutation rate 0.1

RMS limit 5.0

Decomposition error limit 10.0

Flips and isometrics count 8

MOHAMED AND AOUED234

7. Conclusion

From the presented results, we can see that the genetic search used to enhance the
capabilities of the fractal compression schema has give better results than both
standard algorithms proposed by Barnsley and the classification scheme used by
Fisher, Table 12 shows that compression speed is very different (e.g., for the Lena
image 1:10:11 with the standard algorithm, 2:55 with classification, and 42 s with
the genetic algorithm), and this acceleration has not degrade the quality of the
reconstructed image or the compression ratio. So the major important goal (the
acceleration) is achieved. Furthermore, the different combinations of the genetic
parameters can give the compression algorithms more flexibility and adatability to
the different constraints of the compression.
The works presented in [4] and [5] are applied on binary images, and they can

be considered as shape approximation methods. In their approach, the IFS is con-
sidered as a chromosome, and each transformation wi is a gene, so the genetic

Table 11. Parameters for the genetic compression algorithm which give faster compression.

Population size 50

Maximum generations 20

Crossover rate 0.8

Mutation rate 0.1

RMS limit 10.0

Decomposition error limit 20.0

Flips and isometrics count 8

Table 12. Results obtained on different used images using Quadtree partitioning pattern.

Image Rate Quality (dB) Time

Standard algorithm

Lena 11.48 :1 32.01 1:10:11

Boat 8.88 :1 26.56 1:27:04

Barb 10.85 :1 27.07 1:22:15

Peppers 24.56 :1 33.07 1:05:17

Genetic algorithm

Lena 9.88 :1 33.25 42 s

Boat 8.17 :1 28.05 50 s

Barb 8.49 :1 28.99 52 s

Peppers 10.16:1 30.24 45 s

Classification algorithm

Lena 9.73 :1 30.05 2 m 55 s

Boat 7.9 :1 25.86 3 m 22 s

Barb 8.62 :1 29.65 4 m 12 s

Peppers 10.16 :1 29.36 2 m 45 s

SPEEDING UP FRACTAL IMAGE COMPRESSION BY GENETIC ALGORITHMS 235

convergence is not always possible, and exploration of the search space is more
difficult. Our algorithm can be extended to colored images by applying the same
principe to each color map (blue, red, and green).

8. Perspectives

Here, for a fixed size square block partition, a fractal code is required as in stan-
dard fractal coding, but for each range the best D codebook entries are kept in a
list together with the optimal scaling and offsets parameters. We take N times this
configuration as the starting population for the evolution. The offspring are built
by randomly merging two neighboring blocks. The fractal code is modified by con-
sidering only the transformations kept in the lists of those two blocks. A selection
is performed by keeping only the fittest configurations interms of collage error.

References

1. M.F. Barnsley and S. Demko, ‘‘Iterated Function Systems and the Global Construction of Fractals,’’

Proceedings of the Royal Society of London A, vol. 399, 1985, pp. 243–275.

2. D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine, Learning, Reading, Reading,

MA: Addison-wesley, 1989.

3. L. Davis, Handbook of Genetic Algorithms, New York: Van Nostrand Reinhold, 1991.

4. Marc M. Lankhors, ‘‘Iterated Function Systems Optimization with Genetic Algorithms’’, University of

Groningen Department of Computing Sciences. January 11, 1995.

5. L. Vences and I. Rudomin, ‘‘Fractal Compression of Single Images Sequences Using Genetic Algo-

rithms’’, Institute of Technology, University of Monterrey, 1994. Available from ftp://ftp.informa-

tik.uni-freiburg.de/papers/fractal/VeRu94.ps.gz.

6. M. Barnsely and L. Hurd, Fractal Image Compression, Wellesley, MA: AK Peters, 1993.

7. Y. Fisher, Fractal Image Compression: Theory and Application, New York: Springer-Verlag.

MOHAMED AND AOUED236

