
Multibody System Dynamics
https://doi.org/10.1007/s11044-024-10010-8

R E S E A R C H

The implicit inversion method for calculating the forward
dynamics input Jacobian

Gabriel Krög1 · Hubert Gattringer1 · Andreas Müller1

Received: 19 January 2024 / Accepted: 24 June 2024
© The Author(s) 2024

Abstract
This paper presents the implicit inversion method (IIM), a recursive method to evaluate the
Jacobian of the forward dynamics w.r.t. the system inputs, using intermediate results ob-
tained from an O(n) forward dynamics algorithm. The resulting coefficient matrix, called
the inertia-weighted input matrix (IWIM), can be used to significantly improve the perfor-
mance of solving optimal control problems that take into account system dynamics for only
the current time step. As the relationship between inputs and accelerations appears fixed
within a time step, this matrix can be evaluated in the initialization step of the optimization.
This means that the forward dynamics only needs to be solved once at the initialization of
the optimization, rather than having to solve the equations in every iteration of the opti-
mization. The method presented in this paper especially targets a case where the forward
dynamics are calculated using an O(n) method and takes advantage of variables that are
already known through the evaluation of that method. These quantities allow us to obtain
the inertia-weighted input matrix without having to convert the system to its generalized
coordinate form. Exploiting the shape of the resulting equation, it is even possible to avoid
an explicit inversion of any matrices in the process. Finally, runtime comparisons between
three different methods to calculate the IWIM are made for several examples.

Keywords Dynamics · Recursive dynamics algorithms · Robotics · Numerical methods ·
Optimal control

1 Introduction

Task space trajectory tracking appears in different contexts [1–4], ranging from fixed-base
industrial robots to legged robots or even aerial robots. The goal is to follow a prescribed
task velocity Vt,c respectively acceleration V̇t,c. For redundant systems, such as legged

� G. Krög
gabriel.kroeg@jku.at

H. Gattringer
hubert.gattringer@jku.at

A. Müller
a.mueller@jku.at

1 Institute of Robotics, Johannes Kepler University Linz, Altenberger Straße 69, Linz, 4040, Austria

http://crossmark.crossref.org/dialog/?doi=10.1007/s11044-024-10010-8&domain=pdf
mailto:gabriel.kroeg@jku.at
mailto:hubert.gattringer@jku.at
mailto:a.mueller@jku.at

G. Krög et al.

Fig. 1 Sketch of a bipedal robot
showing the specified inputs. The
motor torques τ1, . . . , τ14 are
shown in blue, the contact forces
F1, . . . ,F8 between feet and
ground in red (Color figure
online)

robotics [5–8], the trajectory tracking problem is often formulated as an optimization prob-
lem of the form

min
q̈,u

1

2

∥
∥Jt q̈ + J̇t q̇ − V̇t,c

∥
∥

2
(1a)

s.t. M(q)q̈ + h(q, q̇) = B(q)u, (1b)

which has to be solved for the generalized acceleration q̈ and input u at the current
state (q, q̇). Here, Jt is the task Jacobian relating task velocity and generalized velocity
as Vt = Jt q̇, and (1b) are the equations of motion (EoM) of the system with generalized
mass matrix M, input matrix B and h, the sum of all remaining generalized forces. A solu-
tion of (1a)–(1b) minimizes the deviation from the desired acceleration V̇t,c while satisfy-
ing the dynamic constraints (1b). The above formulation accounts for general task tracking
problem with possibly changing inputs and outputs. The inputs u may consist of actuation
torques/forces τ as well as interaction torques/forces Fc so that generally u = (

τ� F�
c

)�
.

As an example consider the bipedal humanoid robot in Fig. 1. The task trajectories given
through Jt would be the trajectories of the two feet and the trajectory of its centroidal mo-
mentum, which is used to guarantee the stability of the robot [9]. Clearly, for this example,
the number of prescribed task velocities and contact forces changes during the motion.

It should be emphasized that the optimization problem must be solved at a given instant
of time with given state (q, q̇). Moreover, of interest are the input variables u only rather
than the acceleration q̈. The crucial point is that a numerical optimization scheme repeatedly
evaluates (1a)–(1b) for fixed state. That is, all matrices in (1b) and (1a) are constant during
the optimization.

The above problem (1a)–(1b) can be transformed to an unconstrained optimization prob-
lem [9, 10]. To this end, (1b) is solved for the accelerations, also known as the forward

The implicit inversion method for calculating the forward dynamics. . .

dynamics (FD) solution,

q̈ = −M−1h + M−1Bu = q̈0 + q̈u , (2)

where q̈0 = −M−1h is the acceleration that depends on the current system state only, and
q̈u are the accelerations due to the inputs, q̈u = B̂u. The task acceleration is thus

V̇t = Jt q̈ + J̇t q̇ = Jt (q̈u + q̈0) + J̇t q̇ = Jt B̂u + V̇t,0, (3)

where V̇t,0 = Jt q̈0 + J̇t q̇ are the task accelerations occurring inherently from the system dy-
namics, which can therefore be assumed constant for the optimization since they are purely
state dependent. This simplifies problem (1a) to the unconstrained optimization

min
u

1

2

∥
∥
∥Jt B̂u + V̇t,0 − V̇t,c

∥
∥
∥

2
. (4)

For solving problem (4), the EoM only need to be evaluated once for every optimization
run (in which (q, q̇) is const.) since except for the optimization variables u, all other oc-
curring quantities only depend on known values. This means that the FD only needs to be
solved once to initialize the optimization. Additionally, the set of optimization variables gets
smaller since the accelerations q̈ are eliminated.

To efficiently evaluate the FD of multibody systems with many degrees of freedom
(DOF), O(n) methods were developed, such as the articulated-body algorithm (ABA) [11]
or earlier algorithms in [12, 13], as well as a similar method presented in [14], which is used
in this paper. All these methods are, however, unable to decouple the accelerations from the
inputs, which is necessary for solving (4). Consequently, the IWIM B̂ should be derived
separately. Explicitly evaluating and inverting the generalized mass matrix of the system to
compute the IWIM as B̂ = M−1B is computationally expensive. The performance could be
improved by directly calculating the inverse of the mass matrix with a recursive method [15].
Another way to calculate the IWIM might be found through the inverse operational space
inertia matrix (OSIM) �−1 = JtM−1J�

t , for which there are recursive algorithms [16–20].
By partitioning the input u into motor torques τ and contact forces Fc , the relationship of
�−1 and B̂ can be established. Partitioning the input matrix B into B = (

J�
a J�

t

)

, with

the actuation Jacobian Ja and the task Jacobian Jt , yields Jt B̂ = [

JtM−1J�
a �−1

]

. That
is, the IWIM premultiplied by the task Jacobian results in a matrix that contains the inverse
OSIM. Thus, evaluating the OSIM does not help to compute the IWIM.

This paper presents the implicit inversion method (IIM), an algorithm which enables the
calculation of the IWIM for systems with chain or tree topology using intermediate results
obtained by solving an O(n) method. Section 2 covers how the EoM are derived as well as
the O(n) algorithm that is used to solve the FD problem, showing the deficiencies inherent to
this method regarding the desired application. Then, Sect. 3 presents the extended unit force
method, a method to calculate the IWIM, which augments an algorithm that is originally
used to evaluate the inverse OSIM. In Sect. 4 the main contribution of this work, the IIM, is
presented. Building on this, simulation results of several models and runtime comparisons
are shown in Sect. 5. Finally, Sect. 6 concludes this paper.

2 Subsystem formulation

To efficiently evaluate the FD of more complex systems, recursive algorithms were devel-
oped, ideally with a computational complexity of O(n). In the following, an O(n)-method

G. Krög et al.

Fig. 2 Visualization of the subsystem velocity components. Both subsystems p and i are instances of the
same subsystem, albeit with different parameters

[14], which is based on the subsystem formulation introduced in [14, 21], and [22], is pre-
sented. This method is equivalent to the ABA described in [11] if subsystems only consist
of single bodies.

The subsystem formulation as introduced in [14, 21] is a modeling approach where the
overall system is considered an assembly of smaller subsystems that are attached to one
another at so-called coupling points, usually the joints connecting them. Such a subsystem
can consist of a single rigid or flexible body or a compound of such. In industrial robots
for example, it often occurs that a link of the robot arm is combined as a unit with the
corresponding motor and gearbox. Therefore, it makes sense to combine these components
into a subsystem, and thus to simplify the modeling of the robot. The kinematic topology of
a subsystem can be arbitrary, so it can also contain closed kinematic loops.

2.1 Recursive kinematics

Instead of the generalized coordinates q̇, subsystems use the subsystem-specific velocity
coordinates

V i =
⎛

⎝

vo,i

ωo,i

q̇i

⎞

⎠ . (5)

These consist of the guidance velocities vo,i and ωo,i as well as the internal velocities q̇i .
The internal velocities describe the movement caused by components of the subsystem itself,
while the guidance velocities introduce the motion of the system the current subsystem is
coupled with. The first two components, vo,i and ωo,i , are the velocities of the preceding
subsystem at the coupling point i, expressed in frame i, while the last one usually consists
of joint velocities or velocities of flexible bodies as shown in Fig. 2.

The subsystem velocities can be calculated recursively through

V i = Tip Vp + Fi q̇i , (6)

with the index p indicating the parent subsystem of i, the velocity transformation matrix Tip

from p to i and Fi the matrix that maps the generalized velocities belonging to subsystem i

to the internal velocities. Therefore, Fi usually is constant, like

Fi =
⎛

⎝

0
0
I

⎞

⎠ . (7)

The implicit inversion method for calculating the forward dynamics. . .

Then the matrix Tip transforms the velocities Vp of the preceding subsystem into the
guidance velocity components vo,i and ωo,i , therefore it takes the shape

Tip =
⎛

⎜
⎝

Rip Rip r̃�
pi

∂ vpi

∂ q̇p

0 Rip
∂ ωpi

∂ q̇p

0 0 0

⎞

⎟
⎠ , (8)

with vpi and ωpi being the relative velocities between the coupling points p and i. The
upper left 2x2-submatrix is a spatial transform as described in [23], Chap. 2.2. This matrix
transforms the point at which the velocities vo,p and ωo,p are defined from coupling point
p to i while also changing the frame in which the velocities are described from p to i

through the rotation matrix Rip . The (∼)-operator is called the cross-product operator and
turns a vector into a so-called cross-product matrix, so that a × b = ãb. The vector rpi is
the position vector connecting the coupling points of the subsystems p and i. The other
component of Tip is the Jacobian of the relative velocities vpi and ωpi w.r.t. the internal
velocities of p, represented in frame i.

This relationship between preceding and current subsystem velocities is called the kine-
matic chain [14] due to the chain-like structure of relationship (6). After evaluating this
formula for all subsystems, the result can be rewritten as a global relationship

V =

⎛

⎜
⎜
⎜
⎝

V1

V2
...

VN

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

F1 0 · · · 0
T21F1 F2 · · · 0

...
...

. . .
...

TN1F1 TN2F2 · · · FN

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

q̇1

q̇2
...

q̇N

⎞

⎟
⎟
⎟
⎠

= Fq̇ (9)

of the set of all subsystem velocities V i and the generalized velocities q̇. Velocity trans-
formation matrices over multiple subsystems, like TN1, are obtained by multiplication of
neighboring transformation matrices, e.g., Tac = TabTbc . For systems with a topological
tree structure, F exhibits a lower triangular block structure, which will be exploited later on
in the IIM.

2.2 Subsystem-based EoM

The dynamic equations of the subsystems (see Sect. A) give rise to the EoM of the multibody
system

N
∑

i=1

(
∂V i

∂q̇

)� (

MiV̇ i + hi (V i ,q,ui)
)

= 0 . (10)

The velocity vector V i of subsystem i can be fully described. The matrix Mi is the mass
matrix of subsystem i and hi includes all the generalized subsystem forces apart from the
inertia reaction forces. The transpose of the Jacobian ∂V i

∂q̇ , which is the row of F, can be
interpreted as the transformation from subsystem forces into the generalized forces. Further
information on the composition of these subsystem matrices is compiled in appendix A.

Finally, the relation between the EoM in subsystem form (10) and the EoM in gener-
alized coordinates (1b) is given obtained by substituting the relationships V = Fq̇ and
V̇ = Fq̈ + Ḟq̇, which results in

M(q) =
N

∑

i=1

(
∂V i

∂q̇

)�
Mi

∂V i

∂q̇
(11)

G. Krög et al.

h(q, q̇) =
N

∑

i=1

(
∂V i

∂q̇

)� [

Mi

d

d t

(
∂V i

∂q̇

)

q̇ + hi

]

(12)

B(q) =
N

∑

i=1

(
∂V i

∂q̇

)�
Bi (13)

with Bi = − ∂ hi

∂ u . These global matrices now allow to solve the FD according to (2), i.e., the
mass matrix M is inverted to obtain the system accelerations q̈.

2.3 Subsystem O(n) algorithm

The solution of the forward dynamics as shown in (2), however, has a computational com-
plexity of O(n3) due to the necessary inversion of the mass matrix. For more efficient eval-
uation, various recursive algorithms with complexity O(n) were proposed, e.g., [11–14].
Due to increased overhead, however, they only become faster than the direct solution of the
global form for n > 9.

The O(n)-methods consist of three recursions. In the first recursion of the subsystem
O(n) algorithm [14], the kinematics is evaluated from the base subsystem outwards as in (6).
Then, in the following inward recursion, the articulated-body inertia M

∗
i and bias forces h

∗
i ,

as they are named in the ABA, are computed as

M
∗
p = Mp +

∑

i∈{s(p)}
T∗�

ip M
∗
i Tip (14)

h
∗
p = hp +

∑

i∈{s(p)}
T∗�

ip

(

M
∗
i ṪipVp + h

∗
i

)

, (15)

with T∗
ip = (I − M

∗
i Si)

�Tip, (16)

Si = FiM
−1
Ri F�

i and MRi = F�
i M

∗
i Fi . (17)

The set {s(p)} consists of all subsystems directly attached to p, i.e., that have p as their
common parent. Finally, the accelerations are calculated through the final outward recursion

q̈i = −M
−1
Ri F�

i

[

M
∗
i (TipV̇p + ṪipVp) + h

∗
i

]

(18)

V̇ i = TipV̇p + ṪipVp + Fi q̈i + Ḟi q̇i . (19)

As can be seen from (17) and (18), the only matrix that needs to be inverted here is MRi ,
whose dimension is that of the internal velocities of the respective subsystem. The downside
of this method is, however, that it does not allow the splitting of the accelerations as in (2).
Therefore, a different method is needed to calculate the IWIM.

3 The extended unit force method (eUFM)

One method to calculate the inverse OSIM that fulfils the criteria mentioned in Sect. 1 is
shown in [20]. It builds on the unit force method of [16] but is augmented so that it does not
rely on additional assumptions to simplify the system dynamics. Because of this, it will be
called the extended unit force method.

The implicit inversion method for calculating the forward dynamics. . .

To calculate the inverse OSIM �−1 = JtM−1J�
t , the matrix M−1J�

t is evaluated first
since this term can be taken directly from the FD

q̈ = −M−1
(

h(q, q̇) − J�
a τ

) + M−1J�
t Fc. (20)

This can also be written as q̈ = q̈[0] + M−1J�
t Fc , where q̈[0] are the system accelerations

according to the current state and actuator torques, which can be obtained through the O(n)-
method. The matrix M−1J�

t can then be calculated column-wise by choosing a unit vector
ei (whose ith entry is 1) as force input. When solving for the accelerations, the result is

q̈[i] = q̈[0] + M−1J�
t ei , (21)

so q̈[i] are the system accelerations for input ui = 1. Now, the ith column of M−1J�
t is simply

the difference q̈[i] − q̈[0]. By repeating this process for each element of the contact force
vector, the entire matrix is obtained. To get the inverse OSIM now, this result is premultiplied
by Jt . This final multiplication can just be left out as mentioned in Sect. 1. Now, the input for
the eUFM can be extended to u = (

τ� F�
c

)�
so that the dynamics can now be expressed

as in (2) with B = [

J�
a J�

t

]

. For this case, the eUFM now returns B̂ = [

M−1J�
a M−1J�

t

]

instead of M−1J�
t .

The drawback of this method is that the O(n)-algorithm has to be evaluated m + 1 times
for u ∈ R

m, resulting in a computational complexity of O(mn). This reduces the usability
of this method for systems with higher numbers of inputs.

4 The implicit inversion method (IIM)

This section presents the main contribution of this paper, the implicit inversion method. It
is a way to evaluate the IWIM without having to explicitly invert the global mass matrix,
hence the name. The aim is to derive an algorithm from the subsystem O(n)-method that is
computationally less expensive than those presented in the previous sections. The algorithm
should be efficient in particular for systems with multiple inputs while still working with
subsystem quantities as far as possible. As mentioned in the introduction, we only consider
systems that exhibit a linear relation between inputs and accelerations. Thus the hi in (10)
are linear in the inputs u and can be partitioning into

hi = h0,i + hu,i with hu,i = −Biu , (22)

where the matrices Bi determine how the inputs u affect the subsystem. The vector h0,i

contains the sum of all subsystem forces that do not depend on the inputs u. The FD is
evaluated using the O(n)-method presented in Sect. 2.3 so that most of the terms needed for
the IIM are already available.

4.1 Basic form of the IIM

4.1.1 Computing the input-based accelerations q̈u

The derivation of the IWIM is done by going through the recursive FD method step by step
and picking out all the terms that are related to the inputs. That means that the first step of
the O(n)-method, the evaluation of the kinematic chain can be skipped, as it is not affected
by the inputs.

G. Krög et al.

In the second step, the bias forces do depend on the inputs. Substituting (22) in the
propagation formula for the bias forces (15) gives

h
∗
p = h

∗
0,p + h

∗
u,p

with h
∗
u,p = hu,p +

∑

i∈{s(p)}
T∗�

ip h
∗
u,i = −Bpu +

∑

i∈{s(p)}
T∗�

ip h
∗
u,i ,

(23)

a recursive formula for the input-dependent component of the bias forces h
∗
u,i . Rewriting

this formula to a global form leads to the relationship

h
∗
u = −T∗�Bu (24)

with

T∗ =

⎛

⎜
⎜
⎜
⎝

I 0 · · · 0
T∗

21 I · · · 0
...

...
. . .

...

T∗
N1 T∗

N2 · · · I

⎞

⎟
⎟
⎟
⎠

. (25)

The matrices T∗
ac propagate as T∗

ac = T∗
abT∗

bc .
In the third step of the O(n)-method, the accelerations are obtained through a final out-

ward recursion (18). Here, the variables V̇ i and h
∗
i depend on u. To separate accelerations

from inputs, a change to global variables is necessary for the input-dependent accelera-

tions q̈u. So, inserting (2) into V̇ i = ∂Vi

∂q̇ q̈ + d
d t

(
∂Vi

∂q̇

)

q̇ leads to

V̇ i = V̇0,i +
(

∂V i

∂q̇

)

q̈u with V̇0,i = ∂V i

∂q̇
q̈0 + d

d t

(
∂V i

∂q̇

)

q̇ . (26)

That way, all state-dependent accelerations can still be calculated as before while extracting
the calculation of q̈u,i as

q̈u,i = −M
−1
Ri F�

i

[

M
∗
i Tip

(
∂Vp

∂q̇

)

q̈u + h
∗
u,i

]

. (27)

To avoid mixing variables on subsystem level and global level, namely q̈u,i and q̈u, the
whole equation is expanded to the global form

q̈u = −diag
(

M
−1
Ri F�

i M
∗
i

)

(F − diag(Fi))q̈u − diag
(

M
−1
Ri F�

i

)

h
∗
u . (28)

Substituting (24), it can be further simplified to

[

I + diag
(

M
−1
Ri F�

i M
∗
i

)

(F − diag(Fi))
]

q̈u = diag
(

M
−1
Ri F�

i

)

T∗�Bu , (29)

and using (17), the expression I−diag
(

M
−1
Ri F�

i M
∗
i Fi

)

vanishes and the equation is reduced
to

[

diag
(

M
−1
Ri F�

i M
∗
i

)

F
]

q̈u = diag
(

M
−1
Ri F�

i

)

T∗�Bu . (30)

The implicit inversion method for calculating the forward dynamics. . .

On the right-hand side of this equation, the product T∗diag (Fi) takes the shape

T∗diag (Fi) =

⎛

⎜
⎜
⎜
⎝

F1 0 · · · 0
T∗

21F1 F2 · · · 0
...

...
. . .

...

T∗
N1F1 T∗

N2F2 · · · FN

⎞

⎟
⎟
⎟
⎠

, (31)

which looks like F, the only difference being that all transformations Tip are replaced by T∗
ip .

Therefore, the product is summarized as F∗ = T∗diag (Fi). (30) also shows an acceleration

transformation matrix � = diag
(

M
−1
Ri F�

i M
∗
i

)

F that needs to be inverted to obtain the input-

dependent accelerations

q̈u = �−1diag
(

M
−1
Ri

)

F∗�Bu . (32)

4.1.2 Inversion of �

The matrix � retains the structure of F, i.e., it still is a lower triangular block matrix. Besides,

thanks to M
−1
Ri F�

i M
∗
i Fi = I, all the block matrices on the diagonal of � are identity matrices,

leading to a lower unitriangular structure, i.e., a lower triangular matrix with only ones as
its diagonal entries. This guarantees that � will always be invertible.

Using this special structure, the inversion of � can be done through the cascaded inver-
sion of its submatrices as shown in the following example for a 3-link chain.

(33)

The inverse of the resulting block matrix form

Ai =
(

Ap 0
Ci I

)

(34)

is

A−1
i =

(
A−1

p 0
−CiA−1

p I

)

(35)

for quadratic diagonal block matrices, which is guaranteed for these matrices. By starting
this inversion process with the upper left submatrix A1 = I and then iteratively expanding
until AN = �, the inverse of the original matrix is obtained without any explicit matrix
inversion, which motivates to call this approach the implicit inversion method (IIM).

4.2 Subsystem-based inversion of �

The terms that appear after following the sequential approach of building the inverse can
be further simplified once more, leading to a closed form solution for the inverse. This is

G. Krög et al.

shown with the help of an example here, but the result can be generalized to all systems with
a topological chain or tree structure.

To show the general structure of the solution, a minimum of three consecutive links is
necessary. That is why a 3-link pendulum will serve as an example here. The kinematic
Jacobian from (9) for this system has the shape of

F =
⎛

⎝

F1 0 0
T21F1 F2 0
T31F1 T32F2 F3

⎞

⎠ , (36)

which, when following the notation of (34) and introducing Ci = [cij]j=1..p , leads to

� = diag(M
−1
Ri F�

i M
∗
i)F =

⎛

⎝

I 0 0
c21 I 0
c31 c32 I

⎞

⎠ (37)

with

c21 = M
−1
R2F�

2 M
∗
2T21F1,

c31 = M
−1
R3F�

3 M
∗
3T31F1, (38)

c32 = M
−1
R3F�

3 M
∗
3T32F2 .

Following (34), we get the submatrices

A1 = I, A2 =
(

I 0
c21 I

)

, A3 = � , (39)

for which (35) gives the inverses

A−1
1 = I, A−1

2 =
(

I 0
−c21 I

)

, A−1
3 =

⎛

⎝

I 0 0
−c21 I 0

−c31 + c32c21 −c32 I

⎞

⎠ . (40)

In the matrix A−1
3 , the lower left element is the only entry that is not explicitly known yet.

Inserting (38) into (40), we get

−c31 + c32c21 = −M
−1
R3F�

3 M
∗
3(T31 − T32F2M

−1
R2F�

2 M
∗
2T21)F1 . (41)

Using the relationships T31 = T32T21 and Si = FiM
−1
Ri F�

i , the result can be simplified
further to

−c31 + c32c21 = −M
−1
R3F�

3 M
∗
3T32(I − S2M

∗
2)T21F1 , (42)

which can be further reduced by using the properties Si = S�
i and M

∗
i = M

∗
i

�
. These imply

(I − SiM
∗
i) = (I − M

∗
i Si)

�, which allows for the substitution (17). This gives us the final
result of

−c31 + c32c21 = −M
−1
R3F�

3 M
∗
3T32T∗

21F1 (43)

The implicit inversion method for calculating the forward dynamics. . .

for this entry. With that, the matrix

A−1
3 =

⎛

⎜
⎝

I 0 0

−M
−1
R2F�

2 M
∗
2T21F1 I 0

−M
−1
R3F�

3 M
∗
3T32T∗

21F1 −M
−1
R3F�

3 M
∗
3T32F2 I

⎞

⎟
⎠ (44)

is the result of the inversion procedure, which can also be written as

A−1
3 = I − diag(M

−1
Ri F�

i M
∗
i Tip)F̂ . (45)

In (45), only a single variable necessary for the calculation of the inverse is new compared
to �, namely

F̂ =
⎛

⎝

0 0 0
F1 0 0

T∗
21F1 F2 0

⎞

⎠ . (46)

When comparing F̂ to (31), it can be seen that each row i in F̂ corresponds to the row of its
predecessor p(i) in F∗. With this, the general form of the matrix F̂ can be derived as

F̂ = [fi]i=1..N with fi =
{

0 p(i) = 0
F∗

p p(i) > 0
(47)

where p(i) denotes the predecessor of i and F∗
p the rows of F∗ belonging to subsystem p.

From this, a general rule for the calculation of �−1 can be deduced, namely

�−1 = I − diag(M
−1
Ri F�

i M
∗
i Tip)F̂. (48)

4.3 Recursive computation of the IIM

Inserting the inverse (48) into the previous formula (32) for the input-based accelerations
gives the final result

q̈u = [I − diag(M
−1
Ri F�

i M
∗
i Tip)F̂]diag(M

−1
Ri)F

∗�Bu . (49)

In this formula, the only inverses remaining are those of MRi , which were already calculated
during the execution of the O(n)-method, so no separate matrix inversions are needed. This
yields q̈ = q̈0 + B̂u with q̈0 obtained by running the O(n)-method without any inputs as
mentioned before. During this evaluation, all variables that are necessary to calculate the
global matrices F∗, therefore F̂ and subsequently B̂, are computed in advance. Finally, the
global form of the IWIM B̂ is obtained as

B̂ = [I − diag(M
−1
Ri F�

i M
∗
i Tip)F̂]diag(M

−1
Ri)F

∗�B. (50)

However, the local nature of the resulting matrices also allows for a recursive reformulation.
The fact that F̂ only consists of components from F∗ can be utilized to further reduce the
number of variables. The result is summarized in algorithm 1. The bracketed indices refer
to all rows/columns corresponding to the respective subsystem. If two indices are separated
by a colon, e.g., [p : i], this refers to all columns from p to i. That way, the sparsity patterns
introduced by the topology of the system through F are utilized to accelerate the calculation
of the IWIM.

G. Krög et al.

Algorithm 1 Pseudo-code for the IIM
1: Step 1: Evaluate the O(n)-method according to Sect. 2.3 without inputs
2: q̈0 = f(q, q̇)

3:

4: Step 2: Outward recursion to calculate F∗ and �−1.
5: for i = 1 → N do
6: F∗

[i,i] = Fi

7: �−1
[i,i] = I

8: if p exists then
9: F∗

[i,1:p] = T∗
ip F∗

[p,1:p]
10: �−1

[i,1:p] = −M−1
Ri F�

i M∗
i TipF∗

[p,1:p]
11: end if
12: end for
13:

14: Step 3: Inward recursion to get B̂
15: for i = N → 1 do
16: B̂[i:N,:] = B̂[i:N,:] + �−1

[i:N,i]M
−1
Ri F∗�

[i:N,i]B[i:N,:]
17: end for

5 Simulation results

To analyze the performance of the proposed method, the effect of different topologies, num-
bers of DOF, and inputs is studied through simulation. The runtime of the three methods to
calculate the IWIM presented in this paper will be compared here. These are the calculation
of the IWIM by inversion of the global mass matrix as mentioned in Sect. 1 ,1 the eUFM
from Sect. 3, and the IIM as shown in algorithm 1. For that, the algorithms are implemented
in Matlab 2023b and run on an Apple M2 Pro processor. The runtime is taken as the average
evaluation time for the FD of a model over 1000 runs with randomized values for the states
and inputs for each run.

5.1 n-link chain

At first, we look at systems with a pure chain structure, i.e., the model is an n-link pendulum
with n ranging from 1 to 50. For this model, all subsystems were assumed to be a single
rigid body with identical parameters. In Fig. 3 (a), only the last link is actuated, i.e., the
number of inputs remained constant over the changing number of DOF.

In case only one joint is actuated, all the methods perform very similarly up until
∼ 18 DOF. Above that, the global inverse form starts to get noticeably slower, and up
to at least 50 DOF, the IIM outperforms the eUFM marginally. From this, it can be seen
that the execution of algorithm 1 for models of this scale is faster than the evaluation of the
O(n) method, as that is what the eUFM does in this case. Systems with only a single input
are a very rare case, however, so the same n-link pendulum is modeled as a fully actuated
system next. The results for these simulations can be seen in Fig. 3 (b). When looking at
the results for the eUFM now, it becomes apparent why this method should not be used for
systems with multiple inputs, since the resulting computational cost becomes prohibitive.
Comparing the IIM with the global inverse form, the runtime for these methods does not

1i.e., the calculation of B̂ = M−1B and q̈0 = −M−1h using a Cholesky factorization.

The implicit inversion method for calculating the forward dynamics. . .

Fig. 3 Run time comparisons for the forward dynamics evaluation n-link pendulum models with (a) a single
input and (b) the fully actuated models

Fig. 4 Runtime comparison for a 50-link pendulum with a varying number of inputs (a) shows the full results
and (b) is zoomed in to show the behavior of the IIM and the global inverse

change much compared to the single input case, the point where the IIM becomes faster is
still at around ≈ 18-19 DOF.

To get a better understanding of the influence the number of inputs has on runtime, the
50-link pendulum model was simulated with a varying number of actuated links. The results
of which are shown in Fig. 4 (a). Here, we can see a steep linear increase for the eUFM
for an increasing number of inputs as expected. The increase in runtime for both the global
inverse and the IIM is also linear, albeit much slower. It is necessary to zoom in to Fig. 4 (b),
to get a better picture of the increase for these methods.

G. Krög et al.

Table 1 Average runtimes for a
50-link pendulum Single input Fully actuated

Global Form 3.03 3.55 ms

IIM 1.46 2.21 ms

eUFM 1.51 27.04 ms

Table 2 Average runtimes for a
50-link binary tree 1 input 50 inputs

Global Form 2.77 3.49 ms

IIM 1.46 2.31 ms

eUFM 1.51 27.13 ms

When comparing the extreme cases of Fig. 4, the values of which are listed in Table 1,
the increase of computational time per additional input is at ≈ 1% for the IIM and ≈ 0.33%
for the global inverse form, while for the eUFM, it rises by ≈ 33% per input.

The low impact the number of inputs has on the IIM can be explained when looking at
(50). Here, the inputs only directly affect B, which is very sparsely populated, reducing the
computational effort. This reasoning also applies to the solution in global inverse form since
it uses B as well.

5.2 n-element binary tree

Opposed to the n-link chain, which only has a single branch in its topological graph, the
next test model is an n-link complete binary tree, which has the highest number of branch-
ing points possible. Although this structure makes no sense for practical systems, all sys-
tems with topological chain or tree structure are somewhere in between those two models.
Therefore, the runtime for an arbitrary system should lie somewhere between these two test
models. For that, the same tests were then conducted on models with a complete binary tree
for their topological graph to check how the different system topology affects the calculation
time.

The runtimes for the solution of the global inverse decrease slightly, while the other
methods are not really impacted by the change in topology as can be seen in Table 2. The
fact that the runtime for the IIM does not change is because the sparsity pattern left by tree
structures is not yet exploited in the current implementation of the IIM.

All in all, it seems as if the system topology does not significantly affect the speed of
these methods, just the number of DOF and in the case of the eUFM, the inputs.

5.3 Application example: a bipedal robot

Finally, the three methods are tested on a more practical application, a bipedal robot with
20 DOF and 38 inputs as shown in Fig. 1. The system consists of 14 motor-arm subsystems
as mentioned in Sect. 2.2 and of one floating base subsystem for the robot torso. The large
number of inputs is due to the number of contact points on the robot. There are 8 contact
points defined for the robot with 4 per foot, so there are 24 contact forces and 14 motor
torques.

For this system, the FD is calculated for a set of 1000 random states and inputs. The
results of these simulations are shown in Table 3, and they show the same trends as were

The implicit inversion method for calculating the forward dynamics. . .

Table 3 Average computational
times for the bipedal robot Humanoid

Global Form 0.67 ms

IIM 0.62 ms

eUFM 6.37 ms

observed in the n-link pendulum and tree. Since this system has a fairly large number of
inputs, the eUFM is obviously the slowest of the three methods. For the other two methods,
the results also make sense since the system has only 20 DOF, the IIM is only slightly faster
than the solution of the inverse when compared with the results obtained for the chain and
tree models.

6 Conclusions

This contribution introduces the implicit inversion method (IIM), a recursive method that
leverages the subsystem formulation to effectively calculate the inertia-weighted input ma-
trix (IWIM) B̂ = M−1B, which is the Jacobian of the forward dynamics (FD) w.r.t. the
system inputs. The IIM is used in conjunction with an O(n)-algorithm to evaluate the state-
dependent dynamics and makes use of intermediate results coming from the evaluation of
the algorithm. Therefore, the IWIM can be calculated without having knowledge of the mass
matrix M of the system in its generalized coordinate form. Both the accelerations from the
O(n)-algorithm and the IWIM can then be used to solve an optimization of the form (4).
Using all the byproducts of these methods additionally contributes to the efficiency of this
method.

To determine the performance of this method, runtime comparisons were made between
the IIM, an extended form of the unit force method, and the direct calculation of the IWIM
through the inverse of the joint-space mass matrix using a Cholesky factorization. The
IIM generally performs at least at the level of the other methods, and for systems above
∼ 18 DOF and multiple inputs outperforms them increasingly.

However, it still needs to be compared against methods that are more efficient in calculat-
ing the inverse mass matrix, such as the one mentioned in [15] to get a better understanding
of its standing. In theory, they should perform very similarly, since they are structurally very
close to one another.

For a fair comparison though, the method should be reimplemented in a different pro-
gramming language, e.g., in C++ instead of the current implementation, which is done in
Matlab.

Appendix A: Subsystem dynamics

As shown in Fig. 5, subsystem i consists of Nsub bodies. The mass matrix of body j ex-
pressed in a body-fixed frame located at the center of mass is

Mj = diag(mj I,�
Cj

j), (A1)

where �
Cj

j is the inertia tensor and mj the mass of body j . Each body acts a spatial wrench
Wj , which is expressed in frame j and accounts for gravity, friction, actuation, and other

G. Krög et al.

Fig. 5 Example of a subsystem i consisting of two bodies j = 1,2

external loads. The Newton–Euler equations of body j expressed in the body-fixed frame
are then written as

Mj V̇Cj
+ �̃jMj VCj

−Wj = 0, (A2)

where the matrix �̃j = diag(ω̃j , ω̃j) contains the cross-product matrix of the angular veloc-
ity of j . The twist VCj

of body j is related to the subsystem velocity V i by

VCj
= ∂ VCj

∂ V i

V i . (A3)

Introducing this into (A2), the principle of virtual power yields the dynamic equations of
subsystem i

MiV̇ i + GiV i − Qi = 0 (A4)

with

Mi =
Nsub∑

j=1

(
∂ VCj

∂ V i

)�
Mj

∂ VCj

∂ V i

(A5)

Gi =
Nsub∑

j=1

(
∂ VCj

∂ V i

)� [
d

d t

(

Mj

∂ VCj

∂ V i

)

+ �̃j Mj

∂ VCj

∂ V i

]

(A6)

Qi =
Nsub∑

j=1

(
∂ VCj

∂ V i

)�
Wj . (A7)

Here, Gi is the subsystem version of the gyroscopic matrix and Qi is the overall vector of
subsystem forces. This formulation is applicable to system containing flexible bodies [14].
Introducing the relation V i = ∂ Vi

∂ q̇ q̇ of subsystem velocities and generalized velocities, in
(A7), the principle of virtual power yields the overall EoM (10) of the multibody system,
where the term hi := GiV i − Qi is used throughout the paper for brevity.

Author contributions G.K. wrote the manuscript text and prepared all the necessary data and figures. H.G.
and A.M. were involved in developing the formulations and in the preparations and revision of the paper.

Funding Open access funding provided by Johannes Kepler University Linz. This work has been supported
by the “LCM - K2 Center for Symbiotic Mechatronics” within the framework of the Austrian COMET-K2
program.

The implicit inversion method for calculating the forward dynamics. . .

Data Availability No datasets were generated or analysed during the current study.

Declarations

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Khatib, O.: A unified approach for motion and force control of robot manipulators: the operational space
formulation. IEEE J. Robot. Autom. 3(1), 43–53 (1987)

2. Hu, Q., Xu, L., Zhang, A.: Adaptive backstepping trajectory tracking control of robot manipulator. J.
Franklin Inst. 349(3), 1087–1105 (2012)

3. Del Prete, A.: Joint position and velocity bounds in discrete-time acceleration/torque control of robot
manipulators. IEEE Robot. Autom. Lett. 3(1), 281–288 (2018)

4. Wensing, P.M., Posa, M., Hu, Y., Escande, A., Mansard, N., Del Prete, A.: Optimization-based control
for dynamic legged robots. IEEE Trans. Robot. 40, 43–63 (2023)

5. Abe, Y., Da Silva, M., Popović, J.: Multiobjective control with frictional contacts. In: Proceedings of the
2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2007)

6. Bouyarmane, K., Kheddar, A.: Using a multi-objective controller to synthesize simulated humanoid robot
motion with changing contact configurations. In: 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems (2011)

7. Koolen, T., Smith, J., Thomas, G., Bertrand, S., Carff, J., Mertins, N., Stephen, D., Abeles, P., Engls-
berger, J., McCrory, S., Egmond, J., Griffioen, M., Floyd, M., Kobus, S., Manor, N., Alsheikh, S., Duran,
D., Bunch, L., Morphis, E., Colasanto, L., Hoang, K.-L.H., Layton, B., Neuhaus, P., Johnson, M., Pratt,
J.: Summary of team IHMC’s virtual robotics challenge entry. In: 2013 13th IEEE-RAS International
Conference on Humanoid Robots (Humanoids) (2013)

8. Vaillant, J., Kheddar, A., Audren, H., Keith, F., Brossette, S., Escande, A., Bouyarmane, K., Kaneko, K.,
Morisawa, M., Gergondet, P., et al.: Multi-contact vertical ladder climbing with an HRP-2 humanoid.
Auton. Robots 40(3), 561–580 (2016)

9. Wensing, P.M., Orin, D.E.: Improved computation of the humanoid centroidal dynamics and application
for whole-body control. Int. J. Humanoid Robot. 13(01), 1550039 (2016)

10. Wensing, P.M., Orin, D.E.: Generation of dynamic humanoid behaviors through task-space control with
conic optimization. In: 2013 IEEE International Conference on Robotics and Automation (2013)

11. Featherstone, R.: Rigid Body Dynamics Algorithms. Springer, New York (2008)
12. Brandl, H., Johanni, R., Otter, M.: A very efficient algorithm for the simulation of robots and similar

multibody systems without inversion of the mass matrix. IFAC Proc. Vol. 19(14), 95–100 (1986)
13. Bae, D.-S., Haug, E.J.: A recursive formulation for constrained mechanical system dynamics: Part I.

Open loop systems. J. Struct. Mech. 15(3), (1987)
14. Bremer, H.: Elastic Multibody Dynamics. Springer, Dordrecht (2008)
15. Carpentier, J., Mansard, N.: Analytical derivatives of rigid body dynamics algorithms. In: Robotics:

Science and Systems (RSS 2018) (2018)
16. Lilly, K.: Efficient Dynamic Simulation of Robotic Mechanisms. Springer, New York (1993)
17. Lilly, K.W., Orin, D.E.: Efficient O(N) recursive computation of the operational space inertia matrix.

IEEE Trans. Syst. Man Cybern. 23(5), 1384–1391 (1993)
18. Kreutz-Delgado, K., Jain, A., Rodriguez, G.: Recursive formulation of operational space control. Int. J.

Robot. Res. 11(4), 320–328 (1992)
19. Wensing, P., Featherstone, R., Orin, D.E.: A reduced-order recursive algorithm for the computation of the

operational-space inertia matrix. In: 2012 IEEE International Conference on Robotics and Automation
(2012)

http://creativecommons.org/licenses/by/4.0/

G. Krög et al.

20. Gattringer, H., Müller, A., Pucher, F., Reiter, A.: O(n) algorithm for elastic link/joint robots with end-
effector contact. In: Zahariev, E., Cuadrado, J. (eds.) IUTAM Symposium on Intelligent Multibody Sys-
tems – Dynamics, Control, Simulation. Springer, Cham (2019)

21. Bremer, H.: Dynamik und Regelung Mechanischer Systeme. Teubner, Stuttgart (1988)
22. Gattringer, H., Oberhuber, B., Mayr, J., Bremer, H.: Recursive methods in control of flexible joint ma-

nipulators. Multibody Syst. Dyn. 32, 117–131 (2014)
23. Siciliano, B., Khatib, O. (eds.): Springer Handbook of Robotics, vol. 200, 1st edn. pp. 55–56. Springer,

Berlin (2008)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	The implicit inversion method for calculating the forward dynamics input Jacobian
	Abstract
	Introduction
	Subsystem formulation
	Recursive kinematics
	Subsystem-based EoM
	Subsystem O(n) algorithm

	The extended unit force method (eUFM)
	The implicit inversion method (IIM)
	Basic form of the IIM
	Computing the input-based accelerations q̈u
	Inversion of Γ

	Subsystem-based inversion of Γ
	Recursive computation of the IIM

	Simulation results
	n-link chain
	n-element binary tree
	Application example: a bipedal robot

	Conclusions
	Appendix A: Subsystem dynamics
	References

