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Abstract
We propose a unified approach to dynamic modeling and simulations of general tenseg-
rity structures with rigid bars and rigid bodies of arbitrary shapes. The natural coordinates
are adopted as a nonminimal description in terms of different combinations of basic points
and base vectors to resolve the heterogeneity between rigid bodies and rigid bars in the
three-dimensional space. This leads to a set of differential-algebraic equations with constant
mass matrix free from trigonometric functions. Formulations for linearized dynamics are
derived to enable modal analysis around static equilibrium. For numerical analysis of non-
linear dynamics, we derive a modified symplectic integration scheme that yields realistic
results for long-time simulations and accommodates nonconservative forces and boundary
conditions. Numerical examples demonstrate the efficacy of the proposed approach for dy-
namic simulations of Class-1-to-k general tensegrity structures under complex situations,
including dynamic external loads, cable-based deployments, and moving boundaries. The
novel tensegrity structures also exemplify new ways to create multifunctional structures.
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Fig. 1 Different types of tensegrity structures: (a) a “bars-only”tensegrity [24]; (b) a vertebrate spine (Copy-
right © Intension Designs [25]) and spine-like tensegrities with rigid bodies; (c) a fusiform tensegrity [26],
and (d) a tensegrity bridge [27]. (a,c,d) are reprinted with permission from Elsevier

1 Introduction

1.1 Background

The term tensegrity, combining “tensile” and “integrity”, was coined by Fuller [1] to de-
scribe a kind of prestressed structure created by Ioganson and Snelson [2]. A commonly
adopted definition is given in [3]: a tensegrity structure is a self-sustaining composition of
rigid members and tensile members, and if there is at least a torqueless joint connecting
k rigid members, then it is called a Class-k tensegrity. Since its invention, the outstanding
features of tensegrity structures were gradually recognized, including high stiffness-to-mass
ratio [4], deployability [5–7], the ability to integrate structure design with control [3], etc.
Thus it has drawn increasing attention from multiple fields, such as civil engineering [8–10],
aerospace [6, 11–13], and robotics [14–18].

Recent decades have witnessed two trends of developments in the tensegrity literature.
One trend focuses on “bars-only” tensegrity structures (see, for example, Fig. 1(a)), where
the rigid members are axial-loaded thin bars. This setting maximizes material efficiency,
making them strong and lightweight [3]. They are also deployable using simple cable-based
actuations [5–7] and are mostly seen in civil and aerospace engineering [8–11, 19, 20].
The other trend concerns tensegrities with rigid bodies, which are allowed to have complex
shapes such as the “X-Piece” [21]. These structures usually have simpler connectivity and
larger capacity spaces while still being modular and compliant. They mimic the interac-
tions of muscles and bones [3, 8], such as the vertebrate spine [22] (Fig. 1(b)), leading to
bioinspired designs like tensegrity joints [23] and tensegrity fishes [17].

1.2 Formulation of the problem of interest to this investigation

In recent years, a growing interest in merging these two trends has led to the so-called gen-
eral tensegrity structures, which have the potential of combining the above advantages. For
instance, Liu et al. [26] studied the kinematics and statics of a fusiform tensegrity (Fig. 1(c)),
which combines a triangular rigid body and a rigid bar. Ma et al. [28] formulated the static
equilibrium equations for form-finding problems of Class-1 general tensegrities. Wang et
al. [27, 29] studied the topology-finding method and the self-stress design method for new
structures like the tensegrity bridge (Fig. 1(d)), which has bars as supporting struts and a
rigid plate as the bridge deck.

However, none of these works addresses the dynamic analysis problem of general tenseg-
rity structures with arbitrary rigid bodies and rigid bars, which is the problem of interest in
this paper.
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The primary challenge that arises in this quest is the heterogeneity between rigid bodies
and rigid bars in 3D space. This heterogeneity is threefold. Firstly, since the rotational inertia
of a normal rigid body is defined by a nonsingular inertia matrix, the rotational inertia about
the longitudinal axis of a thin bar is vanishing as compared to other axes. This eventually
leads to singular inertia matrices [30]. Secondly, the rotation and angular velocity about the
longitudinal axis of a rigid bar is ill-defined [31]. Thirdly, a rigid bar can have ball joints or
boundary conditions only at its two endpoints, whereas a rigid body can be jointed anywhere.

The secondary challenge is the formulation of the tensional forces of tensile cables. To in-
duce active movements of tensegrity structures by cable-based actuation, the cable variables
(e.g., force densities or rest lengths) are used as control inputs. Therefore it is beneficial
to the design of control schemes that the dependence on the cable variables is explicitly
revealed in the dynamic formulations of general tensegrity structures.

In short, the dynamic formulations of general tensegrity structures should have not only
the flexibility to model the heterogeneous rigid bodies and rigid bars, but also the clarity
to express the cable variables. Furthermore, both linearized and nonlinear dynamic analysis
methods should be provided to guarantee the practicality of the dynamic formulations.

1.3 Literature survey

For “bars-only” tensegrity structures, the dynamic analysis problems were studied in early
works by Sultan et al. [7, 32]. However, their use of the Euler angle-based modeling method
leads to highly complex formulations as the number of structural components increases. Ce-
falo et al. [31] propose a comprehensive dynamic model based on quaternions without the
use of Euler angles. However, this model is limited to Class-1 tensegrity structures. Skelton
et al. [33–37] proposed and investigated a nonminimal description approach, which uses
Cartesian coordinates to describe rigid bars and naturally incorporates Class-k tensegrities.
Compared to other description approaches, the nonminimal description approach is not only
free from trigonometric terms but also has the advantage of leading to elegant differential
algebraic equations (DAEs) with constant mass matrix. Furthermore, the tensional force of
cables can be concisely expressed by the nonminimal description approach, and linear de-
pendence on the cable variables is revealed and utilized in the dynamic and control problems
[19, 38].

For tensegrity structures with rigid bodies, the dynamic problems can be addressed by
incorporating tensile cables into established multi-rigid-body dynamics. For example, com-
mercial softwares like MSC Adams [39] and physics engines like Bullet [40] have been
used. In particular, based on the versatile Bullet Physics engine, NASA developed the NASA
Tensegrity Robotics Toolkit (NTRT) [41] to simulate a number of tensegrity robots with
rigid bodies [23, 42–45]. However, the underlying dynamic models and formulations of
commercial softwares and physics engines are implicit to users, meaning that the cable vari-
ables are not explicitly revealed. This fact hinders the deeper understanding of tensegrity
dynamics and developments of model-based control methods.

For general tensegrity structures with both arbitrary rigid bodies and rigid bars, no dy-
namic formulations have been proposed in the literature. The statics problems, such as form-
finding, topology-finding, and self-stress design, have been studied recently [27–29], but
these methods cannot be extended to dynamic problems straightforwardly because of the
aforementioned heterogeneity of different rigid members. In particular, if the minimal de-
scription approach [28] is adopted, then the complexity of trigonometric terms is inevitably
introduced into the dynamic formulations. On the other hand, if a fully nonminimal de-
scription is developed to include both rigid bodies and rigid bars, then its aforementioned
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advantages are expected to be retained. However, a nonminimal description generally leads
to dynamic equations in the form of DAEs, which require careful treatments of the algebraic
constraints to avoid constraint drift that could degrade the numerical accuracy in longtime
simulations.

1.4 Scope and contribution of this study

In this study, we aim to develop a unified approach for the dynamic analysis of general
tensegrity structures with both rigid bodies and rigid bars.

The key idea is to develop a fully nonminimal description method by reforming the nat-
ural coordinates formulations [46–49], so that both rigid bars and rigid bodies are described
by different combinations of basic points and base vectors, which form different types of
natural coordinates.

This nonminimal description method addresses the above-mentioned primary challenge
of heterogeneity, because it effectively resolves the singularity and ill-definedness prob-
lems. Furthermore, the exhaustive types of coordinates facilitate the sharing of basic points
for jointed rigid members, whereas boundary conditions can be dealt with a coordinate-
separating strategy.

To address the secondary challenge, we employ the concept of polymorphism and con-
version matrices for abstract formulations in succinct mathematical expressions. Thereby,
the generalized tension forces of tensile cables, which may connect different types of rigid
members with different types of natural coordinates, can be explicitly expressed unifyingly,
and the linear dependence on cable variables can be easily revealed.

Therefore the main contribution of this study is the developing of a unified approach for
dynamic analysis of 3D Class-k (k ≥ 1) general tensegrity structures, addressing both the
primary and secondary challenges.

The proposed approach retains the advantages of nonminimal coordinates, such as the
constant mass matrix and the absence of trigonometric functions. Nonetheless, it also for-
mulates dynamic equations in the form of DAEs, where algebraic equations are present to
enforce the constraints for rigid members and joints. With this consideration in mind, we
develop solution methods for both constrained linearized dynamics and constrained nonlin-
ear dynamics. Specifically, the dynamics linearized around static equilibrium is reduced to
the degrees of freedom using the reduced-basis method, allowing accurate computations of
natural frequencies and mode shapes. On the other hand, a modified symplectic integration
(MSI) scheme is derived for numerical simulations of the constrained nonlinear dynamics,
featuring realistic behaviors in long-time simulations and exact enforcement of algebraic
constraints.

The effectiveness of the proposed approach is tested by means of numerical examples.
They demonstrate intuitive ways to design innovative general tensegrities with potential
multi-functionalities.

The proposed approach is different from the existing methods already established in the
literature in several aspects. Firstly, although the existing nonminimal descriptions provide
dynamic formulations for either rigid bodies [47–50] or rigid bars [33–37], the proposed
approach covers both of these heterogeneous rigid members thanks to the flexibility in se-
lecting basic points and base vectors. Secondly, compared to existing natural coordinate
formulations for rigid multibody systems [47–50], the proposed approach develops uni-
fied formulations for the tension force of cables, which is unique in tensegrity systems.
Furthermore, while the proposed MSI scheme belongs to the Zu-class symplectic schemes
[51, 52], this scheme is recast from the viewpoint of approximations and limits to accommo-
date nonconservative forces and boundary conditions. Finally, Class-k (k > 1) tensegrities
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Fig. 2 A 3D rigid body described by four types of natural coordinates. Rigid bodies are drawn by red lines.
Basic points and base vectors are colored in green (Color figure online)

with jointed rigid bars and rigid bodies, which are rarely seen in the literature, are presented
in the numerical examples.

1.5 Organization of the paper

The rest of this paper is organized as follows. In Sect. 2, we derive the unified formula-
tions for 3D rigid bodies and rigid bars, based on which Sect. 3 models general tensegrity
structures. In Sect. 4, we derive modal analysis and nonlinear dynamic analysis methods,
followed by numerical examples in Sect. 5. Finally, conclusions are drawn in Sect. 6.

2 Unifying rigid bodies and rigid bars using natural coordinates

In this section, the natural coordinates [50, 53] are adapted for unifying the nonminimal
descriptions of rigid bodies and rigid bars, which are collectively called rigid members and
indistinguishably labeled by circled numbers 1 , 2 , . . . or circled capital letters I , J , . . . ,
etc. Thus a quantity with a capital subscript, such as ()I , indicates that the quantity belongs
to the I th rigid member.

2.1 Rigid bodies of arbitrary shapes

2.1.1 3D rigid bodies

Consider a tetrahedron that exemplifies an arbitrary 3D rigid body, as shown in Fig. 2, where
basic points rI,i , rI,j , rI,k, rI,l ∈ R

3 and base vectors uI ,vI ,wI ∈ R
3 are fixed on the rigid

body and expressed in the global inertial frame Oxyz. Four types of natural coordinates,

qI,ruvw = [rT
I,i ,u

T
I ,v

T
I ,w

T
I ]T, qI,rrvw = [rT

I,i , r
T
I,j ,v

T
I ,w

T
I ]T,

qI,rrrw = [rT
I,i , r

T
I,j , r

T
I,k,w

T
I ]T, and qI,rrrr = [rT

I,i , r
T
I,j , r

T
I,k, r

T
I,l]T ∈R

12,
(1)

can be used to describe a 3D rigid body, corresponding to Fig. 2 (a)–(d), respectively, where
()ruvw, etc., denote the type of natural coordinates. For the latter three types of natural coor-
dinates, we can formally define uI = rI,j−rI,i , vI = rI,k−rI,i , and wI = rI,l−rI,i , so that
they can be converted to the first type by

qI,ruvw = Y ruvwqI,ruvw = Y rrvwqI,rrvw = Y rrrwqI,rrrw = Y rrrrqI,rrrr, (2)



J. Luo et al.

Fig. 3 A 3D rigid bar described
by two types of natural
coordinates (Color figure online)

where the conversion matrices are defined, respectively, as

Y ruvw =
[

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]
⊗ I3, Y rrvw =

[
1 0 0 0−1 1 0 0
0 0 1 0
0 0 0 1

]
⊗ I3,

Y rrrw =
[

1 0 0 0−1 1 0 0
−1 0 1 0

0 0 0 1

]
⊗ I3, andY rrrr =

[ 1 0 0 0−1 1 0 0
−1 0 1 0
−1 0 0 1

]
⊗ I3,

(3)

where I3 is the 3 × 3 identity matrix, and ⊗ denotes the Kronecker product.
Note that the base vectors are assumed to be noncoplanar, and thus the natural coordinates

in fact form an affine frame attached to the 3D rigid body. Consequently, the position vector
of a generic point on the 3D rigid body can be expressed by

r = rI,i + cI,1uI + cI,2vI + cI,3wI = CI,bodyqI,body, (4)

where cI,1, cI,2, and cI,3 are the affine coordinates, CI,body = ([
1, cI,1, cI,2, cI,3

]⊗ I3
)
Y body

is a transformation matrix for qI,body, and ()body can be any of ()ruvw, ()rrvw, ()rrrw, or ()rrrr.
To ensure rigidity of the body, the natural coordinates qI,body must satisfy six intrinsic

constraints

ΦI (qI,body) =

⎛
⎜⎜⎜⎜⎝

uT
I
uI −ūT

I
ūI

vT
I
vI −v̄T

I
v̄I

wT
I
wI −w̄T

I
w̄I

vT
I
wI −v̄T

I
w̄I

uT
I
wI −ūT

I
w̄I

uT
I
vI −ūT

I
v̄I

⎞
⎟⎟⎟⎟⎠= 0, (5)

where ūI , v̄I , and w̄I are constant vectors in a local frame, which is fixed on the rigid
member (see also Sect. 2.3). Then the position and orientation of a 6-DoF 3D rigid body can
be defined by twelve coordinates (any type in (1)) and six constraints (5)).

2.2 3D rigid bars

Two types of natural coordinates, qI,ru = [rT
I,i ,u

T
I ]T and qI,rr = [rT

I,i , r
T
I,j ]T ∈ R

6, can de-
scribe a 3D rigid bar, corresponding to Fig. 3 (a) and (b), respectively. Define the conversion
matrices

Y ru = [
1 0
0 1

]⊗ I3 and Y rr = [
1 0−1 1

]⊗ I3. (6)

Then the position vector of a generic point along the longitudinal axis of the rigid bar is
given by

r = rI,i + cIuI = CI,barqI,bar, (7)

where the coefficient cI depends on the relative position of the generic point, CI,bar =
([1, cI ] ⊗ I3)Y bar is the transformation matrix for qI,bar, and ()bar can be either ()ru or ()rr.
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Table 1 Polymorphism of natural coordinates for rigid bodies and rigid bars

Degrees of
freedom

Number of
coordinates

Number of
constraints

Types of natural
coordinates

3D Rigid Body 6 12 6 ruvw rrvw rrrw rrrr

3D Rigid Bar 5 6 1 ru rr

The intrinsic constraint to preserve the bar length is

ΦI(qI,bar) = uT
I uI − ūT

I ūI = 0. (8)

Hence the position and orientation of a 5-DoF 3D rigid bar can be defined by six coordi-
nates and one constraint (8).

2.3 Unified formulations and mass matrices

The transformation relations (4) and (7) for the standard types of natural coordinates can be
put into a unifying form

r = CIqI , (9)

which is a polymorphic expression, meaning that the formulations of CI and Y I vary with
the type of qI , as summarized in Table 1. However, note that CI is not a function of qI .
Consequently, the velocity of a generic point is given by ṙ = CI q̇I , which can be used
to derive the mass matrix. Let ρI denote the longitudinal or volume density of the rigid
member I . Then the kinetic energy can be computed by an integral over its entire domain
� as

TI = 1

2

∫
�

ρI ṙ
Tṙd� = 1

2

∫
�

ρI q̇
T
I C

T
I CI q̇I d� = 1

2
q̇T

I MI q̇I , (10)

where MI is a constant mass matrix with polymorphism defined by

MI =
∫

�

ρIC
T
I CI d� = Y T

I

(∫
�

(
ρI

[
1 cT

I

cI cI c
T
I

])
d� ⊗ I3

)
Y I

= Y T
I

([ ∫� ρI d� ∫� ρIc
T
I d�

∫� ρIcI d� ∫� ρI cI c
T
I d�

]
⊗ I3

)
Y I .

(11)

It is possible to express the mass matrix by conventional inertia properties, such as the
mass, the center of mass, and the moments of inertia of a rigid member. To this end, let us
introduce a local Cartesian frame Ōx̄ȳz̄, which is fixed on the rigid member I , as shown in
Fig. 4. Quantities expressed in this local frame are denoted by an overline (̄). Without loss
of generality, let its origin Ō coincide with the mass center, so that r̄I,g = 0. For a 3D rigid
body, let its axes align along the principal axes of inertia. For a 3D rigid bar, let its x̄ axis
align along the longitudinal direction.

Because the basic points and base vectors are fixed on the rigid members, their coordi-
nates in the local frame are constant. Let us define the polymorphic matrix

X̄I =

⎧⎪⎨
⎪⎩

[ū, v̄, w̄] for a rigid body,

[ū] for a rigid bar.

(12a)

(12b)
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Fig. 4 The basic point r̄I,i , the
base vectors ūI , v̄I , and w̄I , the
mass center r̄I,g , and a generic
point r̄I in the local Cartesian
frame of (a) a 3D rigid body or
(b) a 3D rigid bar (Color figure
online)

Then, according to (9), the position vector of a generic point in the local frame can be
expressed by r̄ = r̄I,i + X̄I cI , which gives

cI = X̄
+
I (r̄ − r̄I,i ), (13)

where ()+ denotes the Moore–Penrose pseudoinverse. For (12a), because the columns are
linearly independent, i.e., X̄ has full rank, the pseudoinverse is equal to the matrix inverse.

Using (13), the following expressions for use in (11) can be derived:

∫
�

ρI d� = mI ,

∫
�

ρIcI d� = mI X̄
+ (

r̄I,g − r̄I,i

)= −mI X̄
+
r̄I,i ,

∫
�

ρI cI c
T
I d� = X̄

+ (
J̄ I − mI r̄I,i r̄

T
I,g − mI r̄I,g r̄

T
I,i + mI r̄I,i r̄

T
I,i

)
X̄

+T

= X̄
+ (

J̄ I + mI r̄I,i r̄
T
I,i

)
X̄

+T
,

(14a)

(14b)

(14c)

(14d)

where mI is the mass of the rigid member I ; J̄ I contains the moments of inertia and
necessitates some discussions:

For a 3D rigid body, J̄ I is given by

J̄ I =
∫

�

ρI r̄ r̄Td� =
∫

�

ρI

⎡
⎣ x̄2 ȳx̄ z̄x̄

x̄ȳ ȳ2 z̄ȳ

x̄z̄ ȳz̄ z̄2

⎤
⎦d�, (15)

whereas the conventional inertia matrix is given by

Ī I =
∫

�

ρI

⎡
⎣ ȳ2 + z̄2 −ȳx̄ −z̄x̄

−x̄ȳ x̄2 + z̄2 −z̄ȳ

−x̄z̄ −ȳz̄ x̄2 + ȳ2

⎤
⎦d�. (16)

Hence J̄ I = 1
2 trace

(
Ī I

)
I3 − Ī I .

For a 3D rigid bar, the expression of J̄ I is the same as (15), except that only the ele-
ment x̄2 is nonzero, and the pseudoinverse of X̄I = [ūx,0,0]T is X̄

+
I = [1/ūx,0,0]. There-

fore we have X̄
+
I J̄ I X̄

+T
I = (∫

�
ρI x̄

2d�
)
/ū2

x .
For an advanced treatment of the inertia representation for rigid multibody systems in

terms of natural coordinates, we refer the interested readers to our previous paper [46].
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Fig. 5 (a) Two 3D rigid bodies or (b) a 3D rigid body and a 3D rigid bar connected by a ball joint, which is
represented by a circle filled with light blue (Color figure online)

3 Modeling tensegrity structures

Given the formulations of rigid members, the modeling of general Class-k (k ≥ 1) tenseg-
rity structures additionally requires formulations for tensile cables, torqueless joints, and
boundary conditions, which are derived in this section. A system is assumed to have nb

rigid members and ns tensile cables.

3.1 Ball joints

A Class-k (k > 1) tensegrity structure allows us to use torqueless ball joints, each of which
can connect up to k different rigid members. Depending on the placements of basic points,
there are two modeling methods.

The first is a general method, as exemplified by Fig. 5 (a), where a ball joint connects
point a of rigid body I on point b of rigid body J , consequently imposing a set of extrinsic
constraints

Φex(qI ,qJ ) = rI,a − rJ,b = CI,aqI − CJ,bqJ = 0, (17)

where (9) is used for the second equality.
The second method is to share the basic points between rigid members, as exemplified by

Fig. 5 (b), where a ball joint is located at the basic point a. So we have natural coordinates
qI = [rT

I,i , r
T
a ,v

T
I ,w

T
I ]T for the rigid body I , and qJ = [rT

a , r
T
J,j ]T for the rigid bar J : they

share the basic point’s vector ra .
If a ball joint connects k>2 rigid members, then it can be modeled as k−1 ball joints

overlapping at one place.
The second method has computational advantages over the first one because it needs

no extrinsic constraint, and it reduces the number of system coordinates. Thanks to the
exhaustion in deriving different combinations of the natural coordinates (Sects. 2.1 and 2.2),
up to four or two basic points of a 3D rigid body or rigid bar can be used for sharing with
other rigid members. Therefore the second method is generally sufficient to model most
Class-k (k>1) tensegrities, and the extrinsic constraints (17) are rarely needed.

3.2 Boundary conditions

In practice, most tensegrity structures have some members with prescribed motions, such
that their positions, velocities, and accelerations are either partly or entirely given. For ex-
ample, some rigid members in geodesic tensegrity domes are pin-jointed to the ground, or
the rigid body motions of a self-standing tensegrity structure are to be eliminated. It would
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be cumbersome to derive case-by-case formulations for these prescribed rigid members. Al-
ternatively, we can extend the above derivations, but also without loss of flexibility, by sepa-
rating the prescribed and free (unprescribed) coordinates. To do this, denote the numbers of
prescribed, free, and total coordinates for the rigid member I by ñI , ňI , and nI = ñI + ňI ,
respectively, and for the system, by ñ, ň, and n = ñ + ň, respectively. Then the separation
and reintegration of the coordinates of the rigid member I and of the system are defined by

(
q̃I

q̌I

)
=
[

Ẽ
T
I

Ě
T

I

]
qI , qI = [

ẼI , ĚI

]( q̃I

q̌I

)
,

(
q̃

q̌

)
=
[

Ẽ
T

Ě
T

]
q, and q = [

Ẽ, Ě
]( q̃

q̌

)
,

(18)

where q̃I ∈ R
ñI and q̃ ∈ R

ñ are prescribed coordinates, q̌I ∈ R
ňI and q̌ ∈ R

ň are free coor-
dinates, and [ẼI , ĚI ] ∈ Z

nI ×nI and [Ẽ, Ě] ∈ Z
n×n are constant orthonormal matrices that

only have zeros and ones as elements.
The relations between the system coordinates and those of rigid members and prescribed

points are given by

qI = T Iq = T̃ I q̃ + Ť I q̌ for I = 1, . . . , nb, (19)

where T I , T̃ I = T I Ẽ, and Ť I = T I Ě are constant matrices that select the right elements
from the system and also properly embody the sharing of basic points as presented in
Sect. 3.1. Consequently, the relations for velocities and accelerations are simply q̇I = T I q̇
and q̈I = T I q̈ , respectively. On the other hand, the variation should exclude the prescribed
coordinates as

δqI = Ť I δq̌. (20)

Note that relations (18) and (19) are in fact implemented as index-selecting methods in
the computer code so that expensive matrix multiplications are avoided.

Last but not the least, any intrinsic constrains in (5) and (8) and extrinsic constrains
in (17) that contain no free coordinates should be dropped. The remaining constraints are
collected by Φ̌(q), whose Jacobian matrix is defined as Ǎ(q) = ∂Φ̌/∂ q̌ .

3.3 Generalized forces

Using (9), (19), and (20), the position and its variation of a point of action p on the rigid
member I are, respectively,

rI,p = CI,pT Iq and δrI,p = CI,pŤ I δq̌. (21)

Consider a concentrated force f I,p exerted on point p, as shown on the left of Fig. 6. The

virtual work done by f I,p is δWI,p = δrT
I,pf I,p = δq̌

T
F̌ I,p , where

F̌ I,p = Ť
T

I C
T
I,pf I,p (22)

is the generalized force for f I,p .
In particular, the gravity force f I,g is exerted on the mass center rI,g . Therefore the

generalized gravity force for the rigid member I is given by F̌ I,g = Ť
T

I C
T
I,gf I,g , which is

a constant vector.
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Fig. 6 Two 3D rigid bodies
subjected to gravity, a
concentrated force, and tension
forces of a cable. The points of
action are colored in blue (Color
figure online)

3.4 Tensile cables

In this paper, we adopt a common practice [31, 36, 54], which assumes that the cables are
massless, so that their inertia forces are ignored. The extensions to consider massive cables
will be discussed in Sect. 6. In the following, the tension forces of cables acting on the rigid
members are formulated.

Suppose the j th cable connects point a of the rigid member I and point b of the rigid
member J , as shown in Fig. 6. It can be represented by the vector

lj = rJ,b − rI,a = CJ,bT J q − CI,aT Iq = J jq, (23)

where we use (21), and J j = CJ,bT J − CI,aT I is a constant matrix. Consequently, the
current length and its time derivative of the cable are given by, respectively,

lj =
√

lT
j lj =

√
qTU jq and l̇j = lT

j l̇j√
lT
j lj

=
(
qTU j q̇

)
lj

, (24)

where U j = J T
j J j is also constant.

Define the force density by γj = fj/lj , where fj is the tension force. Then the tension
force is given by either f j = fj l̂j or f j = γj lj , where l̂j = lj /lj is the unit direction vector.

Note that a cable generates a pair of tension forces exerted on points a and b with opposite
directions. Therefore, according to (22), the generalized tension force for the j th cable reads

Q̌j = Ť
T

I C
T
I,af j − Ť

T

J CT
J,bf j = −Ě

T
J T

j f j . (25)

Consequently, the generalized tension force of the system is the sum over all cables

Q̌ =
∑ns

j=1

(
−Ě

T
J T

j f j

)
= −Ě

T ns⊕
j=1

(J T
j lj )γ , (26)

where γ = [γ1, . . . , γns ]T collects the force densities, and ⊕ means the direct sum of matri-
ces. Expression (26) shows that the generalized tension force of the system is linear in the
force densities of the cables. This notable property is also found in the dynamics framework
for “bars-only” tensegrities by Skelton et al. [35, 36]. It is beneficial for the design of cable-
based control schemes, which, however, will not be elaborated in this paper and subject to
further research.

Expression (26) allows any constitutive laws of the cables. Following common practices,
we assume linear stiffness, linear damping, and a slacking behavior. Denote the rest length
by μj , the stiffness coefficient by κj , and the damping coefficient by ηj . Then the tension
force magnitude is given by

fj =
{
f +

j if f +
j ≥ 0 and lj ≥ μj ,

0 otherwise,
with f +

j = κj (lj − μj) + ηj l̇j . (27)
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4 Dynamic analysis formulations

4.1 Dynamic equation

Recalling the rigid member’s kinetic energy (10) and the coordinate selection (19), the sys-
tem kinetic energy is simply the sum over all rigid members, T = ∑nb

I=1 TI = 1
2 q̇TMq̇ ,

where M =∑nb

I=1 T T
I MIT I is a constant mass matrix. Then the generalized inertial force is

derived with respect to the free coordinates:

d

dt

(
∂T

∂ ˙̌qT

)
= d

dt

(
Ḿq̇

)
= d

dt

(
Ḿ

(
Ě ˙̌q + Ẽ ˙̃q

))
= M̌ ¨̌q + M̄ ¨̃q, (28)

where Ḿ = Ě
T
M , M̌ = ḾĚ, and M̄ = ḾẼ are different mass matrices that will be used

later.
Suppose a potential V (q) is given as a function of the system total coordinates. Then the

generalized potential force in free coordinates is given by Ǧ = −∂V (q)/∂ q̌
T. Furthermore,

define F̌ = Ǧ + Q̌ + F̌
ex

to include the generalized potential force Ǧ, the generalized
tension force Q̌, and any other external generalized forces F̌

ex
.

For the dynamics of a tensegrity structure, the Lagrange–d’Alembert principle [55] states
that the virtual work vanishes for all inertial forces, generalized forces, and constraint forces
acting on the virtual displacement:

δq̌
T
(
M̌ ¨̌q + M̄ ¨̃q

)
− δq̌

T
F̌ − δq̌

T
(
Ǎ

T
λ
)

= 0, (29)

which leads to the Lagrange equation of the first kind

⎧⎪⎪⎨
⎪⎪⎩

M̌ ¨̌q + M̄ ¨̃q − Ǧ(q) − Q̌(q, q̇,μ) − F̌
ex

(q, q̇, t) − Ǎ
T
(q)λ = 0,

Φ̌(q) = 0,

(30a)

(30b)

where the dependency is explicated, and the rest lengths μ will be used as cable-based
actuation values. We should also keep in mind that q contains the prescribed coordinates q̃ ,
which, along with ˙̃q and ¨̃q , are interpreted as known functions of time t .

Thanks to the use of natural coordinates, the dynamic equation (30a)–(30b) gets rid of
trigonometric functions and inertia quadratic velocity terms for centrifugal and Coriolis
forces, leaving a constant mass matrix.

For later use, the differential part (30a) can be rewritten as

˙̌p − F̌ − Ǎ
T
λ = 0, (31)

where p̌ = ∂T /∂ ˙̌qT = Ḿq̇ is the generalized momentum in free coordinates.

4.2 Linearized dynamics around static equilibrium

To perform modal analysis on general tensegrity structures, this subsection derives the for-
mulations of linearized dynamics around static equilibrium.
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Dropping all time-related terms in the dynamic equation (30a)–(30b) leads to the static
equation

⎧⎪⎪⎨
⎪⎪⎩

−F̌ (q) − Ǎ
T
(q)λ = 0,

Φ̌(q) = 0.

(32a)

(32b)

For later use, substituting expressions (26) and (27) of tensile cables into the force-
balancing part (32a) gives

−F̌
ex + (B̌� − B̌μ) − Ǎ

T
(q)λ = 0, (33)

where B̌ = Ě
T ⊕ns

j=1(κjJ
T
j l̂j ), and � = [l1, . . . , lns ]T and μ = [μ1, . . . ,μns ]T collect the

cables’ current lengths and rest lengths, respectively. For the problem of inverse statics,
Eq. (33) reveals the linear dependency on cables’ rest lengths μ. Therefore it will be use-
ful for cable-based deployments of tensegrity structures, as demonstrated in the example
section, Sect. 5.

Consider small perturbations in the free coordinates and Lagrange multipliers as

q = qe + Ěδq̌, q̇ = q̇e + Ěδ ˙̌q, q̈ = q̈e + Ěδ ¨̌q, and λ = λe + δλ, (34)

where q̇e = q̈e = 0, and (qe,λe) satisfies the static equation (32a)–(32b). Substituting (34)
into (30a)–(30b) and expanding it in Taylor series to the first order lead to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M̌δ ¨̌q − ∂F̌

∂ ˙̌q δ ˙̌q − ∂F̌

∂ q̌
δq̌ −

∂
(
Ǎ

T
λe

)
∂ q̌

δq̌ − Ǎ
T
δλ = 0,

Ǎδq̌ = 0.

(35a)

(35b)

Define Ň as a basis of the nullspace N (Ǎ) = {x|Ǎx = 0}. So (35b) is solved by

δq̌ = Ňξ , (36)

where ξ ∈ R
ndof are independent variations, and ndof denotes the degrees of freedom. Left-

multiplying (35a) by Ň
T

and substituting (36) into (35a) give

Mξ̈ + Cξ̇ +Kξ = 0, (37)

where

M = Ň
T
M̌Ň , C = Ň

T

(
−∂F̌

∂ ˙̌q

)
Ň , and K = Ň

T

⎛
⎝−∂F̌

∂ q̌
−

∂
(
Ǎ

T
λe

)
∂ q̌

⎞
⎠ Ň (38)

are the reduced-basis mass matrix, reduced-basis tangent damping matrix, and reduced-
basis tangent stiffness matrix, respectively. Such operations are known as the reduced basis
method [56], and the nullspace matrix Ň can be computed by the singular value decompo-
sition of Ǎ.
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Fig. 7 Equally spaced segments
of the time domain. Each
segment has two endpoints and
one midpoint. The state vector(
qk,pk

)
is located at endpoint k

At this point, we have a standard linear dynamic system (37), which can be used for the
modal analysis of general tensegrity structures. For simplicity, consider undamped free vi-
bration (C = 0). Then the solution to (37) boils down to the generalized eigenvalue problem

(
K− ρ(r)M

)
ξ (r) = 0, (39)

where ρ(r) is the r th eigenvalue in the order of increasing magnitude, and ξ (r) is the cor-
responding eigenvector. According to the Lyapunov theorem on stability in the first ap-
proximation, the stability of the structure around static equilibrium is guaranteed by the
positiveness of the lowest eigenvalue,

ρ(1) > 0. (40)

For a detailed exposition of the static stability of constrained structures, we refer the
interested readers to [56]. Once the stability criterion (40) is met, we can calculate the natural
frequency of the r th mode by ω(r) = √

ρ(r) and normalize the mode shape with respect to

mass by ξ̂ (r) = 1√
m(r)

ξ (r), where m(r) = ξT
(r)Mξ (r). Then the mode shapes in the natural

coordinates can be obtained through

q(r) = qe + Ěδq̌(r) = qe + ĚŇ ξ̂ (r). (41)

4.3 Modified symplectic integration scheme for nonlinear dynamics

Consider deployable tensegrity structures, such as tensegrity space booms [57] and tenseg-
rity footbridge [58], which are capable to achieve large-range movements under cable-based
actuation. The deployment process would take a sufficiently long time for safety reasons but
still exhibits rich behaviors [59] due to the complex rigid-tensile coupling in tensegrity dy-
namics. Therefore, when developing solution methods for the governing DAEs (30a)–(30b),
attentions should be paid to the numerical performances in long-time simulations. In this
regard, we adopt the Zu-class symplectic integration method [51, 52], which has advantages
in two aspects: Firstly, it can produce realistic results with relatively large timesteps, because
it preserves the symplectic map of conservative systems; it has no artificial dissipation; and
it enforces the algebraic constraints; secondly, it dispenses with the computations of accel-
erations (and acceleration-like variables as in the generalized-α method [60]) and the partial
derivatives of the constraint force. Hence the Zu-class method excels in numerical accuracy
and efficiency for long-time simulations. Nonetheless, it did not originally accommodate
nonconservative forces and boundary conditions that are present in the governing DAEs
(30a)–(30b). To address these issues, a rework from the viewpoint of approximations and
limits are carried out as follows.

As illustrated in Fig. 7, the time domain is divided into equally spaced segments, where h

is the timestep, and
(
qk,pk

)
denotes the state vector at the segments’ endpoints. At each

endpoint, we demand that the differential equation (31) holds as

˙̌pk − F̌ k − Ǎ
T
(qk)λk = 0. (42)
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Then substituting the central difference approximations

˙̌pk ≈ 1
h

(
p̌k+1/2 − p̌k + p̌k − p̌k−1/2

)
, F̌ k ≈ 1

2

(
F̌ k−1/2 + F̌ k+1/2

)
, and

λk ≈ 1
2

(
λk−1/2 + λk+1/2

) (43)

into (42) leads to the discrete scheme

p̌k+1/2 − p̌k + p̌k − p̌k−1/2

h
− F̌ k−1/2 + F̌ k+1/2

2
− Ǎ(qk)

T λk−1/2+λk+1/2
2 = 0, (44)

where the midpoint approximations are

qk+1/2 ≈ 1
2 (qk + qk+1), q̇k+1/2 ≈ 1

h
(qk+1 − qk),

p̌k+1/2 ≈ 1
h
Ḿ(qk+1 − qk), and F̌ k+1/2 ≈ F̌

(
qk+1/2, q̇k+1/2, tk+1/2

)
.

(45)

Note that (44) is in fact a two-timestep scheme but can be converted to a one-timestep
scheme. As illustrated in Fig. 7, scheme (44) at endpoint k has terms in both segments #k

and #(k+1). Taking the limit tk−1 → tk , we have

lim
h→0

p̌k−p̌k−1/2
h/2 = ˙̌pk, lim

h→0
F̌ k−1/2 = F̌ k, and lim

h→0
λk−1/2 = λk, (46)

which shows that the terms in segment #k tend to (42), so they can be dropped, leaving

p̌k+1/2 − p̌k − h
2 F̌ k+1/2 − h

2 Ǎ(qk)
Tλk+1/2 = 0. (47)

Similarly, taking the limit tk+1 → tk in (44) leads to

p̌k − p̌k−1/2 − h
2 F̌ k−1/2 − h

2 Ǎ(qk)
Tλk−1/2 = 0. (48)

Then applying (48) to endpoint k+1 and combining it with (47) and the constraint equations
lead to a new scheme:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
h
Ḿ(qk+1−qk) − p̌k − h

2 F̌ k+1/2 − h
2 Ǎ(qk)

Tλk+1/2 = 0,

p̌k+1 − 1
h
Ḿ(qk+1−qk) − h

2 F̌ k+1/2 − h
2 Ǎ(qk+1)

Tλk+1/2 = 0,

Φ̌(qk+1) = 0.

(49a)

(49b)

(49c)

We call it the modified symplectic integration (MSI) scheme, because it automatically in-
cludes boundary conditions through prescribed coordinates and allows for nonconservative
forces given by F̌ . These two aspects were not considered in its original derivations [51].
To provide a solution procedure, rearrange (49a) and (49c) as a residual expression

Res(xk+1) =
(

−hp̌k + Ḿ
(
qk+1 − qk

)− h2

2 F̌ k+1/2 − s1
h2

2 Ǎ
T
(qk)λk+1/2

Φ̌(qk+1)

)
, (50)

where xk+1=[q̌T
k+1,λ

T
k+1/2]T, and s1=2h−2 is a scaling factor [61] needed for better condi-

tioning of the Jacobian matrix

Jac(xk+1) = ∂Res
∂xk+1

=
[

M̌ − h2

2
∂F̌ k+1/2
∂ q̌k+1

−Ǎ
T
(qk)

Ǎ(qk+1) 0

]
. (51)
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Algorithm 1 Modified symplectic integration (MSI) scheme
Require: initial values q0 and q̇0; timestep h, total steps N , maximum iteration smax, toler-

ance εtol

1: p0 ← Mq̇0

2: for k ← 0 to N − 1 do
3: q̌k+1 ← q̌k

4: λk+1/2 ← 0
5: xk+1 ← [q̌T

k+1,λ
T
k+1/2]T

6: for s ← 1 to smax do // Newton–Raphson iteration
7: compute Res by (50)
8: if ‖Res‖ > εtol then
9: compute Jac by (51)

10: x ← −(Jac)−1Res
11: xk+1 ← xk+1 + x

12: else
13: break
14: end if
15: end for
16: compute p̌k by (49b)

17: ˙̌qk ← M̌
−1

(
p̌k − M̃ ˙̃qk

)
18: end for

Residual (50) and its Jacobian (51) allow us to solve for xk+1 using the Newton–Raphson
iteration method. After that, xk+1 is substituted into (49b) to compute p̌k+1 explicitly.

We can observe that accelerations q̈ and partial derivatives of the constraint force

Ǎ
T
(q)λ, which are needed for other schemes [60], do not appear in (50) and (51).
The complete solution procedure of MSI is summarized in Alg. 1.

5 Numerical examples and discussion

Numerical studies of four representative examples are presented in this section. The purpose
is twofold: (1) To exemplify three-dimensional general tensegrity structures composed of ar-
bitrary rigid bodies and rigid bars and (2) to demonstrate the efficacy of the proposed unified
approach for dynamic analysis of general tensegrity structures. The first example is used to
illustrate the step-by-step application of the proposed approach for ease of reproducibility.
The remaining examples can be categorized into two groups. The first group includes Ex-
amples 2 and 3 designed by algorithmic methods, such as the topology-finding method [27].
The second group includes Examples 4 and 5 designed by intuitive methods, which will be
called the “embedding” and “interfacing” methods. The connotation of the intuitive methods
will be explained in subsections.

The different dynamic behaviors of these structures will be demonstrated, and various
complex conditions will be considered, including cable-based deployments and moving
boundaries. Additionally, the proposed MSI scheme will be compared against the state-
of-the-art method.
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Fig. 8 Illustration of the demonstrative tensegrity structure. (a) Three rigid bars 1 , 2 , and 3 ; (b) a tetrahe-
dral rigid body 4 ; (c) a tensegrity with ball-jointed rigid members and tensile cables

5.1 Example 1: a demonstrative tensegrity structure

This section presents a simple example to demonstrate the application of the proposed
method of dynamic analysis of general tensegrity structures. As illustrated in Fig. 8, this
tensegrity structure simply consists of three rigid bars, three cables, and a tetrahedral rigid
body. It is designed to be easily reproducible and also to highlight the strength of the pro-
posed method. In the following, the modeling procedure is described in a step-by-step man-
ner.

Step 1. Description of three rigid bars
Figure 8(a) shows three rigid bars as a building block for the whole structure. Ac-

cording to Sect. 2.2, each rigid bar is described by the “rr” type natural coordinates,
whose initial values are given by

q1,rr = [rT
1,i , r

T
1,j ]T = [0.1,0,0,−0.067 50,0.018 54,0.1414]T m,

q2,rr = [rT
2,i , r

T
2,j ]T = [−0.050 00,0.086 60,0,0.017 69,−0.067 73,0.1414]T m,

q3,rr = [rT
3,i , r

T
3,j ]T = [−0.050 00,−0.086 60,0,0.049 81,0.049 19,0.1414]T m.

(52)

Each rigid bar has a length l = 0.22 m, a virtual radius of cross-section r =
1.833 × 10−3 m, and a uniform density ρ = 630 kg/m3. According to Sect. 2.3, the
mass matrix of each rigid bar is given by

MI =
[

0.000 487 8 0.000 243 9
0.000 243 9 0.000 487 8

]
⊗ I3 for I = 1,2,3. (53)

Step 2. Description of the tetrahedral rigid body
Figure 8(b) shows the tetrahedral rigid body as another building block for the

whole structure. According to Sect. 2.1.1, there are four types of natural coordi-
nates to be used. Anticipating the next step, which will deal with ball joints, it is
convenient to use the “rrrw” type natural coordinates q4,rrrw = [rT

4,i , r
T
4,j , r

T
4,k,w

T
4 ]T,

which consist of three basic points located at the lower three vertices of the tetrahe-
dron and the automatically generated base vector w4.

The tetrahedron has a height h = 0.070 71 m, a circumradius R = 0.07 m
for the base triangle, above which the mass center is located at r̄g = [0.0,0.0,

0.0148229] m. The mass and inertia matrix are given by, respectively, m =
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0.2999 kg and Ī = diag (0.7664,0.7664,1.246) × 10−3 kg m2. According to
Sect. 2.3, the mass matrix of the tetrahedral rigid body is given by

M4 =

⎡
⎢⎢⎣

0.089 85 0.005 060 0.005 060 0.1164
0.005 060 0.089 85 0.005 060 0.1164
0.005 060 0.005 060 0.089 85 0.1164

0.1164 0.1164 0.1164 1.290

⎤
⎥⎥⎦⊗ I3. (54)

Step 3. Description of ball joints
Utilizing the flexibility of the proposed modeling method, ball joints can be

described conveniently without introducing additional constraints. Referring to
Fig. 8(c), there are two kinds of ball joints.
(a) The first kind connects the upper ends of the bars to the tetrahedral rigid body.

According to Sect. 3.1, they can be described by sharing the basic points. Con-
sequently, the natural coordinates for the tetrahedral rigid body are replaced by

q4,rrrw = [rT
3,j , r

T
1,j , r

T
2,j ,w

T
4 ]T. (55)

(b) The second kind connects the lower ends of the bars with the ground, consti-
tuting boundary conditions. According to Sect. 3.2, they can be described by
specifying the matrices

ẼI =
⎡
⎣1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0

⎤
⎦ and

ĚI =
⎡
⎣0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎦ for I = 1,2,3.

(56)

Consequently, the free coordinates for rigid bars are given by q̌I = ĚIqI,rr =
rI,j , I = 1,2,3.

Step 4. Description of the system coordinates and mass matrix
At this point, the prescribed, free, and total coordinates for the entire system can

be determined as

q̃ = [
rT

1,i , r
T
2,i , r

T
3,i ,

]T
,

q̌ = [
rT

1,j , r
T
2,j , r

T
3,j ,w

T
4

]T
,

q = [
rT

1,i , r
T
1,j , r

T
2,i , r

T
2,j , r

T
3,i , r

T
3,j ,w

T
4

]T
.

(57)

We can see that the justified usage of the sharing basic points and the prescribed
coordinates greatly simplifies the description of the ball joints. As a result, 12 free
coordinates and 9 intrinsic constraints (1 for each bar and 6 for the rigid body)
will become the unknowns in the dynamic equation. No extrinsic constraints are
required.
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The system separation matrices Ẽ and Ě and the selection matrices for rigid
members in (19) can be expressed explicitly. For example, we have

T 1 =
[

1 0 0 0 0 0 0
0 1 0 0 0 0 0

]
⊗ I3 and

T 4 =

⎡
⎢⎢⎣

0 0 0 0 0 1 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1

⎤
⎥⎥⎦⊗ I3

(58)

for the rigid bar 1 and the tetrahedron 4 , respectively.
Furthermore, the system mass matrices M = ∑nb

I=1 T T
I MIT I can be easily as-

sembled.
Step 5. Desciption of the cables and tensile forces

Referring to Fig. 8(c), tensile cables are added to connect the lower end of rigid
bars and the lower vertices of the tetrahedron. For example, the vector l1 represent-
ing the first cable is formulated by (23) as

l1 = r4,i − r1,i = C4,iT 4q − C1,iT 1q = J 1q. (59)

We can see that this formula is valid regardless of the type of rigid members to
which the cable connects, thanks to the unifying form (9). Then, the generalized
tension force Q̌ of the system can be derived, following the rest of Sect. 3.4, where
the selection matrices (58) automatically take care of the sharing coordinates.

Each cable has a stiffness coefficient κ = 1 × 103 N/m, a damping coefficient
η = 2 Ns/m, and a rest length μ = 0.05 m.

Step 6. Dynamic equations and dynamic analysis
Using the above intermediate results, the formulation of the dynamic equations

(30a)–(30b) becomes straightforward. Typically, the system is analyzed in three
steps:
(a) Seek the static equilibrium configuration of the system by solving the inverse

statics problem (33) or by solving a dynamic relaxation problem.
(b) Determine the stability and natural frequencies of the system by solving the

eigenvalue problem (39) of the linearized dynamic equation.
(c) Study the nonlinear dynamic response of the system by solving the nonlinear

dynamic equation (30a)–(30b) using the proposed MSI scheme.
Here we directly perform step (c) with a timestep size h = 1 × 10−3 m for 1

second. Figure 9 plots the trajectory of the point r4,i , showing that the dynamic
responses are vibrational and are slowly damped as time progresses.

5.2 Example 2: a fusiform tensegrity structure

This example considers a three-dimensional fusiform tensegrity structure, involving a punc-
tured square rigid board and a rigid bar. In a study of topology-finding method [27], this
structure represents one of the simplest Class-1 general tensegrities. A variant of this struc-
ture, which replaces the punctured square with a triangle, is studied by Liu et al. [26] as
a tensegrity robot. However, due to difficulties arising from the heterogeneity of rigid mem-
bers, the dynamic characteristics of this structure were not studied in the above references.
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Fig. 9 Time histories of the
trajectory of the point r4,i in the
x-, y-, and z-directions,
respectively

Fig. 10 (a) Dimensions of a rigid
square board; (b) initial
configuration of a fusiform
tensegrity structure composed of
a rigid bar and a rigid square
board

To demonstrate its rich dynamic motions, an initially unbalanced configuration, where the
rigid board is rotated around the x-axis by 45°, and the rigid bar is rotated around the
y-axis by 15°, is shown in Fig. 10(b). Both rigid members are given a uniform density
ρ = 630 kg m−1, corresponding to teak wood. All eight cables have a stiffness coefficient
κ = 100 N m−1 with no damping. The upper four cables are given the rest length μ = 0.05 m,
whereas the lower four ones have μ = 0.1 m. The structure is free-floating.

Consider 100-second long-time simulations with timestep h = 1 × 10−3 s, carried out
by the MSI scheme and the generalized-α scheme [60]. Figure 11 visualizes the structural
movements, whereas Fig. 12 compares the trajectories of the marker point and the mechan-
ical energy E = T + V produced by the two schemes. These results show that the motions
of a 3D rigid bar are correctly described by the natural coordinates without any difficulty
and that the trajectories between the two schemes are very close in the beginning of the
simulations. In particular, the MSI scheme conserves the mechanical energy E and obtains
vibrations between the two rigid members throughout the entire process. In contrast, the
generalized-α scheme with ρ∞ = 0.7 gradually damps out such high-frequncy vibrations
and dissipates the associated energy. Therefore the MSI scheme is more suitable to faith-
fully simulate the long-time dynamics of general tensegrity structures.

5.3 Example 3: a tensegrity bridge

This example is a Class-1 tensegrity bridge composed of a rectangular rigid body as the
bridge deck and inclined rigid bars as supporting struts, as shown in Fig. 13. It represents
another example resulting from the design method of topology-finding [27]. Because the
bars have no contact with the deck, it is a Class-1 tensegrity structure. Each rigid bar has a
length l = 15.95 m and a virtual radius of cross-section r = 0.13 m, and the deck has dimen-
sions 24 m × 6 m × 0.25 m (length × width × height). Note that material properties were
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Fig. 11 Snapshots of the fusiform tensegrity structure at different time instances simulated by (a,b,c,d,e)
the MSI scheme and (f,g,h,i,j) the generalized-α scheme. Blue dots indicate the marker point (Color figure
online)

Fig. 12 (a) Trajectories of the marker point in the y-direction and (b) time histories of the mechanical energy
E given by the MSI scheme and generalized-α scheme

not considered in the above reference. For demonstration purpose, rigid members are given
a uniform density of teak wood ρ = 630 kg/m3, and cables are given a stiffness coefficient
κ = 25.92 kN m−1. Furthermore, the lower end of each bar is fixed to the ground, so that the
structure can support self-weight and loading forces.

Due to the heterogeneity between rigid bodies and rigid bars, it is difficult to obtain ref-
erence results for the dynamic behaviors of the bridge in commercial software that uses
minimal coordinates, such as Adams. Therefore, to validate the dynamic formulations and
the MSI scheme, the resonance phenomenon will be simulated. Firstly, a static equilibrium
configuration and the rest lengths of cables are sought by the geodesic dynamic relaxation
method [62]. Then linearized dynamic analysis is performed to compute the natural fre-
quencies and mode shapes, which reveal how the structure vibrates around the initial static
equilibrium. The first four vibration modes are shown in Fig. 14. In particular, a tilting
movement of the deck can be observed from the second mode with a natural frequency
0.553 Hz. Based on this observation, the nonlinear dynamics simulations can be validated
by inducing vibrations resonating with this frequency. To this end, a concentrated load-
ing force f (t) with different frequencies is exerted to the edge of the deck, as shown in
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Fig. 13 Schematic figures of the tensegrity bridge from (a) left view, (b) top view, and (c) oblique view with
a concentrated loading force. Blue dots indicate the marker point (Color figure online)

Fig. 14 The mode shapes and natural frequencies for the first four vibration modes of the tensegrity bridge.
The configuration of static equilibrium is colored in gray for reference (Color figure online)

Fig. 15 Trajectories of the
loading point in the z-direction
for the three simulation cases
with different excitation
frequencies

Fig. 13(c). The force magnitude is a function of time f (t) = 2 × 104 (sin (2πνt) + 1) N,
where ν = 0.453,0.553,0.653 Hz are three excitation frequencies, representing three sim-
ulation cases. Nonlinear dynamic simulations for 10 seconds are performed for each case
with timestep h = 1 × 10−2 s, using the MSI scheme. Trajectories of the loading point in
the z-direction is plotted in Fig. 15. It shows that the amplitude of response is significantly
increased only for ν = 0.553 Hz, indicating vibrations resonant with the second mode and
hence validates the proposed modeling formulations and integration scheme.

5.4 Example 4: a tensegrity structure designed by embedding

5.4.1 Structural design using the “embedding” method

Besides using algorithmic methods such as topology-finding, intuitive methods are also vi-
able to design general tensegrity structures. One such method can be called “embedding” as
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Fig. 16 Schematic figures of (a,b) the primitive tensegrities, (c) a “embedded” tensegrity structure, and a 4-
stage “embedded” tensegrity structure in the (d) folded and (e) unfolded configurations (Color figure online)

exemplified by Fig. 16. Firstly, the design process starts with known primitive tensegrities,
such as a rotatable Class-2 tensegrity with two tetrahedrons in contact (Fig. 16(a)), and a
deployable two-stage tensegrity prism (Fig. 16(b)). Secondly, the latter one can be embed-
ded into the former one, replacing the ball joint (Fig. 16(c)). Lastly, multiple modules can
be stacked sequentially to build multistage structures (Fig. 16(d,e)). In this way, the new
structure is a Class-3 tensegrity endowed with the rotatable and deployable functionalities
of the primitives.

Note that the “embedding” method is akin to the concept of “self-similar” iterations (see,
for example, [3]) but not limited to “bars-only” compressive tensegrity structures. Further in-
depth investigations are still needed to broaden the applications of the “embedding” method,
but those are beyond the scope of this paper.

The structural properties are as follows. Each rigid bar has a length l = 0.14 m and
a virtual radius of cross-section r = 1.167 × 10−3 m, and the triangular rigid plate has a
side length l = 0.2939 m and a height h = 0.01 m. All rigid members are given a uniform
density of teak wood ρ = 630 kg/m3, and tensile cables are given a stiffness coefficient
κ = 25.92 kN m−1. Furthermore, to support the self-weight of the structure, the lowermost
plate is fixed to the ground by giving boundary conditions.

5.4.2 Determining the cable-based actuation values

Deployments of the structure are achieved by cable-based actuation [59, 63], which is im-
plemented by timely changing the rest lengths of the cables μ. In other words, the variables
μ(t) in the dynamic equations (30a)–(30b) are specified as a time-dependent function dur-
ing the simulation. As time progresses, the internal unbalanced tensile forces due to varied
rest lengths cause the structure to move.

To ensure that the structure reaches the desired configuration and a smooth transition
during the deployment process, the actuation values μ(t) are determined by the following
steps:

1. Specify the reference configurations of the tensegrity structure as shown in Fig. 16(d,e),
which consist of the positions and orientations of all the rigid members.

2. Specify the rest lengths of inactive cables. In this example, the cables belonging to the
inner prisms are considered active, whereas the outer cables of each stage are considered
inactive, which are given predefined rest lengths 0.17 m, 0.15 m and 0.19 m.



J. Luo et al.

Fig. 17 The time-dependent
interpolation functions of the
tensile cables’ rest lengths μ(t)

(Color figure online)

Fig. 18 Snapshots of the 4-stage “embedded” tensegrity structures during cable-based deployment. Blue dots
indicate the marker point (Color figure online)

3. Establish an inverse statics problem (33) with minimum force constraints and solve for
the rest lengths of the active cables. For the folded configure, Fig. 16(d), the results
are shown in μdiagnal = 0.050 66 m, μmiddle = 0.1390 m. For the unfolded configuration,
Fig. 16(e), we have μdiagnal = 0.1024 m, μmiddle = 0.069 38 m.

4. Construct the time-dependent actuation function μ(t) by interpolating between the cal-
culated rest lengths corresponding to different reference configurations of the structure.
For demonstration purposes, the function μ(t) is constructed such that the active cables
are released in a stage-by-stage manner, as shown in Fig. 17.

5.4.3 Dynamic simulation of the deployment process

Before simulating the deployment process, it is necessary to determine the initial configu-
ration of the structure. To this end, the geodesic dynamic relaxation method [62] is used to
obtain the initial configuration, which is in static equilibrium under the tension loads and
external loads (e.g., gravity), as shown in Fig. 18(a). The dynamic process of the system is
then simulated by the proposed MSI scheme with time step size h = 4 × 10−3 s over a time
span of 60 s.

During the simulation, the structure’s rest lengths are adjusted according to the inter-
polated time-dependent functions (Fig. 17), resulting in a stage-by-stage deployment of
the structure. Additionally, the uneven tensions of the outer cables induce the structure to
move in an asymmetric inclination, which is more prominent in the unfolded configuration
(Fig. 18(b-e)) than in the folded configuration for an analysis of how the actuations influence
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Fig. 19 Trajectories of the marker point in (a) x-, (b) y-, and (c) z-directions

Fig. 20 Schematic figures of (a,b,c) the primitive tensegrities, the (d) initial and (e) target configurations of
the tower-like tensegrity structure designed by interfacing (Color figure online)

the movement and stability of the structure. Figure 19 plots the trajectories of the marker
point in the deployment process, showing that small vibrations occur during the dynamic de-
ployment due to rigid-tensile coupling. The reduction of such vibrations is subject to further
research.

5.5 Example 5: a tensegrity structure designed by interfacing

5.5.1 Structural design by the “interfacing” method

Another intuitive design methods can be called “interfacing”, as exemplified by Fig. 20.
Consider again the two tensegrity primitives in Example 4, as shown in Fig. 20(a,c). Addi-
tionally, a spine-like tensegrity primitive [64], composed of two tetrahedrons and six cables,
are introduced as an interface to connect the former two, leading to a new multistage tower-
like structure Fig. 20(d,e). In this way, the new structure also acquires the ability of rotations
and deployments, albeit at different stages. The advantage of the “interfacing” method is that
it can extend an existing structure, without altering its internal topology. Thus it automat-
ically leads to modular structure designs and can be easily combined with other methods,
such as topology-finding and the “embedding” method.

The structural properties are as follows. Each rigid bar has a length l = 0.22 m, a virtual
radius of cross-section r = 1.833 × 10−3 m, and a uniform density ρ = 630 kg/m3. Each
tetrahedron has a height h = 0.07071 m, a circumradius r = 0.1 m for the base triangle, with
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Fig. 21 The mode shapes of the first three vibration modes of the tower-like tensegrity structure in target
configuration. The configuration of static equilibrium is colored in gray for reference (Color figure online)

mass m = 0.2999 kg, and inertia matrix Ī = diag (0.7664,0.7664,1.246) × 10−3 kg m2.
Tensile cables in the prism are given the stiffness coefficient κ = 1 × 103 N m−1. Otherwise,
κ = 5 × 102 N m−1. All tensile cables have the same damping coefficient η = 2 N m−1 s−1.
The lower ends of the tensegrity prism are fixed to the ground.

5.5.2 Determining the resonance frequencies

During the deployment process, the natural frequencies of the structure are also varied con-
tinuously. This fact allows us to validate the dynamic formulations and the MSI scheme by
simulating the resonance phenomenon. To this end, the expected resonance frequencies are
determined in the following steps.

1. Obtain the two static equilibrium configurations (Fig. 20(d,e)) with different cable rest
lengths using the geodesic dynamic relaxation method [62]. These two static equilibria
will be referred to as the initial and target states for the deployment process.

2. Linearize the dynamics of the structure around the two static equilibrium states according
to Sect. 4.2.

3. Solve the generalized eigenvalue problem (39). The resulting lowest natural frequencies
for these two states are ξ = 1.255 Hz and ξ = 0.8289 Hz, respectively. The first three
vibration modes of the target state are calculated by (41) and shown in Fig. 21. We can
observe that the first two modes (Fig. 21(a,b)) correspond to bending movements in the
x- and y-directions, whereas the third mode (Fig. 21(c)) corresponds to the torsional
movement along the z-direction.

5.5.3 Dynamic simulation of the deployment process

In the dynamic simulation of the deployment process, the ground under the structure is sub-
ject to a seismic wave in the x-direction x(t) = 0.003 sin(ν2πt) m, where ν is the seis-
mic frequency. According to the results obtained in Sect. 5.5.2, it is expected that res-
onances would occur during deployment if the seismic frequency ν is within the range
[0.8289,1.255] Hz.

To verify this prediction, cable-based deployment simulations are carried out with three
different seismic frequencies ν = 0,0.7,1.0 Hz. An 80-second simulation with 60-second
deployment time is carried out. Trajectories of the marker point are plotted in Fig. 22. It
shows that the amplitude of response in the x-direction is significantly increased only for
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Fig. 22 (a) Trajectories of the marker point in the x-direction and (b) the enlargement view for the three
deployment cases (Color figure online)

Fig. 23 Snapshots of the tower-like tensegrity structure during deployment with seismic frequency
ν = 1.0 Hz. Dash blue lines indicate slack cables. The deployment on static ground is colored in gray for
reference in (b). Blue dots indicate the marker point (Color figure online)

ν = 1.0 Hz, verifying our prediction. In fact, the resonant vibrations are large enough to
cause cable-slacking, as shown in Fig. 23(b). To sum up, these results validate the proposed
approach and demonstrate its efficacy in dealing with complex conditions, including slack
cables, cable-based deployment, and moving boundary conditions.

5.6 Discussion

In this section, five examples were presented for demonstrating the effectiveness of the pro-
posed approach.

These examples range from simple mechanisms to full-scale bridge and multistage de-
ployable structures. Therefore they demonstrate the broad applicability of the proposed
approach and encourage collaboration between different engineering disciplines, includ-
ing civil engineering, aerospace engineering, and robotics. In particular, Examples 4 and 5
demonstrate the “embedding” and “interfacing” methods as two intuitive methods to build
innovative, scalable, and deployable tensegrity structures that were not previously conceived
in the literature. Therefore they represent important directions in further research in the prac-
tical design of tensegrity structures, such as large-scale space structures.

The innovations in the examples are made possible only by the two main contributions of
the proposed approach. The first is the fully nonminimal description that covers the hetero-
geneous rigid members by offering the flexibility to arrange basic points and base vectors.
The second is the unified formulation of the tension forces of cables based on polymorphism
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and conversion matrices. These two aspects are best demonstrated by Example 1, where the
complexity of tensioned, boundary-conditioned, ball-jointed rigid bodies and rigid bars are
easily handled by the proposed method.

The advantages of the nonminimal methods in previous works of “bars-only” tensegrity
structures [33–37] are retained. Namely, the dynamic formulations are free from trigono-
metric terms, having an elegant form of DAEs with a constant mass matrix and linear de-
pendence on the cable variables. These features mean that the established dynamic control
scheme problems [19, 38] for “bars-only” tensegrity structures can be ported to general
tensegrity structures with little effort.

Since the proposed dynamic formulations lead to a set of DAEs, the correct treatments
of algebraic constraints are crucial to obtain accurate results of linearized and nonlinear
dynamic analysis problems. For modal analysis of the linearized dynamics around static
equilibrium, the reduced-basis method is used to obtain the correct natural frequencies and
modal shapes. For the numerical integration of constrained nonlinear dynamics, while the
existing methods in the tensegrity literature predominantly employ the constraint correc-
tion method [65, 66], in this paper, we propose the MSI scheme that directly solves the
discretized DAEs, such that the constraints are satisfied at every time step and longtime sim-
ulations are accurate. Compared to the original Zu-class symplectic schemes [51, 52], the
proposed MSI scheme can accommodate nonconservative forces and boundary conditions,
thereby ensuring the applicability and robustness to a broad range of tensegrity dynamics.

6 Summary, conclusions, and future directions of research

In this paper, we develop a unified approach for dynamic analysis of general tensegrity
structures. Our method consists of a fully nonminimal description based on natural coor-
dinates, a unified formulation of tension forces using polymorphism and conversion ma-
trices, and a modified symplectic integration (MSI) scheme for numerical simulations of
constrained nonlinear dynamics. The effectiveness and broad applicability of this approach
were demonstrated through five diverse examples, from simple mechanisms to complex de-
ployable structures.

The key conclusions are as follows. The heterogeneity between 6-DoF rigid bodies and
5-DoF rigid bars is resolved by the nonminimal description of natural coordinates. Four and
two types of natural coordinates are derived for a 3D rigid body and a rigid bar, offering the
flexibility to arrange basic points and base vectors. The idea of polymorphism unifies dif-
ferent types of coordinates and thereby facilitates the formulations for ball joints, boundary
conditions, and cables’ tension forces for general tensegrity structures. The resulting dy-
namic equation has a constant mass matrix and is free from trigonometric functions. Using
the reduced-basis method, the governing DAEs can be linearized around static equilibrium
and then reduced to a linear system for modal analysis. The one-timestep MSI scheme not
only yields realistic results for energy and vibrations in long-time simulations, but also ac-
commodates nonconservative forces and boundary conditions. Five representative numeri-
cal examples are presented. Example 1 provides a detailed step-by-step demonstration of
the proposed approach. Examples 2 and 3 are general tensegrity found in the topology-
finding literature, whereas Examples 4 and 5 are novel multifunctional structures created by
two intuitive ways, namely the “embedding” and “interfacing” methods. Various complex
situations, including dynamic external loads, cable-based deployment, and moving bound-
aries, demonstrate the efficacy of the proposed approach for the dynamic analysis of general
tensegrity structures.
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Regarding future research directions, the proposed approach can be extended to include
massive cables. In this direction, the cable’s mass can be distributed as point masses associ-
ated with the cable’s nodes [37]. In the simplest case, which assumes no lateral displacement
of the cable [59], the cable’s point mass can be included in the mass matrices of the rigid
members. Furthermore, sliding cables with clustered actuation [67–70] can also be consid-
ered. These clustered cables can slide through pulleys on the rigid members, thereby reduc-
ing the number of driving motors at the expense of increasing the coupling across multiple
modules of the entire tensegrity structure. Finally, the linear dependence on cables’ force
densities (26) can be exploited for optimization the structural stiffness under external loads
[29, 71–73] and the design of control schemes [19], aiming to integrate structure and control
design as for classical tensegrity systems [74].
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