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Abstract
To alleviate the locking problem in the ANCF beam elements, sufficient transverse gradient
vectors are incorporated in the cross section to enrich the distribution of transverse strain
along the cross section of the beam. Building upon this novel concept, this paper utilizes
Pascal trigonometric polynomial to determine the position interpolation field of beam ele-
ments, and the distribution of transverse gradient vectors along the beam section is clarified
through the collocation of boundary points and Chebyshev interpolation nodes, and then
a series of locking-free beam models, based on the absolute nodal coordinate formulation,
are developed. Additionally, it reveals the inherent mechanical mechanism of higher-order
beam models in alleviating locking through strict mathematical analysis. Furthermore, to
demonstrate the effectiveness of the new elements, six numerical simulation examples are
designed, namely, three static examples and three dynamic examples, which involve small
deformation statics, large deformation statics, small-scale elastic deformation, large-scale
elastic deformation problems. Finally, the simulation results of the first four order beam
models, Patel–Shabana model, and ECM approach are compared and analyzed in detail.
The results indicate that the proposed higher-order beam models have high accuracy and
can effectively eliminate the unnecessary influence caused by locking in complex mechani-
cal problems, involving statics and dynamics problems.

Keywords Poisson locking · Absolute nodal coordinate formulation · Higher-order
interpolation · Chebyshev polynomial · Beam models

1 Introduction

The absolute nodal coordinate formulation [1, 2] (ANCF) was a totally new finite element
(FE) modeling method proposed by Shabana in 1996. This method was also mentioned
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by Rhim and Lee in 1998 [3]. ANCF is based on continuum mechanics and FE method,
which not only promotes the deep combination of flexible multibody system dynamics and
FE method, but is also widely considered by many scholars as a milestone in the history
of flexible multibody system dynamics [4]. ANCF employs the position vector coordinates
and gradient vector coordinates in the global coordinate system as the nodal generalized
coordinates, which effectively avoids the parameterization problem of finite rotation and
the analysis of the position vector in the local coordinate system, realizing the purpose of
accurately investigating the spatial position and deformation characteristics of flexible parts
in the global coordinate system within a nonincremental solution framework. Additionally,
dynamic modeling based on ANCF offers several advantages, including that the equation
has a constant mass matrix, no Coriolis force and centrifugal force terms, and the constraint
equation is simple in form and does not need coordinate transformation [5, 6]. Over the past
two decades, the absolute nodal coordinate formulation has been widely used in engineering,
including the modeling of high-speed pantograph-catenary system, the recovery of tethered
satellites, and the deployment of thin-film solar sails [7].

Locking phenomenon generally exists in classical finite elements such as beams, plates,
and shells, and the locking mechanisms include shear locking, Poisson locking, curvature
thickness locking, and volume locking [8]. To alleviate the locking problem of classical
finite elements, Hughes et al. [9] used reduced and selective integration to effectively alle-
viate shear locking in the thin regime of plate elements. Malkus and Hughes [10] proposed
the equivalence between mixed FE formulations and displacement formulations using the
reduced integration technique, which saved the computing resources. Noor and Peters [11]
also discussed and analyzed the approximate equivalence of different beam models with re-
duced integration. In addition, the mixed methods are also widely used to eliminate locking
problems including volume locking and shear locking. Sussman and Bathe [12] used mixed
displacement and pressure formulation to alleviate volume locking with the incompressible
conditions. Pian [13] proposed a mixed element based on Hellinger–Reissner variational
principle to improve the bending performance of beam and plate structures. Liu et al. [14]
proposed a super-convergent element based on the Hu–Washizu variational principle. Bab
et al. [15] developed a novel mixed FE laminated composite beam element, which is based
on higher-order shear deformation theory, and validated the model through the comparison
and convergence analysis of several laminated situations. Choi et al. [16] also established an
efficient mixed FE formulation, aimed at the elastostatic beams, based on the Hu–Washizu
variational principle, in which the strain distribution in the cross section is enriched by an
enhanced assumed strain method to alleviate Poisson locking.

Similar to the traditional FE method, the beam elements based on ANCF are also impres-
sionable to the occurrence of locking phenomenon, including shear locking, Poisson lock-
ing, etc. The illustrative example is the two-dimensional shear deformation beam element,
which was proposed by Omar and Shabana [17]. The element configuration is completely
determined through the nodal position vector and the gradient vector along the axial and
transverse direction. Moreover, the displacement field uses cubic interpolation in the axial
direction to determine the curvature of the beam with bending and linear interpolation in
the transverse direction, describing the distribution of shear strain. Consequently, Dufva et
al. [18] designed several static and dynamic examples, which proved that the beam element
offers the ability to simulate highly nonlinear behavior and solve large deformation prob-
lems. However, due to the inconsistency between the axial higher-order interpolation and
the transverse low-order interpolation in the Omar–Shabana beam element, stresses in dif-
ferent directions are coupled with each other, resulting in pseudo-stresses during the bending
process, excessive stiffness with decline of element’s performance, and demonstrating a dis-
tinct phenomenon of bending locking [19]. Gerstmayr, Sopanen, and Garcia-Vallejo et al.
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[20–22] analyzed and discussed the mechanical mechanism of Poisson locking in relevant
literature, respectively.

Some typical ANCF studies aimed at alleviating Poisson locking are as follows:

(1) Methods for eliminating Poisson effect.

Gerstmayr and Matikainen [23] artificially set Poisson’s ratio of 0 to eliminate Poisson
effect. Kerkkaenen et al. [24] eliminated Poisson effect and alleviated Poisson locking by
simplifying stress tensor. However, these approaches all are based on eliminating the Poisson
effect of beam element, which is quite different from the actual situation.

(2) Methods based on reduced-based integration, enriching interpolation field and split
methods.

Gerstmayr et al. [20] reconstructed the elastic force matrix of plane beam element by
using the selective reduced integration technique and effectively alleviated the locking phe-
nomenon of beam element by only considering Poisson effect in the axial direction. Garcia-
Vallejo et al. [22] also developed a novel locking-free shear deformation beam element based
on reduced integration. Dufva et al. [18] used mixed displacement field and shear strain in-
terpolation to improve element’s bending performance and to alleviate Poisson locking by
neglecting Poisson coupling between axial and transverse normal strains. Matikainen et al.
[25] developed a higher-order three-dimensional ANCF beam element, in which quadratic
interpolation is used for the cross section, effectively alleviating Poisson locking, whereas
the beam element has too many degrees of freedom, resulting in high-cost calculating con-
sumption. Shen et al. [26] proposed a series of higher-order beam elements utilizing Pascal
trigonometric polynomials. These elements employ a great number of generalized coordi-
nates and more complex interpolation functions to capture the distortion and warping de-
formation of the cross-section accurately. Zhao et al. [27] added transversally higher-order
interpolating polynomials into the polynomial displacement field, which enriched the distri-
bution of transverse strain and alleviated Poisson locking. Hurskainen et al. [28] proposed
a planar ANCF beam element based on mixed interpolation by using the independent in-
terpolation technique of transverse deformation field on the basis of planar ANCF beam
element and proved that the element has high accuracy and convergence for bending de-
formation through a series of numerical examples. Additionally, reconstructing the elastic
force formulation based on the variational principle is also an effective method to allevi-
ate Poisson locking [29, 30]. Schwab and Meijaard [31] introduced the shear stress and
strain field through Hellinger–Reissner and Hu–Washizu variational principles respectively
and reconstructed the elastic force formulation with the elastic line method, which elim-
inated the higher-order coupling term of axial and lateral deformation and alleviated the
locking problem. Hussein et al. [32] used the elastic line method without Poisson coupling
and the independent shear stress interpolation technique based on Hellinger–Reissner vari-
ational principles to eliminate the shear locking problem of two-dimensional (2D) ANCF
full parameter beam elements. Gerstmayr and Irschik [33] used the elastic line method to
study the bending deformation of ANCF beam in detail and gave a modifier formulation of
strain measurement. Strain split method (SSM) is a new method to suppress Poisson locking
[34–36]. Patel and Shabana [37] decomposed Green–Lagrange strain into axial strain and
cross-section strain of the element and modified the constitutive model. It is assumed that
only the low-order strain related to the axial deformation of the beam has Poisson effect,
whereas ignoring the Poisson effect of the higher-order term of the normal strain signifi-
cantly improves the bending performance of the beam, consequently. In addition, Patel and
Shabana [37] also developed a 2D ANCF beam element, which can alleviate Poisson lock-
ing through introducing higher-order curvature vectors. This element can be regarded as



M. Zheng et al.

Fig. 1 Beam configuration in the global coordinate system

a special (two-dimensional) case of three-dimensional higher-order elements proposed by
Shen et al. [26] and analyzed by Orzechowski and Shabana [38].

The paper is arranged as follows: Sect. 2 introduces the global position interpolation
field, gradient vector distribution, nodal generalized coordinates, and shape function of the
proposed beam element models. Section 3 analyzes mechanical mechanism of alleviating
Poisson locking of the proposed model in detail. Section 4 gives the general process of dy-
namic modeling based on ANCF. Section 5 compares and investigates the performance of
beam elements through a series of numerical examples of statics and dynamics, demonstrat-
ing the rationality and effectiveness of a series of beam element models proposed in this
paper. Finally, some conclusions are presented in Sect. 6.

2 A series of beam models

2.1 Global position interpolation field

A beam in mechanical structure can be abstracted as a one-dimensional object based on its
center line, and the position vector of any material point can be defined as follows:

r(X,Y,Z, t) =
n∑

i=1

fi(Y,Z)ui (X, t), (1)

where X, Y , and Z respectively donate the three coordinates of any point in the local co-
ordinate system, ui is a vector used to describe the beam axis configuration, fi , which is
a characteristic function, is used to characterize the deformation of cross-section, n is the
number of expansion terms, t represents time variable.

Here, the beam configuration in the global coordinate system is shown in Fig. 1.
In case of plane problem (x-y), Equation (1) can be simplified as follows:

r(X,Y, t) =
n∑

i=1

fi(Y )ui (X, t). (2)
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Fig. 2 Interpolation trigonometric polynomials

Generally, the cubic interpolation of global position coordinates along the axial direction is
enough to ensure the precision of calculating normal strain εx generated in bending. Addi-
tionally, ui (X, t) can be further decoupled as follows:

ui (X, t) =
[

ai(t)

bi(t)

]
gi(X), (3)

where ai(t) and bi(t) are defined as time coefficient components, along the x and y di-
rection in the global coordinate system (O-xy), gi(X) is a decoupled position function.
Consequently, the fi(Y ) term of fi(Y )gi(X) must be fully rational based on the considera-
tion of Poisson effect because it not only determines the distribution of transverse strain εy

along the cross section, but is also the key to alleviate the Poisson locking of ANCF beam
element.

In this paper, partial Pascal trigonometric polynomials are used to represent the function
fi(Y )gi (X) due to the categoricalness of Pascal’s triangle. Hence, a detail position interpo-
lation field function r(X,Y, t) can be constructed as follows, accordingly:

r(X,Y, t) =
[

x(X,Y, t)

y(X,Y, t)

]
=

[∑2N+4
i=1 ai(t)hi(X,Y )

∑2N+4
i=1 bi(t)hi(X,Y )

]
(N = 1,2, . . .), (4)

where x and y respectively denote the coordinate components of vector r in the global
coordinate system, hi(X,Y ) is equal to gi(X)fi(Y ), and N is defined as the order of the
beam model. The Pascal trigonometric polynomials, corresponding to hi(X,Y ) of beam
models with different orders, are shown in Fig. 2.

In Fig. 2, idle items in the shaded part are not introduced in the beam models proposed in
this paper, the items in red solid box are all necessary for interpolation, which represents that
the interpolation along the axial direction of the beam has cubic accuracy, which is enough,
and the item in the dotted box indicates additional terms included in the beam models with
different orders, and these additional terms including coordinate Y determine the distribution
of transverse strain εy in the cross-section.

Note that the order of the model can be improved only by adding two terms along the
right-hand side of Pascal’s triangle, and the higher the order of interpolation polynomial
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along the Y direction, the more accurate the complicated distribution of εy along the cross-
section, which can alleviate Poisson locking effectively.

Accordingly, the position field of the first four order beam models in the global coordi-
nates system can be written as follows:

r1−order =
[

a0 + a1X + a2Y + a3XY + a4X
2 + a5X

3

b0 + b1X + b2Y + b3XY + b4X
2 + b5X

3

]

r2−order =
[

a0 + a1X + a2Y + a3XY + a4X
2 + a5Y

2 + a6XY 2 + a7X
3

b0 + b1X + b2Y + b3XY + b4X
2 + b5Y

2 + b6XY 2 + b7X
3

]

r3−order =

⎡

⎢⎢⎣

a0 + a1X + a2Y + a3XY + a4X
2 + a5Y

2 + a6XY 2 + a7X
3

+ a8Y
3 + a9XY 3

b0 + b1X + b2Y + b3XY + b4X
2 + b5Y

2 + b6XY 2 + b7X
3

+ b8Y
3 + b9XY 3

⎤

⎥⎥⎦

r4−order =

⎡

⎢⎢⎣

a0 + a1X + a2Y + a3XY + a4X
2 + a5Y

2 + a6XY 2 + a7X
3 + a8Y

3

+ a9XY 3 + a10Y
4 + a11XY 4

b0 + b1X + b2Y + b3XY + b4X
2 + b5Y

2 + b6XY 2 + b7X
3 + b8Y

3

+ b9XY 3 + b10Y
4 + b11XY 4

⎤

⎥⎥⎦

. (5)

2.2 Nodal generalized coordinates

To coordinate with the global position interpolation field function, the corresponding gradi-
ent vectors, distributed along the transverse direction, are arranged on the cross-section of
the beam element to capture the higher-order transverse strain εy accurately, which is differ-
ent from the traditional ANCF beam element due to non-common nodes between gradient
vector rY and position vector r. Nevertheless, similar to the tradition ANCF beam element,
the position vector r is only used to determine the spatial position of the nodes at both
ends of the central axis of the beam, and the gradient vector rX distributed along the axial
direction and the position vector r still maintain the strategy of co-nodes.

In this paper, boundary nodes and Chebyshev interpolation nodes all are considered to
determine the distribution of the transverse gradient vector rY along the cross-section, in
which Chebyshev interpolation is used to avoid the unexpected Runge phenomenon in trans-
verse higher-order interpolation. The first three Chebyshev interpolation polynomials are as
follows (x ∈ [−1,1]):

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

. (6)

In case of 2D beam element, Fig. 3 shows the distribution of gradient vectors rY of the
first four beam models, accordingly.

In Fig. 3, the first-order model employs the coordinate origin as the node of the gradi-
ent vectors ry , the second-order model only uses two boundary point as the interpolation
node, and the third-order model uses three interpolation nodes, namely the boundary points
and zero point of the first-order Chebyshev polynomial. Regularly, the i th (i ≥ 3) order
ANCF beam model uses i nodes to determine the distribution of gradient vectors ry , which
includes two boundary points and i-2 zero points of the i-2 th order Chebyshev polynomial.
Correspondingly, Fig. 4 displays the proposed ANCF beam elements.
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Fig. 3 Distribution of transverse gradient vectors (first four orders)

Fig. 4 First four order ANCF
beam elements

As can be seen from Fig. 4, with the increase of the order, more gradient vectors rY

will be proposed in the cross-section without disturbing the distribution of axial gradient
vectors rX and position vectors r. In this way, the interpolation accuracy along the trans-
verse direction will be greatly improved, and the Poisson locking can be suppressed without
introducing the higher-order curvature vectors rYY .

According to Fig. 4, the generalized coordinates of node i can be expressed as follows:

qi(1−order) = [
rT
i(0,0) rT

iX(0,0) rT
iY (0,0)

]T

qi(2−order) =
[

rT
i(0,0) rT

iX(0,0) rT

iY (0,− h
2 )

rT

iY (0, h
2 )

]T

qi(3−order) =
[

rT
i(0,0) rT

iX(0,0) rT
iY (0,0) rT

iY (0,− h
2 )

rT

iY (0, h
2 )

]T

qi(4−order) =
[

rT
i(0,0) rT

iX(0,0) rT

iY (0,− h
2 )

rT

iY (0,−
√

2h
4 )

rT

iY (0,

√
2h
4 )

rT

iY (0, h
2 )

]T

. (7)
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Here, h denotes the height of the beam element, ri represents the position vector of node i,
and riX and riY represent two gradient vectors of node i, respectively. Accordingly, the
number of generalized coordinates of the corresponding order beam element is consistent
with the time coefficient undetermined in Equation (5). This explicitly reflects the formal
coordination of the beam element models.

Especially, when the proposed beam model is reduced to the first order, the ANCF ele-
ment is essentially Omar–Shabana element, and when the model is improved to the second
order, it evolves into the element model developed by Zheng et al. [7].

2.3 Shape functions

This section will take the third-order beam model as an illustrative example to introduce the
derivation process of a shape function in detail.

Based on Equation (5), the position interpolation field function of the third-order ANCF
beam element can be rewritten in matrix as follows:

r =
[

A 0
0 A

]
C, (8)

where the form of A is

A = [
1 X Y XY X2 Y 2 XY 2 X3 Y 3 XY 3

]
, (9)

and the coefficient matrix C can be expressed as follows:

C = [
a0 · · · a9 b0 · · · b9

]T
. (10)

Ulteriorly, all generalized coordinates of ANCF element can be written as follows, ac-
cording to Equation (8):

q = QC, (11)

where q is a generalized coordinates matrix with the size of 20 × 1 for the third-order model,
and Q is a nonsingular constant matrix with a size of 20 × 20.

Substituting Equation (11) into (8), Equation (8) can be rewritten as follows:

r =
[

A 0
0 A

]
Q−1q = Sq. (12)

Here, S is defined as shape function matrix and the reversibility of Q is the key to determine
whether S exists.

For the third-order ANCF beam model, its shape function matrix is

S =
[

S1 0 S2 0 · · · S10 0
0 S1 0 S2 · · · 0 S10

]
, (13)
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where S1 ∼ S10 can be expressed as follows:

S1 = 1 − 3ξ 2 + 2ξ 3 S2 = L(ξ − 2ξ 2 + ξ 3)

S3 = h(1 − ξ)(1 − 4

3
η2)η S4 = h(1 − ξ)(

2

3
η − 1

2
)η2

S5 = h(1 − ξ)(
2

3
η + 1

2
)η2 S6 = 3ξ 2 − 2ξ 3

S7 = L(−ξ 2 + ξ 3) S8 = hξ(1 − 4

3
η2)η

S9 = hξ(
2

3
η − 1

2
)η2 S10 = hξ(

2

3
η + 1

2
)η2

. (14)

Here, L and h represent the length and height of the beam element, respectively, and ξ = X
L

,
η = Y

h
. Additionally, the shape function of the fourth-order beam model is given in the

Appendix.

3 Mechanism of alleviating locking

Zheng discussed the mechanism of the second-order beam model in alleviating locking and
obtained a pivotal point that the linear interpolation of two gradient vectors rY , located in
the cross-section, enriches the transverse strain εy distribution along the thickness direction.
This method increases the order of transverse interpolation and solves the locking problem.
Based on the novel idea, this paper introduces more gradient vectors rY to improve the order
of the model and popularize this method.

To present the mechanism of alleviating locking, the third-order beam model is taken as
an example to analyze.

Based on continuum mechanics [39], the strain εy located at X = 0 is given by

εy = 1

2
(
∣∣rY(0,η)

∣∣2 − 1). (15)

Substituting Equations (12), (13), and (14) into (15), Equation (16) can be obtained as fol-
lows:

εy = 1

2
(δ2

x + δ2
y − 1)

δx = (1 − 4η2)k5 + (2η2 − η)k7 + (2η2 + η)k9

δy = (1 − 4η2)k6 + (2η2 − η)k8 + (2η2 + η)k10

. (16)

Here, k5 and k6 represent two components of the gradient vector rY (0,0) in the global co-
ordinate system, respectively, k7 and k8 represent two components of the curvature vector
rY (0,− h

2 ) in the global coordinate system, respectively, and k9, k10 represent two compo-
nents of the curvature vector rY (0, h

2 ) in the global coordinate system, respectively.
Essentially, three gradient vectors rY |(X,Y )=(0,− h

2 ), rY |(X,Y )=(0,0), rY |(X,Y )=(0, h
2 ) arranged in

the cross-section are equivalent to three-node quadratic interpolation of rY , which generates
gradient vectors with high accuracy distributed along the transverse direction as follows:

rY

∣∣∣X=0,Y∈[− h
2 , h

2 ] = [
δx δy

]T
. (17)
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Consequently, the third-order ANCF beam model can capture the transverse strain εy with
high order distribution along the section.

Additionally, the above analysis is still valid for higher-order beam models.

4 Dynamic modeling

4.1 Kinetic energy

The kinetic energy T of one element can be conventionally written as follows, according to
Equation (12):

T = 1

2

∫

V

ρṙT ṙdV = 1

2
q̇T

∫

V

ρST SdV q̇ = 1

2
q̇T Mq̇, (18)

where ρ, V represent the density and volume domain of the element, respectively, and M is
defined as a positive definite constant mass matrix, which is equal to

∫
V

ρST SdV .

4.2 Strain energy

Conventionally, the strain energy U of one element can be written as follows:

U = 1

2

∫

V

εT DεdV, (19)

where ε represents a strain array with six components including three normal strains and
three shear strains, and the matrix of elasticities D takes the form in case of linear elastic
material.

D =

⎡

⎢⎢⎢⎢⎢⎢⎣

λ + 2μ λ λ 0 0 0
λ λ + 2μ λ 0 0 0
λ λ λ + 2μ 0 0 0
0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ

⎤

⎥⎥⎥⎥⎥⎥⎦
, (20)

where λ and μ can be expressed as follows:

λ = Ev

(1 + v)(1 − 2v)

μ = E

2(1 + v)

(21)

Here, E and v represent Yong’s modulus and Poisson’s ratio of the beam, respectively.

4.3 Equilibrium equation

According to Hamiliton’s principle, the weak form of equilibrium equation is

δ

∫ tf

t0

(T − U + W)dt = 0, (22)
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where t0 and tf represent the initial and final moments of the integral, respectively, and W

denotes the work done by external force, which can be written as

W = rT
(X0,Y0,Z0)F. (23)

In Equation (23), note that the external force F acts on the material point located at
(X0, Y0,Z0).

In this way, substituting Equations (12), (18), (19), (23) into Equation (22), the following
equation can be obtained:

∫ tf

t0

δqT [Mq̈ + (
∂ε

∂q
)T Dε − ST

(X0,Y0,Z0)F]dt = 0. (24)

In addition, considering the arbitrariness of variation δq, the equilibrium equation of a single
ANCF beam element can be expressed as follows:

Mq̈ + K(q) = Q(q), (25)

where K(q) is a generalized elastic force array, which is equal to ( ∂ε
∂q )T Dε, and Q(q) is a

generalized external force array, which is equal to ST
(X0,Y0,Z0)F.

Furthermore, for a constrained mechanical system, the equilibrium equation can be writ-
ten as follows:

Mq̈ + 	T
q λ = Q(q) − K(q)

	(q, t) = 0
, (26)

where 	(q, t) represents the constraint equations, and λ is defined as Lagrange multiplier
array.

5 Numerical examples

To demonstrate higher-order ANCF beam models (second-order, third-order, fourth-order
models), proposed in this paper, can alleviate Poisson locking effectively, this section spe-
cially takes the first four order beam models, Patel–Shabana beam element, and enhanced
continuum mechanics (ECM) approach as the subject for numerical simulation analysis,
in which the first-order beam model is Omar–Shabana element [17] and the second-order
beam model is beam element proposed by Zheng [7], essentially. Thus, six numerical ex-
amples are involved, namely, three static examples and three dynamic examples. The first
static example is that of a slender cantilever beam subjected to small deformation. The sec-
ond static example involves a slender beam subjected to large deformation. The last static
example is that of a thick cantilever beam subjected to large deformation. Additionally, the
first dynamic analysis example is a beam pendulum with small deformation under gravity
loading. The second dynamic analysis example is a beam pendulum with large deformation
under gravity loading, and the last dynamic example considers a cantilever beam subjected
to gravity loading.
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Fig. 5 Slender cantilever beam subjected to small deformation

Table 1 Parameters of the
slender beam (small deformation) Description Value

Length/m 1

Width/m 0.01

Height/m 0.01

Young’s modulus/Pa 2 × 1011

Poisson’s ratio 0.3

Fig. 6 Tip deflection with
different element number

5.1 Slender beam (small deformation)

A slender cantilever beam with a tip force F is investigated as shown in Fig. 5. Table 1 gives
the parameters of the beam, including the geometry properties and materials properties.

The tip force is 10 N in the vertical direction. Consequently, the analytical vertical dis-
placement of the free end is calculated to be −0.02 m in this case, based on the Euler–
Bernoulli beam theory.

Figure 6 displays the displacement convergence results of four models with different fi-
nite element numbers. As can be seen from Fig. 6, no matter how many ANCF elements
are used, the convergent tip deflection of the first-order ANCF beam model (Omar–Shabana
element) is smaller than that of the theoretical solution −0.02 m, which explains why the
Omar–Shabana beam element cannot converge to the correct solution due to excessive stiff-
ness. Contrary, the deflection solution under the second-, third-, and fourth-order models can
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Fig. 7 Strain εy of cantilever end
along height direction

Fig. 8 Slender cantilever beam
subjected to large deformation

approach the analytical solution with only eight elements, effectively, and this consistency
will be enhanced with an increase of the element number, greatly.

Figure 7 shows the distribution of transverse strain εy located at cantilever end along
height direction. In Fig. 7, as was mentioned previously, the strain εy of the first-order model
along the transverse direction is a constant with a value of 0, which demonstrated that Omar–
Shabana elements are susceptible to Poisson locking. However, for the other three beam
models, it is linearly distributed due to the higher-order interpolation along the transverse
direction, and the strain εy at the end of the rectangular section is close to the theoretical
value ±90 µε.

5.2 Slender beam (large deformation)

A slender cantilever beam subjected to gravity loading is investigated to test the element’s
effectiveness under highly nonlinear conditions. In this numerical example, gravity load is
considered to be the external force with uniform distribution, as shown in Fig. 8. Table 2
gives the geometry properties and materials properties of the beam.
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Table 2 Parameters of the
slender beam (large deformation) Description Value

Length/m 1

Width/m 0.01

Height/m 0.01

Density/Kg m−3 7800

Young’s modulus/Pa 2 × 108

Poisson’s ratio 0.3

Table 3 Beam tip horizontal displacement (m) in different element numbers

Type 2
elements

4
elements

8
elements

16
elements

32
elements

64
elements

128
elements

18 Dofs 30 Dofs 54 Dofs 102 Dofs 198 Dofs 390 Dofs 774 Dofs

1st-order −0.051377 −0.259410 −0.567087 −0.695278 −0.721967 −0.724467 −0.724651

24 Dofs 40 Dofs 72 Dofs 136 Dofs 264 Dofs 520 Dofs 1032 Dofs

2nd-order −0.072892 −0.306484 −0.602760 −0.717091 −0.738941 −0.741007 −0.741201

30 Dofs 50 Dofs 90 Dofs 170 Dofs 330 Dofs 650 Dofs 1290 Dofs

3rd-order −0.060013 −0.281290 −0.588547 −0.712997 −0.738600 −0.741016 −0.741214

36 Dofs 60 Dofs 108 Dofs 204 Dofs 396 Dofs 780 Dofs 1548 Dofs

4th-order −0.072876 −0.306306 −0.602400 −0.716665 −0.738384 −0.740294 −0.740378

24 Dofs 40 Dofs 72 Dofs 136 Dofs 264 Dofs 520 Dofs 1032 Dofs

Pat-Sh −0.051690 −0.263409 −0.577605 −0.709375 −0.738137 −0.740990 −0.741200

ECM −0.051686 −0.263288 −0.577488 −0.709268 −0.738036 −0.740911 −0.741126

Tables 3 and 4 indicate the tip horizontal and vertical displacement of the tips of Patel–
Shabana element, the ECM model, and the first four order models in different element num-
bers, respectively. Figure 9 displays the equilibrium configuration of flexible slender beam,
which has 16 ANCF elements under different models.

From the convergent tip displacement and equilibrium configuration of beam it can be
seen that the deformation of the first-order model is always smaller than that of the higher-
order models, which indicates that the Omar–Shabana element is also susceptible to the oc-
currence of bending locking phenomenon in highly nonlinear problems. Additionally, with
the increase of the number of elements, the number of generalized coordinates of the beam
model, especially for the fourth-order beam model, will greatly increase, and the cost of
numerical calculation will continue to increase, and the tip displacement results of higher-
order beam models will gradually be consistent with the high-performance Patel–Shabana
element and ECM approach. Meanwhile, the equilibrium configurations of beam under dif-
ferent higher-order models are all close to the result of Patel–Shabana beam model, which
also proves that the proposed higher-order beam model is effective and reasonable in allevi-
ating Poisson locking in large deformation statics problem.

5.3 Thick beam (large deformation)

A thick cantilever beam with a tip force F is investigated as shown in Fig. 10. Table 5 gives
the basic parameters of the beam and the shear correction factor ks = 10(1+v)

12+11v
.
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Table 4 Beam tip vertical displacement (m) in different element numbers

Type 2
elements

4
elements

8
elements

16
elements

32
elements

64
elements

128
elements

18 Dofs 30 Dofs 54 Dofs 102 Dofs 198 Dofs 390 Dofs 774 Dofs

1st-order −0.275739 −0.588096 −0.804809 −0.878510 −0.895754 −0.897565 −0.897727

24 Dofs 40 Dofs 72 Dofs 136 Dofs 264 Dofs 520 Dofs 1032 Dofs

2nd-order −0.329152 −0.636383 −0.826052 −0.888423 −0.901827 −0.903283 −0.903457

30 Dofs 50 Dofs 90 Dofs 170 Dofs 330 Dofs 650 Dofs 1290 Dofs

3rd-order −0.298501 −0.610744 −0.816100 −0.885455 −0.901573 −0.903302 −0.903478

36 Dofs 60 Dofs 108 Dofs 204 Dofs 396 Dofs 780 Dofs 1548 Dofs

4th-order −0.329130 −0.636307 −0.826035 −0.888438 −0.901777 −0.903117 −0.903206

24 Dofs 40 Dofs 72 Dofs 136 Dofs 264 Dofs 520 Dofs 1032 Dofs

Pat-Sh −0.276487 −0.591087 −0.808041 −0.882732 −0.901202 −0.903271 −0.903456

ECM −0.276476 −0.591018 −0.808012 −0.882690 −0.901144 −0.903217 −0.903401

Fig. 9 Equilibrium configuration
of different beam models

The tip force is 1 × 106 N in the vertical direction. To demonstrate the reliability of
the numerical solution, a referenced vertical displacement solution (−0.21912 m) of the
beam tip is obtained by using ABAQUS, which employs a total of 8000 C3D8R elements
(400 × 50 × 4) for FE simulation. Figure 11 shows the vertical displacement of different
models with different element numbers.

Analogously, the tip vertical displacement of the first-order beam model is obviously
small due to the excessive stiffness caused by Poisson locking, and it converges to about
−0.2 m. Oppositely, the solutions of higher-order models (second-order, third-order, and
fourth-order models) and the Patel–Shabana beam model are consistent with reference so-
lution −0.214791 m, which also verifies that the developed higher-order beam models can
alleviate Poisson locking in geometric nonlinear problems.



M. Zheng et al.

Fig. 10 Thick cantilever beam
subjected to large deformation

Table 5 Basic parameters of the
beam (thick cantilever beam) Description Value

Length/m 0.5

Width/m 0.01

Height/m 0.1

Young’s modulus/Pa 2 × 1011

Poisson’s ratio 0.3

Fig. 11 Tip vertical displacement
with different element number

5.4 Beam pendulum (small deformation)

A dynamic beam pendulum problem is presented to demonstrate that the newly proposed
beam models can contribute to locking alleviation in dynamic problems as well. The beam
pendulum subjected to gravity loading q is shown in Fig. 12. The basic parameters of the
beam pendulum are also described in Table 1. Obviously, a sufficient elastic modulus is
provided in Table 1 to ensure that the beam only undergoes small deformation during free-
falling.

To compare the simulation results of the four models and the Patel–Shabana model effec-
tively, beam pendulum meshed with 16 ANCF elements is considered. The configurations
of the third-order beam model at every 0.25 s for 0 ∼ 1 s are shown in Fig. 13. Figures 14
and 15 represent the curves of the horizontal and vertical position of the beam tip with time,
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Fig. 12 Beam pendulum with
small deformation

Fig. 13 Configurations of beam
for pendulum motion (beam
pendulum with small
deformation)

respectively. As can be seen from these results, because the motion of the beam is basically
a large-scale rigid motion, the small-scale elastic deformation caused by Poisson effect has
little influence on the displacement result of the tip, which is also a crucial reason why the
simulation results of four models, the Patel–Shabana model and the ECM model are highly
consistent. Meanwhile, it also reveals that Poisson locking has little influence on dynamic
problems dominated by large-scale rigid motion and small-scale elastic deformation.

5.5 Beam pendulum (large deformation)

To further investigate the influence of Poisson locking in dynamic problems dominated by
large-scale rigid motion and large-scale elastic deformation, beam pendulum adopts the
physical parameters in Table 2. Obviously, an insufficient elastic modulus is provided in
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Fig. 14 Beam tip horizontal
position of different models
(beam pendulum with small
deformation)

Fig. 15 Beam tip vertical
position of different models
(beam pendulum with small
deformation)

Table 2 to ensure that the beam engenders large elastic deformation during free-falling, as
shown in Fig. 16.

Similarly, the ANCF beam models also used 16 elements. The configurations of the
third-order beam model at every 0.25 s for 0 ∼ 1 s are shown in Fig. 17. Figures 18 and
19 represent the curves of the horizontal and vertical position of the beam tip with time,
respectively, and Fig. 20 represents the strain energy of different beam models. As can be
seen from Figs. 17–20, although the beam has undergone the large elastic deformation dur-
ing free-falling, the difference in beam tip displacement and strain energy between different
models, including low-precision Omar–Shabana element, other higher-order beam models,
and ECM approach is small due to the large-scale rigid movement caused by the rotation of
the hub. Consequently, the influence of Poisson locking on the different beam models cannot
be distinguished, clearly.
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Fig. 16 Beam pendulum with
large deformation

Fig. 17 Configurations of beam
for pendulum motion (beam
pendulum with large
deformation)

5.6 Cantilever beam

Finally, a cantilever beam structure is presented in this section, to study the characteristics
of Poisson locking in dynamic problems dominated by small-scale rigid motion and large-
scale elastic deformation. This problem is consitent with the one considered by Orzechowski
and Shabana [38]. The parameters of the beam are shown in Table 6. Obviously, cantilever
boundary conditions and an insufficient elastic modulus ensures that the beam motion is
mainly large-scale elastic deformation, as shown in Fig. 21.

The configurations of the third-order beam model at every 0.1 s for 0 ∼ 0.3 s are shown
in Fig. 22. Figures 23 and 24 display the curves of the horizontal and vertical position of
the beam tip with time, respectively. From these results, the tip displacement of the first-
order beam model is obviously smaller than that of the higher-order models similarly, and
Poisson locking exists in the Omar–Shabana beam element, objectively. For other higher-
order models, including the Patel–Shabana beam model, their tip displacement solutions
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Fig. 18 Beam tip horizontal
position of different models
(beam pendulum with large
deformation)

Fig. 19 Beam tip vertical
position of different models
(beam pendulum with large
deformation)

show high consistency with ECM approach, which demonstrates that proposed higher-order
models have enough accuracy and can alleviate locking in dynamic problems as well.

6 Conclusions

Locking phenomenon objectively exists in classical ANCF elements. To alleviate the prob-
lem of excessive stiffness caused by Poisson locking, a series of higher-order ANCF beam
elements are developed based on the absolute nodal coordinate formulation, and the pro-
posed beam models are highly generalized and consolidated in theory, in which the first-
order beam model is Omar–Shabana element and the second-order beam model is Zheng
et al. higher-order element. Additionally, the effectiveness and high-accuracy of the pro-
posed higher-order beam model are demonstrated by comparing the proposed beam model
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Fig. 20 Strain energy of different
beam models (beam pendulum
with large deformation)

Table 6 Basic parameters of the
beam (cantilever beam subjected
to gravity loading)

Description Value

Length/m 1

Width/m 0.1

Height/m 0.1

Density/Kg m−3 5000

Young’s modulus/Pa 5 × 107

Poisson’s ratio 0.3

Fig. 21 Cantilever beam
subjected to gravity loading

with the Patel–Shabana model and ECM approach in six numerical examples. Correspond-
ingly, in three static numerical examples, the beam tip displacement of higher-order beam
models converges well in both small deformation problems and large deformation prob-
lems, which demonstrated that the higher-order ANCF beam models can alleviate locking
in statics problems effectively. However, in the two dynamic beam pendulum problems, the
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Fig. 22 Configurations of beam
for cantilever beam

Fig. 23 Beam tip horizontal
position of different models
(cantilever beam subjected to
gravity loading)

numerical simulation results of low-precision Omar–Shabana element, high-performance
Patel–Shabana model, and ECM approach have little difference, including tip displacement
and strain energy characteristics, and it indicates that the elastic deformation caused by
Poisson effect has little influence on the dynamic response of the whole system in case
of the dynamic problems dominated by large-scale rigid motion. Finally, in the dynamic
cantilever beam problem, the excessive stiffness caused by Poisson locking is obviously
manifested in the first-order model, and the tip displacement between several higher-order
models and ECM approach display high-level consistency, which establishes that the higher-
order ANCF beam models can simulate complex dynamic problems with high accuracy on
the basis of alleviating locking.



A series of locking-free beam element models in absolute nodal. . .

Fig. 24 Beam tip vertical
position of different models
(cantilever beam subjected to
gravity loading)

Appendix: The shape function matrix of 4-order ANCF beam model

The shape functions for the 4-order ANCF beam model proposed in Sect. 2.3 are given as
follows:

For the 3-order ANCF beam model, its shape function matrix is

S =
[

S1 0 S2 0 · · · S12 0
0 S1 0 S2 · · · 0 S12

]
, (A.1)

where S1-S12 can be expressed as follows:

S1 = 1 − 3ξ 2 + 2ξ 3, S2 = L(ξ − 2ξ 2 + ξ 3),

S3 = h(1 − ξ)(− 1

14
+ η

28
+ 4η2

21
− η3

7
)η
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√
2η3

7
)η,
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2η
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21
−

√
2η3

7
)η

S6 = h(1 − ξ)(− 1

14
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28
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21
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7
)η

S7 = 3ξ 2 − 2ξ 3, S8 = L(−ξ 2 + ξ 3), S9 = hξ(− 1
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(A.2)
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Here, L and h represent the length and height of the beam element, respectively, and ξ = X
L

,
η = Y

h
.
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