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Abstract
The optimization of multibody systems requires accurate and efficient methods for sensitiv-
ity analysis. The adjoint method is probably the most efficient way to analyze sensitivities,
especially for optimization problems with numerous optimization variables. This paper dis-
cusses sensitivity analysis for dynamic systems in gradient-based optimization problems.
A discrete adjoint gradient approach is presented to compute sensitivities of equality and
inequality constraints in dynamic simulations. The constraints are combined with the dy-
namic system equations, and the sensitivities are computed straightforwardly by solving
discrete adjoint algebraic equations. The computation of these discrete adjoint gradients can
be easily adapted to deal with different time integrators. This paper demonstrates discrete
adjoint gradients for two different time-integration schemes and highlights efficiency and
easy applicability. The proposed approach is particularly suitable for problems involving
large-scale models or high-dimensional optimization spaces, where the computational effort
of computing gradients by finite differences can be enormous. Three examples are investi-
gated to validate the proposed discrete adjoint gradient approach. The sensitivity analysis
of an academic example discusses the role of discrete adjoint variables. The energy optimal
control problem of a nonlinear spring pendulum is analyzed to discuss the efficiency of the
proposed approach. In addition, a flexible multibody system is investigated in a combined
optimal control and design optimization problem. The combined optimization provides the
best possible mechanical structure regarding an optimal control problem within one opti-
mization.
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1 Introduction

The direct differentiation and the adjoint variable approach represent two principal analyt-
ical methods employed for sensitivity analysis in the context of optimization. The direct
differentiation method [13] facilitates implementation via straightforward differentiation of
system equations, constraints, and cost functions with respect to optimization variables. De-
spite this, the direct differentiation yields a tremendous computational effort for large-scale
optimization problems. Alternatively, the adjoint variable method [13] determines design
sensitivities as the solution of adjoint variable equations deduced from variations of the sys-
tem equations. This avoids the necessity for direct computation of state sensitivities and can
dramatically reduce the computational effort required for large-scale optimization problems
when adjoint variable equations and algorithms are properly formulated.

The computation of gradients in optimization problems includes the adjoint method with
a long history in optimal control theory [24]. Adjoint gradients, e.g., applied for trajectory
planning, have already been presented in 1975 by Bryson and Ho [4]. The adjoint gradi-
ents have become more and more important in various optimization problems in engineer-
ing, e.g., in design optimization [32] or multibody dynamics [7, 10], since the applications
have become larger in dimension. Therefore, an efficient calculation of gradients has be-
come essential. Sensitivity analysis has wide-ranging applications in science and engineer-
ing, including optimization, parameter identification, data assimilation, optimal control, un-
certainty analysis, and experimental design. Current trends in neural networks benefit from
solvers capable of building efficient gradient computation for training machine-learning em-
bedded cost functionals in high dimensions [36]. Johnston and Patel stated in [17] that ad-
joint methods are used both in control theory and machine learning to efficiently compute
gradients of functionals. Recent publications discuss the adjoint method in multibody dy-
namics for various applications, e.g., in a feedback–feedforward control to compute the
input control signal and corresponding trajectory predicted by a model [27]. In the work by
Schneider and Betsch [38], the choice of a mechanical Hamiltonian and the incorporation of
constraints is discussed, and a new approach that preserves the variational structure of the
problem is introduced. Moreover, an adjoint sensitivity analysis using a QR decomposition
in [16] shows how the adjoint variable method can be applied to multibody systems whose
system equations are initially set up in differential–algebraic form but solved in minimal
coordinates.

For optimization in complex, large-scale optimization problems, a discrete version of the
adjoint method with neat features in terms of stability and accuracy has been proposed re-
cently by various authors [3, 6, 21]. In the discrete adjoint method, the adjoint differential
equations are replaced by algebraic equations by introducing a finite-difference scheme for
the adjoint system directly from the numerical time-integration method. The method pro-
vides exact gradients of the discretized cost function subjected to the discretized equations
of motion. The equations of motion of the multibody system and adjoint equations may ei-
ther be separately discretized from their representations as differential–algebraic equations,
or the equations of motion of the multibody system may be discretized first, and the discrete
adjoint equations are then derived directly from the discrete multibody equations, tracing
back to [4]. It has been emphasized, e.g., by Callejo et al. [6], that the adjoint method is
one of the most efficient methods to evaluate sensitivities for problems involving numer-
ous design parameters and relatively few objective functions. The latter paper has presented
a discrete version of the adjoint method, which can be applied to the dynamic simulation
of flexible multibody systems not only by using an ad hoc backward integration solver but
leads to a straightforward algebraic procedure that provides the desired design sensitivi-
ties of rigid and flexible multibody systems. Moreover, in [3], the discrete adjoint method



A discrete adjoint gradient approach for constraints in dynamics 105

is discussed in different time-marching schemes, including backward difference formulas,
Newmark and Adams–Bashforth–Moulton methods. In [25], a discrete adjoint sensitivity
analysis considering a Newmark family integrator is presented. In Lauß et al. [21], the dis-
crete adjoint equations for the computation of gradients of a cost function are derived using
the Hilbert–Hughes–Taylor (HHT) solver to solve the system equations. The great advan-
tage of this approach is that the cost function can also depend on the accelerations, thus
allowing the use of measured data from acceleration sensors in the optimization procedure
in a straightforward manner.

Flexible multibody formulations must be included in optimization problems when the
cost function includes elasticity or deformation of mechanical systems. When dealing with
flexible multibody systems with large deformations or large rotations, the absolute nodal
coordinate formulation (ANCF) [40] is advantageous because the formulation does not use
rotational degrees of freedom. Using these ANCF elements for flexible bodies, a gradient-
based adjoint optimization approach has been presented by Held and Seifried [15]. There,
a criterion accounts for the deformation energy of the flexible body. A recent work [44]
presents an optimization approach that exploits the adjoint variable method in combina-
tion with the flexible natural coordinates formulation for obtaining the sensitivity informa-
tion. A comprehensive literature review in [12] presents various gradient-based optimization
methods, especially in the design optimization of flexible multibody systems. The latter-
mentioned review paper discusses the main goals in the design optimization of flexible
multibody dynamics and reviews concepts and applications in this field. Over 160 pub-
lications in the bibliography give a comprehensive overview of optimization algorithms,
types and formulations, and sensitivity analysis. Optimal control and design optimization
are discussed in various publications, but there is a gap in the literature on optimization
or sensitivity analysis that combines optimal control and design optimization of multibody
systems.

This paper significantly enhances optimal control and design optimization problems for
flexible multibody systems. Promising results in a preliminary paper by Lichtenecker et al.
[22] have shown an efficient optimal control strategy for highly flexible robotic systems
based on the adjoint gradient computation method. Furthermore, flexible multibody sys-
tems, e.g., soft robots, allow new potential for performing various tasks. Soft robots have not
yet fully demonstrated their capabilities, as nature is still clearly superior to them in some
areas, particularly evolutionary improved motion and control. Future research should ad-
dress critical challenges and focus on understanding the fundamental principles that govern
the design, modeling, and control of soft robots, as stated in Hawkes et al. [14] and Della
Santina et al. [9]. Improving the performance of mechanical systems, like soft robots, re-
quires sophisticated optimization strategies to fulfill the high demands of current and future
product requirements. In general, two problem formulations can be considered to describe
various optimization applications: structural optimization of mechanical components and/or
finding an optimal control for dynamical systems [43]. The focus of this paper is on the
combination of both problems. A combined gradient computation for highly efficient opti-
mal control while optimizing the structural components of a mechanical system within the
same computation is presented.

To this end, a discrete adjoint gradient computation considering equality and inequal-
ity constraints is developed, which will be able to incorporate, e.g., final conditions and/or
stress restrictions in design optimizations. With this novel approach, a sensitivity analysis
of constraints with respect to optimization variables using discrete adjoints is possible, and
a combined optimal control and optimal design of a mechanical system is realized. Three
examples will show the application of the proposed discrete adjoint gradient approach: (1)
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an academic example of a one-mass oscillator in a sensitivity analysis, (2) an energy opti-
mal control problem of a nonlinear spring pendulum, and (3) a combined optimal control
and optimal sizing problem of a flexible two-arm robot using the ANCF for describing large
deformations.

2 Problem description

The increasing industrial relevance of high-end solutions that fulfill a wide range of require-
ments demands the consideration of novel approaches at an early stage of virtual product
development. For instance, finding an optimal control of a flexible multibody system un-
der consideration of final constraints is essential to perform a manipulation according to
predefined tasks [22]. In addition, innovative lightweight design requires novel approaches
in the field of structural optimization [28]. The performance of mechanical systems, either
in optimal control problems and/or structural optimization problems, can be increased by
optimization.

An optimization problem aims to find a set of optimization variables z = z∗ ∈ R
z to

minimize a defined cost function J with respect to constraints. A standard nonlinear pro-
gramming (NLP) problem can be formulated by

min
z

J (z) (1)

s.t.

zmin ≤ z ≤ zmax (2)

ĝ = 0 (3)

ĥ ≤ 0, (4)

wherein (2) imposes lower and upper bounds of optimization variables. Equality and in-
equality constraints are denoted by ĝ ∈ R

p and ĥ ∈ R
q , respectively. To address an optimal

control problem with the above NLP formulation, it is necessary to transform the original
infinite-dimensional optimization problem into a finite-dimensional one by using a direct
transcription method. In general, transcription methods are categorized into shooting meth-
ods and collocation methods. A widely used method is the direct single-shooting method,
where only the control is parameterized. The reader is referred to [2] for a detailed de-
scription of transcription methods. The NLP problem can be treated by well-known algo-
rithms, e.g., the sequential quadratic programming (SQP) approach or the interior point
(IP) method [33]. An optimal point z∗ fulfills the Karush–Kuhn–Tucker (KKT) condi-
tions [18, 19], which are necessary first-order optimality conditions for direct optimization
methods.

In this paper, the constraints ĝ = ĝ(x, ξ) and ĥ = ĥ(x, ξ) depend on system parameters
ξ ∈R

l and on state variables x ∈R
n due to a time-dependent control u ∈R

m of a mechanical
system. Thus, evaluating the (in)equality constraints requires the evolution of the system
response. The dynamics of mechanical systems can be described with ordinary differential
equations (ODE)

ẋ = f(x,u, ξ), x(0) = x0. (5)
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Fig. 1 Time domain and index scale: (a) is the time domain for time integration, (b) is the i-index scale for
time integration, and (c) is the j -index scale for the evaluation of constraints

For the numerical computation of the state variables, the ODE can be formulated by a tem-
poral discretization as

xi+1 = f̃(xi ,xi+1,ui ,ui+1, ξ), i ∈ {0, . . . ,N − 1}, (6)

with the given initial state x0. The evolution of the state variables x1, . . . , xN is influenced
by the time integrator used, the control variables u0, . . . , uN , and the set of parameters ξ .
The discrete ODE (6) represents a general form for an explicit or implicit one-step time
integrator, such as a Runge–Kutta scheme [5]. The time domain t ∈ [t0, tf] is discretized
with N uniform intervals leading to a constant time-integration step size �t ; see Fig. 1(a).
Consequently, the micro (integration) time mesh is defined by ti = �t i, i ∈ {0, . . . , N},
with t0 = 0 and tN = tf = �t N .

This paper considers equality constraints at the final time tf, while inequality constraints
must be satisfied on a macro (inequality) time mesh; see Fig. 1(c) for the according index
scale of the macro time mesh. The macro time mesh t̂j = �T j , j ∈ {0, . . . , M} is defined
by M time intervals between inequality constraints leading to the inequality step size �T =
tf/M . The circumflex ˆ(·) denotes the evaluation of a variable (·) regarding the macro time
mesh. The number of chosen time-integration points e ∈ N divides the inequality step size
�T into the integration step size �t by defining the time-integration step size �t = �T/e.
For the case M = N , one defines inequality constraints at the micro time mesh in each
time integration. Figure 1 illustrates the time domain, including the time-integration steps
and the arrangement of (in)equality constraints. For example, an equality constraint can
be a particular configuration of a mechanical system at the final time tf. In contrast, an
inequality constraint ensures that the acceleration is within a defined limit at the macro time
mesh t̂ .

For the sake of convenience, the constraints ĝ and ĥ are concatenated into a general set
of nonlinear constraints by cT = (

ĝT, ĥT
)∈ R

p+q . The equality constraints ĝ = gN represent
an evaluation of p implicit time-dependent functions g = g(x(t), ξ) ∈R

p at the final time tf,
while the inequality constraints ĥ are a concatenation of r functions h = h(x(t), ξ ) ∈ R

r

evaluated at the macro time mesh. The size of the concatenated inequality constraints is
q = r(M +1); see the j -index scale for inequality constraints in Fig. 1. However, inequality
constraints have to be defined in the i-index scale to be in accordance with a time integration
of the ODE at the micro time mesh, i.e., inequality constraints are defined in the i-index scale
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with i = ej . The general set of constraints is formulated in the i-index scale by

c = B1gN +
M∑

j=0

B2,j hej . (7)

Boolean matrices B map the (in)equality constraints into the combined set of constraints,
i.e.,

cT = (g1,N , . . . , gp,N︸ ︷︷ ︸
ĝT

, h1,0, . . . , hr,0, . . . , h1,N , . . . , hr,N︸ ︷︷ ︸
ĥT

), (8)

in which the first subscript denotes the row and the second subscript denotes the correspond-
ing time in the i-index scale of g and h, respectively.

The constraint formulation in (7) allows a straightforward derivation of discrete adjoint
gradients for sensitivity analysis and gradient-based optimizations. In gradient-based op-
timization algorithms, first-order gradients are crucial to compute a local minimum of an
optimization problem. The accuracy of the gradient computation influences the convergence
and robustness of optimization algorithms. In addition, the computational effort to solve an
optimization problem depends on the runtime required to compute gradients. This paper
addresses accurate and efficient first-order sensitivity analysis with particular emphasis on
gradients of the constraint formulation in (7). One approach that meets both requirements is
the adjoint method [26, 29]. This paper employs a discrete version of the adjoint method to
derive first-order gradients of constraints. The proposed discrete adjoint approach replaces
the finite-difference approach, usually the default of optimization toolboxes.

3 Sensitivity analysis

This section proposes a novel discrete adjoint approach to sensitivity analysis with emphasis
on gradients of the constraint formulation in (7). The sensitivities are computed for a dis-
crete set of optimization variables z, i.e., the sensitivity analysis is defined by dc/dz. The
adjoint method is an efficient method to compute gradients since the computational effort
to compute the so-called adjoint variables does not depend on the number of optimization
variables [6, 11, 31]. The discrete adjoint method constructs a finite-difference scheme for
the adjoint variables directly from the time-integration method to solve the governing equa-
tions [21]. In this paper, the computation of the discrete adjoint gradients is formulated for
governing equations in the form of (6). However, the discrete adjoint gradient computa-
tion can be easily adapted to deal with different one-step time integrators, as shown for an
explicit and an implicit Euler method.

3.1 Discrete adjoint method for one-step time integrators

The goal of the adjoint gradient method is to avoid the expensive computation of state sensi-
tivities dx/dz by introducing adjoint variables. Following the fundamental work by Bryson
and Ho [4], the constraint (7) is extended by the discrete state equations (6) leading to

c̄ = B1gN +
M∑

j=0

B2,j hej +
M−1∑

j=0

⎡

⎣
e(j+1)−1∑

i=ej

Ri+1

(
xi+1 − f̃i,i+1

)
⎤

⎦ , (9)
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for any choice of the adjoint variables R1, . . . ,RN ∈R
(p+q)×n in the case where the discrete

state equations are satisfied. For the sake of easier reading, the temporal discretized right-
hand side of the ODE is defined by f̃i,i+1 := f̃(xi ,xi+1,ui ,ui+1, ξ), i ∈ {0, . . . ,N − 1}. The
constraint (9) is extended by introducing a double sum to account for the system dynamics.
The inner sum considers the time intervals between two inequality constraints ]t̂j , t̂j+1[, j ∈
{0, . . . , M −1} and the outer sum considers exactly the time instances t̂j , j ∈ {0, . . . , M} at
which inequality constraints must be satisfied; see scales in Fig. 1. However, the additional
zero terms do not influence the constraints c in the case where the state equations are satisfied
and, therefore, the gradients of c are equal to the gradients of c̄. The following derivation of
discrete adjoint gradients is based on the extended constraints c̄.

Before deriving the gradients of c̄ by a discrete adjoint approach, the boundaries of the
state variables xN and (in)equality constraints gN and hN , respectively, must be extracted
from (9) to derive terminal conditions for the differential equations of the adjoint variables.
Performing an index shift of the inner i-sum in (9) results in an extraction of the boundaries

c̄ =B1gN + B2,MhN +
M−1∑

j=0

⎡

⎣
e(j+1)−1∑

i=ej+1

Ri

(
xi − f̃i−1,i

)

+Rej xej − Re(j+1) f̃e(j+1)−1,e(j+1) + B2,j hej

⎤

⎦ − R0x0 + RN xN .

(10)

Note that (9) and (10) are equal despite different formulations. Moreover, note that the sub-
scripts ej and e(j + 1) in (10) are a result of the performed index shift, and the related terms
are evaluated in the j -sum at the macro time mesh; see Fig. 1.

The derivation of discrete adjoint gradients is based on the calculus of variations. The
first-order variation of (10) in terms of δxi , δxi−1, δui , δui−1, and δξ is given by

δc̄ =B1

(
∂gN

∂xN

δxN + ∂gN

∂ξ
δξ

)
+ B2,M

(
∂hN

∂xN

δxN + ∂hN

∂ξ
δξ

)

+
M−1∑

j=0

⎡

⎣
e(j+1)−1∑

i=ej+1

Ri

(

δxi − ∂ f̃i−1,i

∂xi−1
δxi−1 − ∂ f̃i−1,i

∂ui−1
δui−1 − ∂ f̃i−1,i

∂xi

δxi

−∂ f̃i−1,i

∂ui

δui − ∂ f̃i−1,i

∂ξ
δξ

)

+ Rej δxej + B2,j

(
∂hej

∂xej

δxej + ∂hej

∂ξ
δξ

)

−Re(j+1)

(
∂ f̃e(j+1)−1,e(j+1)

∂xe(j+1)−1
δxe(j+1)−1 + ∂ f̃e(j+1)−1,e(j+1)

∂ue(j+1)−1
δue(j+1)−1

+∂ f̃e(j+1)−1,e(j+1)

∂xe(j+1)

δxe(j+1) + ∂ f̃e(j+1)−1,e(j+1)

∂ue(j+1)

δue(j+1)

+∂ f̃e(j+1)−1,e(j+1)

∂ξ
δξ

)]

− R0δx0 + RNδxN .

(11)

In this paper, the focus lies on a combined sensitivity analysis with respect to the system
parameters ξ and a discrete set of control grid nodes ū. Following Lichtenecker et al. [22],
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the continuous control function is formulated with u = Cū, where C is a time-dependent in-
terpolation function. The variables of interest in the sensitivity analysis are combined in the
vector zT = (

ξT, ūT
)

and can be used as optimization variables in gradient-based optimiza-
tion problems. Note that the optimization variables z can consist of system parameters, e.g.,
the stiffness of a spring of a mechanical system and/or a parameterization of the control.

To derive a variation of the constraints with respect to the optimization variables z, the
variations δξ and δu in (11) can be obtained in terms of δz with

δξ =B3δz, (12)

δu =Cδū = CB4δz, (13)

respectively. The Boolean matrices B map the combined set of optimization variables to
system parameters and control grid nodes. Substituting (12) and (13) into (11) and reformu-
lating leads to

δc̄ =
M−1∑

j=0

⎡

⎣
e(j+1)−1∑

i=ej+1

[(

Ri − Ri

∂ f̃i−1,i

∂xi

− Ri+1
∂ f̃i,i+1

∂xi

)

δxi

−Ri

(
∂ f̃i−1,i

∂ui−1
Ci−1B4 + ∂ f̃i−1,i

∂ui

CiB4 + ∂ f̃i−1,i

∂ξ
B3

)

δz

]

+
(

Rej + B2,j

∂hej

∂xej

− Rej+1
∂ f̃ej,ej+1

∂xej

)

δxej

−Re(j+1)

(
∂ f̃e(j+1)−1,e(j+1)

∂ue(j+1)−1
Ce(j+1)−1B4 + ∂ f̃e(j+1)−1,e(j+1)

∂ue(j+1)

Ce(j+1)B4

+∂ f̃e(j+1)−1,e(j+1)

∂ξ
B3

)

δz + B2,j

∂hej

∂ξ
B3δz

⎤

⎦

+
(

B1
∂gN

∂ξ
+ B2,M

∂hN

∂ξ

)
B3δz +

(
B1

∂gN

∂xN

+ B2,M

∂hN

∂xN

+ RN

)
δxN .

(14)

Equation (14) implies the relation between δx and δz. The optimization variables z influence
the state variables x and, therefore, the variation of state variables should be interpreted as
[6, 23]

δx = dx
dz

δz. (15)

The total derivatives of state variables with respect to optimization variables are obtained by
solving the matrix differential equations

dẋ
dz

= ∂f
∂x

dx
dz

+ ∂f
∂u

∂u
∂z

+ ∂f
∂ξ

∂ξ

∂z
. (16)

This system is defined by taking the total derivative of (5) with respect to the optimization
variables and, therefore, the dimension of the system depends on the number of optimization
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variables. The solution of the matrix differential equations is obtained by applying a tempo-
ral discretization, where the computational effort to solve (16) can become expensive in the
case of a large number of optimization variables. Using the state sensitivities (16) with (15)
in (14), first-order gradients of the constraint formulation in (7) can be obtained without the
need for the adjoint variables. This approach is called direct differentiation. However, the
goal of the proposed discrete adjoint gradient approach is to avoid the direct computation
of the state sensitivities dx/dz. To this end, the discrete adjoint variables in (14) are defined
such that the brackets multiplied with δx are zero. Hence, the discrete adjoint variables are
obtained by the matrix differential equations

RN = − B1
∂gN

∂xN

− B2,M

∂hN

∂xN

, (17)

Ri = Ri+1
∂ f̃i,i+1

∂xi

+ Ri

∂ f̃i−1,i

∂xi

, ∀i ∈ {ej + 1, . . . , e (j + 1) − 1}, (18)

Rej = − B2,j

∂hej

∂xej

+ Rej+1
∂ f̃ej,ej+1

∂xej

, ∀j ∈ {1, . . . , M − 1}. (19)

Equation (17) imposes the terminal condition of the adjoint variables at the final time tN .
The computation of the adjoint variables is performed in a backward manner starting from
RN and proceeding with the adjoint system (18). It has to be emphasized that (18) is defined
within the macro time mesh ]t̂j , t̂j+1[, j ∈ {0, . . . , M − 1}. The discrete adjoint variables at
the macro time mesh t̂j , j ∈ {1, . . . , M − 1} are determined by the intermediate condition
in (19). The adjoint system and the intermediate condition are applied alternately in the
backward integration to solve the discrete adjoint variables.

Once the discrete adjoint variables are computed by (17)–(19), the terms related to δx
vanish in (14) and, therefore, the variation of the extended constraints simplifies to

δc̄ = {. . .}︸︷︷︸
dc̄
dz

δz, (20)

where the variation δz is factored out. The simplified variation leads to first-order gradients
of constraints with respect to optimization variables given by

dc̄
dz

=
M−1∑

j=0

⎡

⎣
e(j+1)−1∑

i=ej+1

Ri

(

−∂ f̃i−1,i

∂ui−1
Ci−1B4 − ∂ f̃i−1,i

∂ui

CiB4 − ∂ f̃i−1,i

∂ξ
B3

)

+B2,j

∂hej

∂ξ
B3 − Re(j+1)

(
∂ f̃e(j+1)−1,e(j+1)

∂ue(j+1)−1
Ce(j+1)−1B4

+∂ f̃e(j+1)−1,e(j+1)

∂ue(j+1)

Ce(j+1)B4 + ∂ f̃e(j+1)−1,e(j+1)

∂ξ
B3

)]

+
(

B1
∂gN

∂ξ
+ B2,M

∂hN

∂ξ

)
B3.

(21)

The discrete adjoint gradient computation for the constraint formulation in (7) is obtained
by (21). Note that the computation of discrete adjoint gradients is based on the solution of
the adjoint system, whose size does not depend on the number of optimization variables.
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The gradient computation using direct differentiation requires the solution of (16), which
depends on the number of optimization variables. Therefore, the adjoint-based sensitivity
analysis is computationally efficient, especially when dealing with optimization problems
with a large number of optimization variables.

Employing the discrete adjoint gradient (21), e.g., within an optimization procedure, re-
quires the specific formulation of the right-hand side vector f̃. The chosen time integrator
to solve the forward dynamics implies the backward integration of the discrete adjoint vari-
ables. Moreover, sensitivities of the forward time integrator are recognized in the compu-
tation of the discrete adjoint variables. To use the proposed discrete gradient approach, the
sensitivities of the chosen forward time integrator need to be defined.

3.2 Application to the explicit Euler method

The explicit Euler method is an iterative solution scheme to approximate the state variables
of the ODE in (5) by

xi+1 = xi + �t f(xi ,ui , ξ)
︸ ︷︷ ︸

f̃(xi ,ui ,ξ)

. (22)

Using the above time-integration scheme in the discrete adjoint sensitivity analysis, the ex-
plicit right-hand side vector f̃ has to be defined in the general form f̃i,i+1 := f̃(xi ,ui , ξ). The
computation of the discrete adjoint variables requires the derivatives of f̃ with respect to the
state variables x given by

∂ f̃i,i+1

∂xi

= I + �t
∂fi
∂xi

and
∂ f̃i−1,i

∂xi

= 0, (23)

where fi = f(xi ,ui , ξ) and I denotes the identity matrix. In addition, the discrete adjoint
gradient computation requires the derivatives of f̃ with respect to u and ξ given by

∂ f̃i−1,i

∂ui

= 0,
∂ f̃i−1,i

∂ui−1
= �t

∂fi−1

∂ui−1
and

∂ f̃i−1,i

∂ξ
= �t

∂fi−1

∂ξ
, (24)

respectively.

3.3 Application to the implicit Euler method

Similar to the explicit Euler method, the implicit Euler method is an iterative solution
scheme to approximate the state variables of the ODE in (5) by

xi+1 = xi + �t f(xi+1,ui+1, ξ)
︸ ︷︷ ︸

f̃(xi ,xi+1,ui+1,ξ)

. (25)

Using the above time-integration scheme in the discrete adjoint sensitivity analysis,
the implicit right-hand side vector f̃ has to be defined in the general form f̃i,i+1 :=
f̃(xi ,xi+1,ui+1, ξ). The computation of the discrete adjoint variables requires the deriva-
tives of f̃ with respect to the state variables x given by

∂ f̃i,i+1

∂xi

= I and
∂ f̃i−1,i

∂xi

= �t
∂fi
∂xi

. (26)
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In addition, the discrete adjoint gradient computation requires the derivatives of f̃ with re-
spect to u and ξ given by

∂ f̃i−1,i

∂ui

= �t
∂fi
∂ui

,
∂ f̃i−1,i

∂ui−1
= 0 and

∂ f̃i−1,i

∂ξ
= �t

∂fi
∂ξ

, (27)

respectively.

3.4 Procedure for the use of the discrete adjoint gradients

This section summarizes the sensitivity analysis using the proposed discrete adjoint gradient
approach within an optimization problem. The focus is to compute first-order gradients of
the constraint formulation in (7) with respect to optimization variables, i.e.,

dc
dz

∣
∣∣
z=z(k)

,

evaluated at the (k)th iteration in a gradient-based optimization. The use of the proposed
discrete adjoint gradient approach can be summarized by the following steps:

1. Set up an optimization problem in the form of (1)–(4) and select an NLP software pack-
age to solve the optimization problem, e.g., IPOPT [45].

2. Compute the derivatives by symbolic differentiation for the discrete adjoint approach:
a) Compute the derivatives of (in)equality constraints g and h with respect to x and ξ ,

respectively, by symbolic differentiation.
b) Select a numerical time-integration solver and compute the derivatives of f with re-

spect to x, u, and ξ by symbolic differentiation. Additionally, define the derivatives
of the solver-specific right-hand side vector f̃, e.g., as shown in Sect. 3.2 and Sect. 3.3
for the explicit and the implicit Euler method, respectively.

3. Compute the first-order gradients of the constraints using the discrete adjoint approach:
a) Compute the state variables x influenced by the set of optimization variables z(k) with

the chosen time-integration scheme.
b) Compute the discrete adjoint variables by solving the matrix differential equa-

tions (17)–(19) backward in time.
c) Compute the sensitivities of the constraint formulation in (7) using the discrete adjoint

gradient approach (21).
4. Provide the cost function, constraints, and the respective first-order gradients via an in-

terface to the chosen NLP software package. The Hessian of the cost function and the
constraints are usually computed internally by the software package.

5. Repeat Steps 3 and 4 until the KKT conditions are satisfied and an optimal solution z∗ is
found.

As aforementioned in the second step, derivatives with respect to x, u, and ξ are computed
by symbolic differentiation. Considering a complicated mechanical system with many state
variables, the governing equations become extensive and difficult to solve. For such systems,
the effort to derive system derivatives by symbolic differentiation is enormous or not feasible
in a reasonable time. The following section discusses the symbolic differentiation when a
mechanical system is formulated with flexible bodies.
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4 Flexible multibody formulation

The governing equations of multibody systems with rigid and flexible bodies are described
by the second-order differential equations

M(q, ξ)q̈ = Q(q, q̇,u, ξ), (28)

where M is the mass matrix, q denotes the generalized coordinates and Q is the generalized
force vector. In this paper, the generalized force vector

Q = Qu + Qd + Qg − Qk (29)

consists of the term associated with the control Qu, the viscous damping for joint friction
Qd, the gravity Qg, and the elasticity Qk. The second-order differential equations are trans-
formed into

ẋ = f =
(

I 0
0 M−1

)

︸ ︷︷ ︸
M−1

(
v
Q

)
, (30)

wherein the state variables are expressed by xT = (
qT, vT

) ∈ R
n with the generalized ve-

locities q̇ = v. In this paper, effects due to the elasticity of flexible bodies are considered
by a nonlinear finite-element-based formulation using the ANCF as proposed by Omar and
Shabana [34]. This standard ANCF element has been tested extensively in the literature and
employed in structural-optimization problems, e.g., [15, 41]. The ANCF was developed to
solve large-deformation problems in multibody dynamics [40]. Since the ANCF does not
use rotational degrees of freedom, the formulation does not necessarily suffer from singu-
larities arising from angular parameterizations. An essential advantage of the ANCF is that
the mass matrix is constant with respect to the generalized coordinates, i.e., M = M(ξ). For
a detailed description of the flexible multibody formulation, the reader is referred to [34].

Employing the proposed discrete adjoint approach to study constraint sensitivities re-
quires first-order derivatives of the governing equations with respect to the states, the con-
trol, and the set of parameters; see the procedure provided in Sect. 3.4. In this paper, the
system derivatives are computed by using symbolic differentiation for efficient computation
in the sensitivity analysis.

Modeling a mechanical system with a large number of structural elements results in an
extensive system of governing equations. Therefore, the effort to derive the system deriva-
tives by symbolic differentiation is enormous or not feasible in a reasonable time. Instead
of directly computing the derivatives of the governing equations in (30), one can derive the
global system derivatives based on the symbolic differentiation of a single structural ANCF
element. The element-based derivatives are then assembled to compute the global system
derivatives. Therefore, the computation of symbolic differentiations is very efficient and
independent of the number of structural elements. To this end, the global mass matrix is
defined by the local mass matrix of an element with superscript (e)

M =
∑

(e)

T(e)T

1 M(e)T(e)

1 , (31)
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where the element specific Boolean transformation matrix T(e)

1 maps a global variable to its
local representation. Similarly, the global generalized force vector reads

Q =
∑

(e)

T(e)T

1 Q(e), (32)

and the local state variables are given by

x(e) =
(

q(e)

v(e)

)
=

(
T(e)

1 0
0 T(e)

1

)(
q
v

)
= T̃(e)

1 x. (33)

In addition, the local control and the local set of parameters are defined by

u(e) = T(e)

2 u and ξ (e) = T(e)

3 ξ , (34)

respectively, with Boolean transformation matrices. The element-based formulations
in (31)–(34) are used in the proceeding section to derive global first-order derivatives based
on local representations.

4.1 Element-based derivatives for an efficient implementation of the proposed
approach

The computation of the discrete adjoint equations in (17)–(19) and the discrete adjoint gra-
dient in (21) requires the system derivatives with respect to the state variables ∂f/∂x, the
control ∂f/∂u, and the set of parameters ∂f/∂ξ . As aforementioned, an essential advantage
of the ANCF is that the mass matrix does not depend on the generalized coordinates, i.e.,
the derivatives with respect to the state variables vanish. The constant mass matrix leads to
a simplification of the derivatives of the first-order state equations (30) with respect to the
state variables by

∂f
∂x

= M−1

(
0 I
∂Q
∂q

∂Q
∂v

)
. (35)

To derive element-based derivatives, the derivatives of the global generalized force vector
can be formulated with (32) as follows:

∂Q
∂x

=
∑

(e)

T(e)T

1

∂Q(e)

∂x(e)

∂x(e)

∂x︸ ︷︷ ︸
T̃(e)

1

. (36)

The symbolic differentiation of the global generalized force vector Q for all elements sim-
plifies to the symbolic differentiation of the local generalized force vector Q(e) for one el-
ement. The derivatives of the global generalized force vector are assembled by using the
element-specific Boolean transformation matrices T(e)

1 and T̃(e)

1 . Thus, the computational ef-
fort for symbolic differentiations is tremendously reduced and independent of the number
of elements.

In addition, the derivatives of the first-order state equations (30) with respect to the con-
trol are given by

∂f
∂u

= M−1

(
0
∂Q
∂u

)
, (37)
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where the derivatives of the generalized force vector with respect to the control are formu-
lated with

∂Q
∂u

=
∑

(e)

T(e)T

1

∂Q(e)

∂u(e)

∂u(e)

∂u︸ ︷︷ ︸
T(e)

2

. (38)

Finally, the derivatives of the first-order state equations (30) with respect to the set of pa-
rameters read

∂f
∂ξ

=
(

0
∂
(

M−1Q
)

∂ξ

)

=
(

0
∂a
∂ξ

)
, (39)

with the generalized accelerations a = M−1Q. The derivatives of the generalized accelera-
tions with respect to the set of parameters are difficult to compute because the mass matrix
and the generalized force vector are functions of the parameters. The element-based formu-
lation of the generalized accelerations is given by

Ma = Q ⇒
∑

(e)

T(e)T

1 M(e) T(e)

1 a
︸︷︷︸

a(e)

=
∑

(e)

T(e)T

1 Q(e). (40)

The matrix–vector product M(e)a(e) is reformulated to avoid the direct derivative of the mass
matrix with respect to the parameters as a sum of vector-scalar products, leading to

∑

(e)

T(e)T

1

∑

c

M(e)
c a(e)

c =
∑

(e)

T(e)T

1 Q(e), (41)

where the subscript c denotes the column of the mass matrix and the row of generalized
accelerations, respectively. The derivatives of the element-based formulation with respect to
ξ read

∑

(e)

T(e)T

1

∑

c

(
∂M(e)

c

∂ξ (e)

∂ξ (e)

∂ξ
︸ ︷︷ ︸

T(e)
3

a(e)
c + M(e)

c

∂a(e)
c

∂ξ

)

=
∑

(e)

T(e)T

1

∂Q(e)

∂ξ (e)
T(e)

3 . (42)

By reformulation of the dyadic product of an element

∑

c

M(e)
c

∂a(e)
c

∂ξ
= M(e) ∂a(e)

∂ξ
= M(e)T(e)

1

∂a
∂ξ

, (43)

the derivatives of the global acceleration are computed by substituting (43) into (42) and
using (31)

∂a
∂ξ

= M−1
∑

(e)

T(e)T

1

(
∂Q(e)

∂ξ (e)
T(e)

3 −
∑

c

∂M(e)
c

∂ξ (e)
T(e)

3 a(e)
c

)

. (44)

Note that the derivatives are time-dependent functions, but the inverse of the global mass
matrix only needs to be computed once for the numerical evaluation since the mass matrix
is constant for the ANCF.
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The element-based derivatives in (36), (38), and (44) are computed by symbolic differen-
tiation and used to assemble the global derivatives required for the proposed discrete adjoint
gradient computation. In this paper, the formulation of the flexible multibody and all re-
quired symbolic differentiations are written in the computer algebra system toolbox SymPy
[30], which is written in pure Python. In addition, the analytical expressions are compiled
ahead of (simulation) time with Numba [20] to efficiently evaluate the derived terms. Both
packages are available under an open-source license.

5 Numerical examples

This section discusses three examples to demonstrate the use and advantages of the pro-
posed discrete adjoint gradient approach. In the first example, the sensitivity analysis of an
academic one-mass oscillator is analyzed. This example provides a deep insight into the
proposed approach and discusses the role of the discrete adjoint variables. The second ex-
ample studies the energy optimal control problem of a nonlinear spring pendulum to discuss
the efficiency of the proposed approach. The third example analyzes a combined optimal
control and design problem of a Selective Compliance Assembly Robot Arm (SCARA) in
a rest-to-rest motion. The bodies of the robot are modeled with flexible components, where
the ANCF discussed in Sect. 4 is used to examine the effects due to elasticity. Explicit and
implicit integration schemes are applied to demonstrate the versatility of the proposed ap-
proach to different time integrators, with a particular focus on the computation of adjoint
variables. In addition, all examples are used to verify the proposed discrete adjoint gradients
using numerical computed gradients via the finite-difference method.

5.1 Sensitivity analysis of a one-mass oscillator

As a first example, the proposed discrete adjoint gradient approach in Sect. 3 is applied to
the sensitivity analysis of an academic one-mass oscillator to demonstrate the proposed pro-
cedure in Sect. 3.4 and to discuss the role of the discrete adjoint variables. The mechanical
system consists of a mass m, a linear damping parameter d , and a linear spring parameter c.
The mass is driven by a time-dependent control u. The state equations are given by a linear
first-order differential system

ẋ = f(x, u) =
(

v
1
m
(u − dv − cx)

)
, (45)

wherein the state variables are expressed by x = (x, v)T with the position x and velocity
v of the mass. The control variable is formulated as proposed in [22] with u = Cû, where
C is a time-dependent cubic spline interpolation function and û = (

û0, . . . , ûM

)T
is a set of

control grid nodes. The grid nodes are defined at the uniformly distributed macro time mesh
t̂j , j ∈ {0, . . . , M} within the time interval [t0, tf].

This example examines sensitivities of the inequality constraint h = f − fmax ≤ 0 re-
garding the reaction force f = c x + d v (r = 1 time-dependent function) with respect to
the grid nodes û. Hence, the variables of interest in the sensitivity analysis are defined by
z = û. The reaction force is evaluated at the macro time mesh t̂j , resulting in the concate-
nated vector ĥ = (ĥ0, . . . , ĥM)T. The reaction force depends on the state variables, which
are time integrated under the influence of the control. Therefore, a change in the control grid
nodes leads to a change in the reaction force. A graphical illustration of the dependencies is
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Fig. 2 Influence of changing a control grid node on the reaction force: (a) continuous control function with
grid nodes, (b) reaction force due to the control in (a)

shown in Fig. (2), where the change of the control grid node δû1 leads to a change of δf̂1

and δf̂2.
The sensitivity analysis uses the following set of parameters: the mass m = 1 kg, the

damping coefficient d = 0.5 Ns/m, the stiffness c = 1 N/m, the constant time-integration
step size �t = 0.001 s, and the final time tf = 2 s. In addition, the control u is discretized
by three grid nodes (M = 2 uniform distributed intervals in the time interval [t0, tf]) set to
û = (10, 6, 2)T. The initial conditions of the state variables are defined by x0 = 0, i.e., the
initial reaction force is zero.

5.1.1 Discrete adjoint gradient computation

The sensitivities of dĥ/dz are obtained by using the proposed discrete adjoint gradient
in (21), which includes the discrete adjoint variables R defined in (17)–(19). Referring to
the procedure in Sect. 3.4, the first step of the adjoint gradient computation is the symbolic
differentiation of constraints. In this example, the reaction force is interpreted as an inequal-
ity constraint, and the derivative with respect to the state variables is given by ∂h

∂x = (c, d).
Derivatives with respect to ξ are not defined since the state equations are not parameter-
ized. The second step of the adjoint gradient computation is the symbolic differentiation of
the state equations. The derivatives with respect to the state variables and the control are
represented by

∂f
∂x

=
(

0 1
− c

m
− d

m

)
:= A and

∂f
∂u

=
(

0
1
m

)
, (46)

respectively. Note that the simple structure of the linear state equations leads to constant sys-
tem derivatives and, therefore, no forward integration is required to evaluate the derivatives.

The computation of the discrete adjoint variables is performed in a backward manner in
which the final value defined in (17) is given in this example by

RN = −
⎛

⎝
0 0
0 0
c d

⎞

⎠ , (47)

where the derivative of the reaction force with respect to state variables is recognized. The
explicit Euler method is used to solve the forward dynamics, and, therefore, the specific sen-
sitivity of the right-hand side f̃ is required, as shown in Sect. 3.2. Substituting (46) and (23)
into (18) leads to the algebraic equations of the discrete adjoint variables. Starting from RN

and proceeding with

Ri = Ri+1 (I + �tA) , (48)
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the discrete adjoint variables are computed in a backward manner. Note that (48) is defined
within the macro time mesh ]t̂j , t̂j+1[, j ∈ {0, . . . , M − 1}. The discrete adjoint variables
at the macro time mesh t̂j , j ∈ {1, . . . , M} are determined by the intermediate condition
in (19) given by

Rej = Rej+1 (I + �tA) − B2,j (c, d) . (49)

After computing the adjoint variables backward in time, the sensitivity of the inequality
constraints ĥ with respect to the grid nodes û can be evaluated by the proposed formulation
in (21).

5.1.2 Interpretation

Figure 3 represents the evolution of each component of the adjoint variables R. The adjoint
variables R ∈ R

(p+q)×n consists of six components with p = 0, q = r(M + 1) = 3, and n =
2. It can be observed that the adjoint variables are not necessarily smooth functions due to the
intermediate condition in (49). The intermediate condition computes the adjoint variables in
the same manner as in (48) and initializes the adjoint variables for the time interval ]t̂0, t̂j ]
in addition. The gradient computation of dĥj /dû evaluated at the time t̂j is not influenced
by the system dynamics in the time interval ]t̂j , t̂M ] and, therefore, Rj,• = 0 in this interval
for all • columns of the adjoint variables. To be more precise, the system dynamics of the
gradient computation for ĥj is only taken into account for the time interval ]t̂0, t̂j ], i.e., the

Fig. 3 Time evolution of the discrete adjoint variables
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adjoint variables for the time interval ]t̂j , t̂M ] are zero and do not influence the gradient.
This effect is seen in the second row of the adjoint variables visualized in Fig. 3. Here, the
gradient computation of dĥ1/dû evaluated at the time t̂1 = 1 s is not influenced by the system
dynamics in the time interval ]t̂1, t̂2] and, therefore, the adjoint variables R1,0 and R1,1 are
zero in this time interval. However, the discrete adjoint sensitivities are compared with the
sensitivities computed by the finite-difference method to verify the proposed approach and
its implementation. The sensitivity analysis results obtained by both approaches are in good
agreement.

5.2 Energy optimal control of a nonlinear spring pendulum

The second example is focused on the energy optimal control of a nonlinear spring pendu-
lum, as depicted in Fig. 4, inspired by the example studied in [1]. The aim is to compute
a control to manipulate the mechanical system from an initial to a final state. The example
studied in [1] is adapted with an additional inequality constraint during the maneuver to test
the proposed discrete adjoint gradient approach. The mechanical system consists of three
degrees of freedom q = (rx, ry, rz)

T describing the position vector of a mass m formulated
in the inertial Cartesian coordinate system. The mass is connected to the ground by a spring
c, and the strain is formulated by using a Green–Lagrangian-type strain measure

ε = 1

2l2
0

(
qTq − l2

0

)
, (50)

wherein l0 denotes the strain-free spring length. The mass matrix M of the mechanical sys-
tem is defined by using the kinetic energy

T = 1

2
q̇T mI︸︷︷︸

M

q̇, (51)

where I is the identity matrix. Forces introduced due to the gravitational acceleration g and
the deformation of the spring are defined by

Qnl =
(

∂V

∂q

)T

. (52)

Fig. 4 Nonlinear spring
pendulum in a general
configuration
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The potential energy of the mechanical system reads

V = mgrz + 1

2
cl2

0ε
2, (53)

where the first term corresponds to gravity and the second to the deformation of the spring.
Note that the force term Qnl is nonlinear due to the nonlinear Green–Lagrange strain mea-
sure in (50). In addition, the mass is driven by a time-dependent control u = (ux, uy, uz)

T

and the corresponding force in the inertial Cartesian coordinate system is defined by the
principle of virtual work as Qu = u. The state equations are given by a nonlinear first-order
differential system

ẋ = f(x,u) =
(

v
M−1 (Qu − Qnl)

)
, (54)

wherein the state variables are expressed by introducing the velocity q̇ = v of the mass
by x = (q, v)T. In this example, the control is formulated as proposed by Lichtenecker et
al. [22] with u = Cū, where C ∈ R

3×3k is a time-dependent cubic spline interpolation ma-

trix and ūT =
(

ûT
x, ûT

y, ûT
z

)
∈ R

3k is a set of concatenated control grid nodes regarding the

control functions. Each control is discretized with k grid nodes defined at a uniformly dis-
tributed time mesh within the time interval [t0, tf].

According to the example studied in [1], the following set of parameters is used: the
mass m = 1 kg, the stiffness c = 0.6 N/m, the strain-free spring length l0 = 5 m, and the
gravitational acceleration g = 9.81 m/s2. The state variables x are time-integrated using the
explicit Euler scheme on the micro time mesh in the interval [t0, tf], where the final time is
tf = 5 s with a constant time-integration step size �t = 0.001 s. The initial state variables
are defined by x0 = (−2, −5, −5, −3, 0, 0)T.

5.2.1 Optimization problem

The energy optimal control problem of mechanical systems has been studied by various
authors with different formulations of the cost function. In this example, the energy optimal
control problem is formulated by minimizing the signal energy required to manipulate the
mechanical system. The signal energy is defined as the integrated quadratic control in the
time interval [t0, tf]. To address the energy optimal control problem, the concatenated set of
grid nodes is used to define optimization variables, i.e., z = ū ∈R

3k .
The energy optimal control problem yields the NLP problem formulated as a direct single

shooting by

min
z

J = 1

2

∫ tf

t0

uTu dt = 1

2
zT

∫ tf

t0

CTC dt

︸ ︷︷ ︸
A

z (55)

s.t.

zmin ≤ z ≤ zmax (56)

qN = qf (57)

q̇N = 0 (58)

l̂/lmax ≤ 1 (59)

xi+1 = f̃(xi ,ui ), (60)
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where the control in (55) is formulated with u = Cz. The position qN and velocity q̇N are
prescribed at the fixed final time tf. The final position of the mass is defined according
to [1] by qf = (2, −10, −4)T. In addition, the optimization problem concerns normalized
inequality constraints regarding the spring length l = √

qTq. The inequality constraints are
considered at the uniformly distributed macro time mesh t̂j , j ∈ {0, . . . , M} within the time
interval [t0, tf]. Evaluating the spring length (M + 1) times leads to the concatenated vector
l̂ ∈ R

M+1 with M = 500. The defined inequality constraints forces the mass to a position
within a sphere with radius r = lmax centered on the inertial Cartesian coordinate system
with lmax = 12 m. Lower and upper bounds of the optimization variables are taken into
account with −5.5 N ≤ û ≤ 5.5 N. As an initial guess, the optimization variables are set to
z = 0.

For efficient numerical computation, the NLP is solved with IPOPT 3.14.12 [45] (HSL
MA97 to solve linear subproblems). The cost function, constraints, and the respective first-
order gradients are provided to IPOPT via an interface. The first-order gradients of the cost
function (55) can be easily computed by symbolic differentiation

dJ

dz
= zTA, (61)

where the symmetric property of A due to the block diagonal matrix C is utilized. The first-
order gradients of the constraints (57)–(59) are computed following the proposed procedure
in Sect. 3.4, implemented in Python.

5.2.2 Optimization results

Each control is discretized with k = 10 grid nodes leading to z = 30 optimization variables.
Figure 5 shows the time evolution of the state variables obtained for the energy optimal con-
trol. The results are in accordance with the defined equality constraints in (57) and (58) at the
final time. Figure 6 visualizes the obtained energy optimal control history and the inequal-
ity constraint regarding the spring length. It can be observed that the control variables are
within the lower and upper bounds, while the inequality constraint in (59) is active. Similar
to the previous example, the discrete adjoint gradients of the constraints are compared with
the gradients computed by the finite-difference method to verify the proposed approach and
its implementation. The sensitivity analysis results obtained by both approaches are in good
agreement.

To demonstrate the efficiency of the proposed discrete adjoint gradient approach, the
NLP problem is solved by providing gradients of the constraints to IPOPT once using the

Fig. 5 Time evolution of the state variables obtained for the energy optimal control problem
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Fig. 6 Optimal control history for the energy optimal control problem and the resulting spring length

Table 1 Runtime comparison of
two different approaches to
provide first-order gradients of
constraints to IPOPT for
converged solutions

Grid nodes per control Type of gradient computation Runtime

k = 10 forward finite-difference 22.3 s

discrete adjoint method 13.2 s

k = 20 forward finite-difference 37.8 s

discrete adjoint method 14.7 s

finite-difference method and once using the discrete adjoint gradient approach. The runtimes
required for converged solutions are given in Table 1. The comparison is performed with
k = 10 and k = 20 grid nodes for each control. The proposed discrete adjoint approach out-
performs the finite-difference method in terms of runtimes. Employing the discrete adjoint
gradient approach, the change in the runtime required for k = 10 and k = 20 is small. In con-
trast, the runtime required for the finite-difference method depends strongly on the number
of grid nodes. Note that the number of grid nodes k influences the number of optimization
variables z = 3k and, therefore, the runtime for the finite-difference method. The number of
iterations to fulfill the KKT conditions is equal for both approaches, which demonstrates the
correct implementation of the discrete adjoint gradient approach.

5.3 Optimal control and design of a flexible SCARA

The third example focuses on the combined optimal control and structural optimization
problem for flexible multibody systems. The idea of coupling both optimization tasks is
promising to obtain the best possible mechanical structure concerning an optimal control
problem. Engineers usually do not address the combined structural optimization and opti-
mal control problem; the two challenges are typically considered independently. In addition,
multibody systems with flexible components are usually underactuated, and the optimal con-
trol problem becomes more complicated than fully actuated systems [39]. Lichtenecker et
al. studied in [22] the time-optimal control problem of a SCARA with flexible components.
A similar system configuration is used in this example to employ the proposed discrete ad-
joint approach for the sensitivity analysis of a combined optimal control and structural op-
timization problem. Thus, a combined set of discrete adjoint gradients is used to efficiently
and accurately compute first-order gradients to speed up the runtime in a direct optimization
method.
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Fig. 7 SCARA in a general undeformed configuration

Inspired by the example studied in [35], the two-arm robot depicted in Fig. 7 is analyzed
in the combined optimization problem. The SCARA is driven by two controls, u1 and u2,
in which the control variables are formulated by cubic splines similar to the previous exam-
ple. In application to industrial robots, smooth trajectory planning is essential and has been
presented using cubic splines, e.g., in [8, 37].

Each arm is divided into two ANCF elements, and an additional mass is attached to the
tool-center point (TCP). Moreover, a stress marker is attached to each structural element to
determine the equivalent stress σV while the robot performs a task. The material properties
of the structural elements are set to E = 3e9 N/m2 and ρ = 1300 kg/m3 for the Young’s
modulus and the density, respectively. The length of both arms is l1 = l2 = 1 m and the
viscous damping coefficient in the revolute joints is set to d1 = d2 = 0.2 Nm s/rad. The width
of the structural elements is set to w(e) = 0.002 m. In addition, the system is affected by the
gravity field, and an additional mass mE = 1 kg is attached to the TCP. The state variables x
are integrated using the implicit Euler scheme on the micro time mesh in the interval [t0, tf],
where the final time is tf = 2 s with a constant time-integration step size �t = 0.001 s.

5.3.1 Optimization problem

Structural-optimization problems can be treated with so-called weakly and fully coupled
methods [42]. Weakly coupled methods are based on equivalent static loads, while fully
coupled methods incorporate the system dynamics into the optimization process. This ex-
ample focuses on extending fully coupled methods to embed the optimal control of flexible
multibody systems. Considering an optimal control problem and a structural optimization
problem leads to a combined set of optimization variables, including the control param-
eterization and design parameter of the multibody system. In this example, the structural
elements are parameterized by the height h(e), while the width w(e) and the length l(e) are set
to constant values. The set of design parameters regarding the multibody system depicted
in Fig. 7 is defined by ξT = (

h(1), h(2), h(3), h(4)
)
. The optimal control problem of flexible

multibody systems requires smooth control functions to reduce vibrations. In this example,
a continuity requirement up to C2 of the control is enforced, similar to the previous example
in Sect. 5.2, by a cubic spline interpolation. Both continuous control functions u1 and u2

are discretized with k = 21 grid nodes at a uniformly distributed time mesh within the time
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interval [t0, tf]. The discretization of the control leads to the set of grid nodes ūT = (
ûT

1, ûT
2

)
.

Concatenating the parameterization of the multibody system and the control leads to the
combined set of optimization variables zT = (

ξT, ūT
)
.

Minimizing the mass of mechanical systems is a common approach in structural op-
timization to enable innovative lightweight designs. In this paper, the mass minimization
yields the NLP problem formulated as direct single shooting by

min
z

m = ρ
∑

(e)

w(e) h(e) l(e) (62)

s.t.

zmin ≤ z ≤ zmax (63)

rTCP,N = rf (64)

ṙTCP,N = 0 (65)

σ̂ V/σVmax ≤ 1 (66)

xi+1 = f̃(xi ,xi+1,ui ,ui+1, ξ), (67)

with special attention to position and velocity constraints of the TCP, rTCP,N , and ṙTCP,N ,
respectively, at the fixed final time tf. The final position of the TCP is defined by rf =
(1, 1)T. In addition, the optimization problem concerns normalized inequality constraints
regarding the equivalent stress σV of the four markers attached to the structure. All four
markers are evaluated at the macro time mesh t̂j , j ∈ {0, . . . , M} with M = 100 leading
to the concatenated equivalent stress vector σ̂ V. The upper limit of the equivalent stress is
σVmax = 1.1e7 N/m2. Lower and upper bounds of the optimization variables are taken into
account with 0.002 m ≤ h(e) ≤ 0.02 m and −5 Nm ≤ û ≤ 5 Nm, respectively. Regarding the
initial conditions of the state variables, the robot is defined in the undeformed configuration,
where both arms are hanging vertically downward with generalized velocities equal to zero.

In terms of initializing the NLP problem, a two-stage procedure is utilized with de-
coupling of the optimization variables. The first stage solves an optimal control problem
with a constant height of the structural elements, i.e., the optimization variables z = ū con-
sists of the grid nodes. The aim is to identify a control with a defined set of parameters ξ

that manipulates the robot from the initial configuration so that the TCP satisfies the con-
straints (64) and (65) at the final time. As an initial guess for this first-stage optimization,
the control grid nodes are set to û = 0 Nm and the constant height of the elements is defined
by h(e) = 0.02 m. The preoptimized set of control grid nodes ū∗ and heights of the elements
h(e) are employed as an initial guess to the combined optimization problem.

For efficient numerical computation, the NLP is solved with IPOPT 3.14.12 [45] (HSL
MA97 to solve linear subproblems). The cost function, constraints, and the respective first-
order gradients are provided to IPOPT via an interface. The first-order gradients of the cost
function (62) can be easily computed by symbolic differentiation, while the first-order gradi-
ents of the constraints (64)–(66) are computed following the proposed procedure in Sect. 3.4,
implemented in Python.

5.3.2 Optimization results

Figure 8 shows the obtained control history for both controls. It can be observed that the
control is within the lower and upper bounds, while the stress constraint in (66) is active.
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Fig. 8 Optimal control history of a flexible two-arm robot for a rest-to-rest maneuver

Fig. 9 Time evolution of the position and velocity of the TCP obtained for the optimal control and design
problem

Fig. 10 Final sizing of the flexible two-arm robot

Applying the optimal control to the SCARA leads to the position and velocity of the TCP
as shown in Fig. 9. Note there are no acceleration constraints defined at the final time in this
example. It can be observed that the equality constraints in (64) and (65) are fulfilled at the
final time. Figure 10 visualizes the final sizing of the structural elements. The final sizing
provides a structure in which the height of the structural elements becomes smaller towards
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Fig. 11 Snapshots of the robot’s
motion history

the TCP; thus, the bending stiffness also becomes smaller towards the TCP. The initial mass
of the robot minit = 0.1040 kg is reduced by the final design to m∗ = 0.0450 kg, which
corresponds to a reduction of 56.7% regarding the initial mass. With the final design and
the corresponding control, the SCARA undergoes a large deformation during manipulation.
However, the results are in accordance with the constraints posed in (63)–(67) and provide a
local minimum of the robot’s mass. Snapshots of the robot’s motion are illustrated in Fig. 11.

It has to be mentioned that normalizing inequality constraints is essential since the nu-
merical value of the equality constraints in (64) and (65) are relatively small compared to
those of the inequality constraint in (66). Without normalizing, the optimization would not
converge to a local minimum. Similar to the previous examples, the discrete adjoint gradi-
ents are verified by applying the finite-difference method. The sensitivity analysis results
obtained by both approaches are in good agreement. The proposed discrete adjoint gradient
approach is an efficient technique to incorporate a large number of optimization variables,
and the computational effort is less than using the finite-difference method. A comparison
of the runtimes required to compute first-order gradients of the constraints is performed to
demonstrate the efficiency of the proposed discrete adjoint gradient approach. The gradients
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are computed with the optimal set of optimization variables z∗ ten times in a row. The av-
erage runtime required for the finite-difference method is tFDM = 592.4 s, while the average
runtime required for the discrete adjoint method is tDAM = 52.2 s. The proposed approach
reduces the computational time by 91.2% regarding the finite-difference method. The high
computational time in the finite-difference method is because the number of state equations
to be solved depends on the number of optimization variables. It has to be emphasized that
the computation of gradients is required at each iteration of the NLP solver package, which
encourages the use of the proposed discrete adjoint gradient method to improve computa-
tional efficiency.

6 Conclusion

This paper discusses adjoint-based sensitivity analysis for dynamic systems in gradient-
based optimization problems. Deriving adjoint gradients is mathematically more laborious
than simply computing finite differences for numerical gradients. However, the significant
time advantage when using adjoint gradients for the sensitivity analysis justifies the consid-
erable preprocessing effort. This paper presents a novel discrete adjoint gradient approach
to incorporate (in)equality constraints. Moreover, the paper shows the application of differ-
ent time-integration schemes, highlighting their efficiency and applicability to large-scale
problems. Three numerical examples are investigated to show the application of the pro-
posed discrete adjoint gradient approach. The sensitivity analysis of an academic example
discusses the role of the discrete adjoint variables. The energy optimal control problem of
a nonlinear spring pendulum studies the efficiency of the proposed approach. In addition,
the proposed discrete adjoint gradients are utilized in a coupled optimal control and optimal
design problem in flexible multibody dynamics.
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