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Abstract
Flexible manipulators offer several advantages over rigid manipulators, including light-in-
weight, high payload-to-weight ratio, lower power consumption, and the ability to operate
at high speeds. However, these manipulators are susceptible to structural vibrations, which
can be effectively suppressed by implementing an appropriate controller. The paper presents
a performance evaluation of such a controller for tracking a complex trajectory that com-
bines curved and linear paths, in contrast to existing literature-focused on pure linear or
circular trajectories without considering any payload. Before controlling, the dynamics of
a two-flexible manipulator system are modeled using a hybrid Euler-Lagrangian formula-
tion and DeNOC matrices, with validation. After that, to achieve precise trajectory tracking
while suppressing vibrations, a hybrid controller is designed, integrating command shaping
techniques with a proportional-derivative (PD) feedback controller. The results demonstrate
the effectiveness of command shaping and its comparison to unshaped input commands.
The controller’s performance is evaluated using a semicircular trajectory within a 3-second
timeframe, considering both payload and non-payload cases. The proposed control scheme
effectively suppresses vibrations in both payload scenarios. Detailed analysis of tip deflec-
tions for both links with shaped and unshaped input commands is provided, along with the
quantification of vibration suppression along the trajectory. The impact of different con-
figurations and payloads on the natural frequency during trajectory tracking is presented.
The study also shows the tracking of B-Splines trajectories, highlighting the requirement of
higher gains for such trajectories and evaluating the effect of link flexibility by tracking error
analysis. Vibration suppression is achieved by implementing the controller while tracking
such trajectories.

Keywords Flexible manipulators · Assumed mode method · PD control · Command
shaping · Trajectory tracking

1 Introduction

Due to the demand for lightweight manipulators, high-speed operation, and a high payload-
to-weight ratio, flexible manipulators are gaining popularity over bulky rigid manipulators
in various fields such as medicine, aerospace, construction, etc. The dynamics of these ma-
nipulators are more complex than rigid manipulators due to the presence of both elastic
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and rigid degrees of freedom. There are various methods adopted to simulate the dynamics
of these manipulators, which include the Finite Element Method (FEM), Assumed Mode
Method (AMM), and Finite Segment Method (FSM) etc. An extensive literature review has
been conducted, encompassing these techniques applied to flexible manipulators ranging
from single-link to multi-link manipulator systems [1, 2]. The most used techniques for the
dynamics of flexible manipulators are FEM and AMM. A comparison of these two tech-
niques has been done by [3, 4]. The former approach, which involves more state space equa-
tions, requires additional simulation time. However, it is applicable to manipulators with
non-uniform shapes as well [3]. On the other hand, the latter approach is more suitable for
manipulators that possess a uniform shape. In terms of accuracy, the assumed mode method
(AMM) generally yields more precise results for hub angle, while the finite element method
(FEM) tends to provide more accurate outcomes for hub velocity and hub acceleration.
These findings are in comparison to experimental results [4]. Other researchers [5–10] etc.
have used FEM for dynamics. This technique offers the advantage of easy implementation
on manipulators with complex shapes, in addition to uniform-shaped manipulators. It is par-
ticularly beneficial for systems that involve more than two manipulators, as it tends to yield
improved results in such cases [3]. Several researchers [11–16] have used AMM for the dy-
namics of flexible manipulators. Dynamics studies on flexible manipulators with payload are
done in [17, 18]. In this technique, the shape functions are typically determined, assuming
the links are cantilever beams in the local frame. However, for manipulators with complex
shapes, it becomes challenging to determine the exact shape functions, making it impracti-
cal to simulate such manipulators using the assumed mode method (AMM). Nonetheless,
due to its fewer state space equations, AMM is well-suited for simulating uniform-shaped
manipulators. In the current research, as the manipulators are uniform-shaped, AMM is em-
ployed for modeling their dynamics. The equations of motion are derived using the hybrid
Euler-Lagrangian equation and DeNOC matrices [19], which facilitate the transformation
of uncoupled system equations into coupled system equations, as demonstrated by previous
work [16]. The dynamics model is validated with literature before going to the control part.

Once an accurate dynamic model is established, the subsequent task involves designing
a suitable controller to attain the desired performance. This is especially crucial for flexible
manipulators, as they are more susceptible to vibration-related challenges compared to rigid
manipulators. Achieving effective control in such scenarios is not a straightforward process.
The controller utilized in this study combines open-loop input shaping techniques [20] with
feedback control to effectively suppress vibrations during trajectory tracking. However, it is
important to note that open-loop input shaping techniques can be sensitive to external dis-
turbances and errors in system properties [5]. These factors need to be carefully considered
and accounted for during the controller design process to ensure robust and reliable perfor-
mance. The robustness analysis of these techniques has been studied by many researchers
as reviewed by [21]. Indeed, the robustness of the input shaping techniques can be enhanced
by incorporating higher modes or higher derivative shapers. By considering higher-order
derivatives or incorporating additional modes in the shaping process, the controller becomes
more capable of mitigating disturbances, reducing errors, and achieving improved robust-
ness in vibration suppression during trajectory tracking. Under the feedback control, various
techniques like PD control [22], time-delay based control [14], adaptive control [23] and
sliding mode control [24, 25] etc. have been implemented in the literature. A PD control
alone is implemented on a two-link rigid-flexible manipulator for controlling the position
[26] with attached payload. A significant drawback of feedback controllers is their poten-
tial to excite modes that are not precisely modeled [5]. However, a promising approach is
to design a controller combining both feedback control and input shaping techniques. By



Command shaped trajectory tracking control for a two-link flexible. . . 583

combining these two approaches, the controller can leverage the benefits of each technique
simultaneously. The feedback controller helps in accurately tracking the desired trajectory
and compensating for model uncertainties and disturbances, while the input shaping tech-
niques aid in suppressing vibrations and reducing unwanted oscillations during the motion.
This combined approach allows for improved control performance, better trajectory track-
ing, and enhanced vibration suppression than using either technique in isolation. The same
has been done by some researchers [25, 27, 28]. The controller has been mostly imple-
mented on a square or circular trajectory without any payload. This paper goes beyond the
current standing of the controller, where it is implemented on a trajectory combining linear
and circular paths by attaching the different payloads. The paper also presents the tracking
of B-Splines trajectories. Our paper’s key novelty/contributions includes:

1. The main novelty of this paper is to track complex B-Splines trajectories using the hybrid
controller, which is not reported in the literature to the best of the authors’ knowledge.

2. In the literature, most researchers focused on simpler trajectories like circular or square
without considering any payloads. However, in the current manuscript, a demonstra-
tion of the controller in tracking complex trajectories containing both linear and circular
paths, considering different payloads, has been presented.

3. The current manuscript also analyzes the impact of payload and configuration for a two-
link flexible manipulator on the natural frequency.

In summary, researchers have utilized feedback controllers in combination with com-
mand shaping techniques, although there remains a need to evaluate the effectiveness of such
controllers for trajectory combination of linear and curved paths with payload. This paper
initially presents the dynamic modeling of two-link flexible manipulators in Sect. 2.1, vali-
dated using existing literature. In Sect. 2.2, a controller is designed by integrating command
shaping techniques with a proportional-derivative (PD) controller to achieve the desired per-
formance. The dynamic model’s validation is carried out prior to the implementation of the
control scheme. Finally, in Sect. 3, the performance of hybrid controllers is compared with
that of PD control when used independently for cases, with and without payload. The sec-
tion also shows the tracking of B-Splines trajectory and the effect of flexibility. Finally, the
paper ends with conclusions and future scope.

2 Simulation methodology

The first subsection presents the dynamic model of the two-link flexible manipulator. It
describes the equations and methodology used to capture the system’s dynamics, including
the payload.

The second subsection focuses on the controller design. This includes utilizing command
shaping techniques and a proportional-derivative (PD) controller. The objective is to achieve
the desired performance in terms of trajectory tracking and vibration suppression.

2.1 Dynamics model

The dynamics of a two-link flexible manipulator, illustrated in Fig. 1, is established by mod-
eling the links as Euler-Bernoulli beams. The deformation of the beams is calculated using
the assumed mode method. For each link, two modes are taken into account in the transverse
direction, effectively reducing the system with an infinite number of degrees of freedom to
a system with only six degrees of freedom. The equations of motion are derived using a
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Fig. 1 A two-link flexible
manipulator system

hybrid Euler-Lagrangian formulation along with DeNOC (Decoupled Natural Orthogonal
Complements) matrices [19].

First, the mass matrix and convective inertia vector are formulated for the uncoupled
links according to (1) and (2), respectively. The indices i = 1 and 2 represent the first and
second links, respectively [16]. In these equations, ρi is mass density of links, Si being the
shape function matrix, r̄ i is position vector of any point on ith link in its local frame, ai is

the link length, āi is variable distance along link length and �i = ωi ×
[
(ωi × r i ) + Siḋ i

]
,

where ωi is angular velocity vector and ḋ i is rate of elastic coordinates for link. The vector
di is written as [di1 di2]T .

Mi =
∫ ai

0
ρi

⎡
⎣

1 −r i × 1 Si

−r i × (r i × 1) r i × Si

sym ST
i Si

⎤
⎦dāi (1)

γi =
∫ ai

0
ρi

⎡
⎣

�i

r i × �i

ST
i �i

⎤
⎦dāi (2)

Then Newton-Euler’s form of equations can be written as shown in (3). In this equation,
ṫ , γ , and w∗ are the rate of twist vector, Coriolis component vector, and wrench vector,
respectively.

M ṫ + γ = w∗ (3)

Here, M = diag [M1 M2] and γ = [
γ 1 γ 2

]T
. Then DeNOC matrices [19] are written by

satisfying the kinematics constraints. The DeNOC matrices (N l and Nd ) are shown in (4).

N l =
[

1 O

A21 1

]
,Nd =

[
P 1 Ô

Ô P 2

]
(4)
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For i = 1 and 2,

P i =
[

pi 0
0 Ī

]
,pi =

[
0
zi

]
, zi =

⎡
⎣

0
0
1

⎤
⎦

Ai,i−1 =
[

Ri,i−1 F i−1

Õ O

]

Here,

Ri,i−1 =
[

I ai,i−1 × I

0 I

]
,F i =

[
Si

�i

]

.

Si =
⎡
⎣

0 0
Si1 Si2

0 0

⎤
⎦

ai,i−1 is the vector from Oi to Oi−1, �i is associated with the derivative of shape func-
tions. Si is the shape function matrix, here Si1 and Si2 are the shape functions corresponding
to first and second modes, respectively. The order of matrix M and Nl is same and equal to
16 × 16, while the order of matrix Nd is 16 × 6, and pi is vector of order 6 × 1. The unit
matrices 1, I , and Ī, while zero matrices/vectors 0, O , Õ, O, and Ô are taken as per the
order compatibility of full matrix or vector.

By pre-multiplying equation (3) with the transpose of the product of DeNOC matrices,
the coupled equations for the two links can be obtained [16]. This process helps eliminate the
constraints and yields the final equations corresponding to the generalized coordinates. After
performing the DeNOC matrices multiplication and eliminating the constraints, the system
equations are reduced to a set of six equations representing the generalized coordinates.
These equations capture the dynamics of the two-link flexible manipulator and provide a
concise representation of the system’s behavior.

NT
d NT

l (Mṫ + γ ) = NT
d NT

l w∗ = τ = τE + τ g + τ s (5)

The vector of generalized coordinate is written as q = [θ1 d11 d12 θ2 d21 d22]T and twist
vector and its rate in terms of DeNOC matrices are written as t = N lNd q̇ [16] and ṫ =
N lNd q̈ + Ṅ lNd q̇ +N lṄd q̇ , respectively. The final equations are written as shown in (6) af-
ter all multiplications, where I = NT

d NT
l MNlNd and h = NT

d NT
l

(
M
(
N lṄd + Ṅ lNd

)
q̇ +

γ
)
. The vectors τE,τ g , and τ s are the generalized force vectors corresponding to actuator

efforts, gravitational forces, and strain energy respectively. The strain energy for bending is
calculated by (7); here, Vs is the strain energy of links due to deformation.

I q̈ + h = τE + τ g + τ s (6)

τ s = ∂Vs

∂q i

, where Vs =
n∑

i=1

1

2

∫ ai

0
EIzz

(
∂2Sid i

∂ā2
i

)2

dāi (7)
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2.1.1 Paylaod related matrix and vector

In this subsection, the inertia matrix and vector of the Coriolis component related to the pay-
load attached at the end-effector are calculated. These calculations are necessary to account
for the additional mass and inertial effects caused by the payload. This allows designing
control strategies and analyzing the system’s response with better accuracy, considering the
influence of the payload on the manipulator’s motion. The kinetic energy of payload mass
is written as (8). In this, mp is the mass of the payload, and ṙp is the position vector of the
end-effector.

Tp = 1

2
mp ṙT

p ṙp (8)

Here,

rp = Q1

⎛
⎝
⎡
⎣

l1
u1(l1, t)

0

⎤
⎦+ Q2Qγ

⎡
⎣

l2
u2(l2, t)

0

⎤
⎦
⎞
⎠

Qr =
⎡
⎣

cos(θr ) −sin(θr) 0
sin(θr) cos(θr) 0

0 0 1

⎤
⎦

In this, r = 1, 2, γ (slope of first link tip).
Now using ṙp = J q̇, where J is Jacobian, the kinetic energy can be written as (9).

Tp = 1

2
mpq̇T J T J q̇ (9)

To continue the derivation using the Lagrangian equation on kinetic energy and assuming
there is no potential energy due to the absence of gravity on the payload, one can derive the
mass matrix and the vector of convective inertia as follows:

Ip = mpJ T J (10a)

hp = Ṁq̇ − ∂Tp

∂q
(10b)

The final inertia matrix and vector of convective inertia are written as I + Ip and h+hp ,
respectively, in (6).

2.2 Controller design

To achieve the desired end effector path shown in Fig. 2a while minimizing vibrations, a
controller is developed by combining command shaping techniques with a proportional-
derivative (PD) feedback controller, as shown in Fig. 2b. This section will provide a more
detailed explanation of the command shaping technique and the proportional-derivative (PD)
controller, discussing each of them separately.
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Fig. 2 (a) Desired trajectory to be tracked and (b) Block diagram of complete system

2.2.1 Command shaping techniques

The objective is to attain a vibration-free response when tracking trajectories with flexi-
ble manipulators. This is accomplished by applying of command shaping techniques [20],
wherein residual vibrations are suppressed by a series of carefully timed and appropriately
scaled impulses. It is well understood that the superposition of second-order systems can
show any nth order system. The transfer function of such a second-order damped system
can be given by (11).

G(s) = ω2
n(

s2 + 2ζωn + ω2
n

) (11)

Here, ωn and ζ are the natural frequency and damping ratio of the system. The impulse
response of the second-order system is given by (12). Here, A is the impulse magnitude at
time (t0).

y(t) = Aωn√
1 − ς2

e−ωnς(t−t0) sin
(
ωn

√
1 − ς2 (t − t0)

)
. (12)

Using the principle of superposition, the response of the sequence of N impulse can be found
as y(t) = P sin (ωdt+ β), where

ωd = ωn

√
1 − ς2,P =

√√√√
(

N∑
i=1

Pi cos (ωdti)

)2

+
(

N∑
i=1

Pi sin (ωdti)

)2

and

Pi = Aiωn/
√

1 − ς2e−ωnς(t−t0).

Here, Ai and ti are the amplitude and time instants of the ith impulse. The Magnitude of
Single-mode residual vibration is obtained (13), as the outcome of the sequence of impulses.
N is the number of impulses in sequence and tN is the time location of last impulse.

V (ωn,ς) = e−ωnςtN

√
V 2

c + V 2
s (13)

Vc =
N∑

i=1

Aie
ζωnti cos (ωdti) and Vs =

N∑
i=1

Aie
ςωnti sin (ωdti)
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ZVDD (Zero Vibration and Double Derivative) shaper: It is possible to divide a single im-
pulse into a sequence of impulses by imposing constraints on the magnitude of impulses and
vibrations. This technique is referred to as ZV (Zero Vibration) and ZVD (Zero Vibration
Derivative) shaping when an impulse is divided into two and three impulses, respectively.
In order to enhance robustness, higher-order shapers are typically employed, and one such
example is the ZVDD (Zero Vibration and Derivative-Derivative) shaper. The final time and
amplitude variables for ZVDD shaper are shown in (15) after solving constraints (14), where
M = e−ζπ/

√
1−ζ 2

.

V (ωn,ς) = 0,
∂V

∂ωn

= 0,
∂2V

∂ωn
2

= 0,

4∑
i=1

Ai = 1 and Ai > 0 f or all i (14)

[
A

t

]
=
[

1
1+3M+3M2+M3

3M

1+3M+3M2+M3
3M2

1+3M+3M2+M3
M3

1+3M+3M2+M3

0 π
ωd

2π
ωd

3π
ωd

]
(15)

2.2.2 Proportional-Derivative (PD) controller

For trajectory tracking, a PD controller is utilized as a feedback system. The expression for
the input torque vector in PD control is represented in (16). In this case, the feedback is
solely based on the rigid coordinates, which are used to compute the necessary torque. Here
θd and θa are the vector of desired and actual hub angles of links, while Kp and Kd are
the gain for feedback. Vector θd is computed through the application of inverse kinematics
to the manipulator system. In order to achieve rest-to-rest motion, the tip acceleration is
assumed to follow a bang-bang pattern. By integrating the tip acceleration once and twice,
the tip velocity and position, respectively, are obtained. A trajectory is exactly tracked by
optimizing Kp and Kd for rigid manipulators before going to a flexible system. After several
iterations, considering the manipulators as rigid, the exact trajectory has been successfully
tracked using Kp = diag

[
200 200

]
and Kd = diag

[
10 10

]
. The gains are very high

written asKp = diag
[

5000 5000
]

and Kd = diag
[

100 100
]

for B-splines trajectory
tracking. The simulations are done in three key steps. Firstly, gains are optimized using
rigid manipulators to achieve precise trajectory tracking. Next, the investigation shifts to
assess the impact of flexibility while maintaining other factors the same. Finally, the study
employs command shaping techniques in the third step to mitigate vibrations arising from
flexibility. In essence, the consistent use of gains in the first and second steps enables an
evaluation of flexibility’s effects, while applying command shaping in the third step aims to
diminish vibration levels associated with the flexible manipulator.

τ = Kp (θd − θa) + Kd

(
θ̇d − θ̇a

)
(16)

3 Results and discussion

3.1 Dynamics model validation

First, the dynamic model is validated, then the controller is implemented to get the vibration
suppression. For the validation of the dynamic model, links length are kept as 1 m while
EIzz = 1000 Nm2, where E is Young’s modulus of elasticity, and Izz is the area moment
of inertia in bending. The free fall simulation is done under gravity, where initial angles are
kept as −90° and 5° for the first and second link, respectively.
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Fig. 3 Hub angle and tip deflection variation with respect to time

The hub angles for the first link and second link are shown in Fig. 3a and 3b, while tip
deflections for the same are shown in Fig. 3c and 3d, respectively. The results are found to
be very close to the literature [16].

3.2 Trajectory tracking

After validation of the dynamic model, a simulation is done for tracking the semicircular
trajectory using a two-link flexible manipulator. The links are of length 0.5 m, made of
material with density 7850 Kg/m3, and modulus of elasticity equals to 210 GPa. The cross-
section of links is in the form of a rectangle with thickness 2 mm and width 27 mm. The
center of the semicircular trajectory of radius 15 cm is at 75 cm from the fixed joint of the
manipulator, as shown in Fig. 2a.

The motion initiates from an extreme point and concludes at the same point, ensuring
complete trajectory tracking. MATLAB was utilized to determine the natural frequency and
damping ratio as 3.6139 Hz and 0.025, respectively, at the extreme point. During the track-
ing process, variation in the natural frequency due to changes in the configuration has been
considered in calculations. The overall trajectory duration is 3 seconds, with 2 seconds allo-
cated for the semicircular path and 1 second for the linear path. Figure 4a and 4b display the
tip acceleration and position, respectively, for the semicircular path. The tip velocity can be
inferred by integration of the tip acceleration plot or slope of tip position plot. It is evident
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Fig. 4 Tip acceleration and position along the semicircular path (Color figure online)

Fig. 5 Hub angles along complete trajectory (Color figure online)

that the tip velocity initially begins from zero, then increases, subsequently decreases, and
eventually settles back to zero. This pattern facilitates achieving a rest-to-rest motion.

The inverse kinematics and Jacobian calculations are employed to determine the hub
angles and hub angular velocities as functions of time for both links. Figure 5a displays the
shaped and unshaped hub angles for the first link, while Fig. 5b represents the shaped and
shaped hub angles for the second link.

Tip deflection obtained for the first and second links are shown in Fig. 6a and 6b, re-
spectively. It is clear that deflections have been reduced using the command shaping, with
some time delay. The maximum deflections for the first link and second link are 6.334 mm
and 1.135 mm without shaping, while the same has been reduced to around 4.468 mm and
0.8729 mm with command shaping, respectively. The end effector position while tracking
the trajectory is shown in Fig. 10a. The maximum errors between desired and obtained tra-
jectory are 6.887 mm and 8.242 mm, which has been reduced to 5.214 mm and 3.041 mm
for the curved and linear part, respectively, of the trajectory using command shaping. The
time delay for tracking the trajectory is 0.6966 sec, which is almost twice the length of the
shaper, as shaping is done separately for the curved and linear parts of the path.
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Fig. 6 Tip deflections along complete trajectory (Color figure online)

Table 1 Effect of configuration on natural frequency [Hz]

Payload P1 P2 P3 P4

Freq. Freq. Diff. Freq. Diff. Freq. Diff.

0 gm 3.6139 3.6983 2.33 5.3319 47.49 4.3257 19.69

25 gm 3.5812 3.6604 2.21 5.2140 45.59 4.2647 19.08

100 gm 3.5394 3.6128 2.07 5.0696 43.23 4.1886 18.34

Table 2 Effect of payload on natural frequency (Hz)

End-effector position No payload 25 gm payload 100 gm payload

Freq. Freq. Error Freq. Error

P1 3.6139 3.5812 0.88 3.5394 2.06

P2 3.6983 3.6604 1.02 3.6128 2.31

P3 5.3319 5.2140 2.21 5.0696 4.92

P4 4.3257 4.2647 1.41 4.1886 3.17

3.3 Effect of payload

This subsection analyzes the effect of the payload attached to the end-effector of a two-link
manipulator on the natural frequency, tip deflections, and tracking control.

As the manipulator moves along the trajectory, the end-effector reaches different points
(P1, P2, P3, and P4), shown in Fig. 2a, causing changes in the system’s configuration. These
changes in configuration lead to variations in the natural frequency of the system, as depicted
in Table 1. The percentage difference with respect to the natural frequency at P1 is presented
in both Table 1 and Table 2, reflecting the combined influence of the system’s configuration
and the attached payload.

The effect of the attached payload on tip deflection is shown in Fig. 7a and Fig. 7b for the
first and second links, respectively, when command shaping is not active. The impact is also
depicted in Fig. 8a and Fig. 8b when command shaping is active. It is clear from the figures
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Fig. 7 Tip deflections for the first link and second links without command shaping

Fig. 8 Tip deflections for the first link and second links with command shaping

that the payload has a significant effect on tip deflection, while command shaping tends to
reduce it. Tip deflection for the first link has been reduced from 6.334 mm to 4.468 mm, and
the second link tip deflection has been reduced from 1.135 to 0.8729 for the case without
any payload. Further, for the case with a 25-gm payload, the first link tip deflection was
suppressed from 6.443 mm to 5.011 mm, and the second link tip deflection was reduced
from 2.193 mm to 0.8729 mm. The tip deflection for the first link has been reduced from
9.849 mm to 7.37 mm using command shaping with a 100-gm payload. The same has been
suppressed from 5.51 mm to 2.802 mm using command shaping with a 100-gm payload for
the second link.

In Fig. 9a, the end-effector path, with and without the payload is shown when command
shaping is not active. It visually demonstrates how the presence of the payload affects the
trajectory followed by the end-effector. In Fig. 9b, the end-effector path with and without the
payload is depicted when command shaping is active. This comparison helps us understand
the impact of command shaping on the trajectory and how it mitigates the effects of the pay-
load, resulting in a more controlled and desired end-effector path. In Fig. 10, the comparison
of the end-effector path is presented for both shaped and unshaped input signals. The results
are shown for two scenarios: without any payload and with a payload of 100 grams. The
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Fig. 9 End-effector path with and without a payload

Fig. 10 End-effector path for shaped and unshaped commands

tracking error without any payload has already been discussed. The tracking error with 100
gm payload has been reduced from 12 mm and 7.099 mm to 7.41 mm and 3.188 mm for
curved and linear paths, respectively, using command shaping. This comparison allows us to
assess the effectiveness of the shaping technique in achieving the desired end-effector path
while considering the presence of a payload. By examining the trajectories in both cases, we
can observe the influence of input shaping on reducing the deviations caused by the payload
and improving the tracking performance of the manipulator.

3.4 B-splines tracking

This section focuses on the tracking of B-Spline curves and compares the effects of flex-
ibility with a rigid system. Then, presenting the vibration suppression by implementing a
command shaping-based controller. Two B-Splines curves, namely BS1 and BS2, as shown
in Fig. 11, are generated using control points for analysis. The B-Splines curves, BS1 and
BS2 are constructed using five control points, as depicted in Fig. 11. Initially, a rigid body
model is employed to track these trajectories, and the gains are optimized to achieve a close
match with the desired trajectory. However, it is observed that tracking such complex tra-
jectories necessitates the utilization of higher gain values. The specific values of the gains
utilized in this study are mentioned in Sect. 2.2.2.
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Fig. 11 B-Splines curves used for tracking

Fig. 12 Tracking of curves by rigid and flexible systems

Once the rigid body model successfully tracks the B-Splines curves using the optimized
gains, the same gain values are then employed for trajectory tracking with the flexible body
model. This approach allows for a direct comparison between the rigid and flexible body
models in terms of flexibility. The B-Splines tracking is shown in Fig. 12. For BS1, the tra-
jectory tracking error is found to be around 7-8 cm, with the maximum value being more
than 10 cm at different locations. The same for BS2 has been found around 5-7 cm at dif-
ferent locations. It is observed that the tracking error is higher compared to the trajectory
discussed in Sect. 3.2. This indicates the need for a more robust controller to achieve accu-
rate tracking of complex B-Splines trajectories. The flexibility and non-linear characteristics
of the manipulator introduce additional challenges in reducing tracking errors. To achieve
that in the case of B-Splines trajectories, command shaping is implemented. Joint torques
are calculated using the command-shaped feedforward plus proportional-derivative feed-
back control [29]. The results are shown in Fig. 13. It is worth mentioning that the tracking
error has been reduced for both curves significantly, specifically when the end-effector ap-
proaches the endpoint. For BS1, the maximum tracking error has been reduced to 1.6 cm,
while the same is close to a few millimeters around the most part of the trajectory. For BS2,
the maximum tracking error has been reduced to approximately 2 cm, while the same is
close to a few millimeters around the most part of the trajectory.



Command shaped trajectory tracking control for a two-link flexible. . . 595

Fig. 13 Vibration suppression during tracking of curves for flexible system

4 Conclusions

The paper demonstrates the performance of a hybrid controller in tracking a complex tra-
jectory that combines curved and linear paths compared to trajectories available in the liter-
ature, which are either pure linear or circular by attached payload at the end-effector. Prior
to the control study, the dynamics of a two-flexible manipulator system are developed con-
sidering two modes in the transverse direction. The equations of motion are derived using a
hybrid Euler-Lagrangian formulation and DeNOC matrices. The dynamics model is initially
validated before proceeding to the control analysis.

For control purposes, a hybrid controller is designed, combining command shaping tech-
niques with a proportional derivative (PD) feedback controller. The feedback controller en-
sures accurate trajectory tracking, while the command shaping techniques aim to suppress
vibrations during trajectory tracking. The effects of command shaping are clearly illustrated
in the results and compared with the results obtained without command shaping.

The performance of the controller is evaluated with both with and without payload cases
using a semicircular trajectory that needs to be tracked within a time frame of 3 seconds. The
effect of change in configuration and different payloads on natural frequency while track-
ing has been calculated and presented in detail. The proposed control scheme effectively
suppresses vibrations in both cases, with and without attached payload. The results include
the tip deflections for both links with shaped and unshaped input commands for both cases:
with and without attached payload. The degree of vibration suppression along the trajectory
is quantified and presented in the results. The paper also explores the tracking of complex
B-Splines trajectories, where it needs a high value of gains. The tracking error is calculated
to show the effect of link flexibility. Further, vibration suppression has been achieved using
command shaping. The paper shows the robustness of the controller with respect to the tra-
jectory and payload. In the future, the controller will be implemented in the experimental
setup.

Acknowledgements Authors sincerely acknowledge financial support from Department of Science and Tech-
nology (DST), Science and Engineering Research Board (SERB), Government of India under sanction order
number EMR/2016/004992 DTD.

Author contributions Sandeep Kumar: Developed the theoretical formulation, performed the analytic calcu-
lations, performed the numerical simulations and prepared the initial and revised draft. Subir Kumar Saha and
Ashish Singla: Supervision of overall direction and planning, fund management, manuscript Review. Satinder
Paul Singh and Tarun Kumar Bera: Co-supervision, provided critical feedback and helped shape the research,
analysis and manuscript. All authors discussed the results and contributed to the final manuscript.



596 S. Kumar et al.

Declarations

Competing interests The authors declare no competing interests.

References

1. Dwivedy, S., Eberhard, P.: Dynamic analysis of flexible manipulators, a literature review. Mech. Mach.
Theory 41, 749–777 (2006)

2. Shabana, A.: Flexible multibody dynamics: review of past and recent developments. Multibody Syst.
Dyn. 1, 189–222 (1997)

3. Theodore, R., Ghosal, A.: Comparison of the assumed modes and finite element models for flexible
multilink manipulators. Int. J. Robot. Res. 14, 91–111 (1995)

4. Martins, J., Mohamed, Z., Tokhi, M., Da Costa, J., Botto, M.: Approaches for dynamic modelling of
flexible manipulator systems. IEE Proc., Control Theory Appl. 150, 401–411 (2003)

5. Singla, A., Tewari, A., Dasgupta, B.: Vibration suppression during input tracking of a flexible manipula-
tor using a hybrid controller. Sadhana 40, 1865–1898 (2015)

6. Moolam, R.: Dynamic modeling and control of flexible manipulators Italy (2014)
7. Abdullahi, A., Mohamed, Z., et al.: Resonant control of a single-link flexible manipulator. J. Teknol. 67

(2014)
8. Vakil, M., Fotouhi, R., Nikiforuk, P., Salmasi, H.: A constrained Lagrange formulation of multilink

planar flexible manipulator. J. Vib. Acoust. 130 (2008)
9. Zhou, Z., Xi, J., Mechefske, C.: Modeling of a fully flexible 3PRS manipulator for vibration analysis

(2006)
10. Usoro, P., Nadira, R., Mahil, S.: A finite element/Lagrange approach to modeling lightweight flexible

manipulators (1986)
11. Nasir, A., Ahmad, M., Rahmat, M.: Performance comparison between LQR and PID controllers for an

inverted pendulum system. AIP Conf. Proc. 1052, 124–128 (2008)
12. Loudini, M., Boukhetala, D., Tadjine, M.: Mathematical modelling of a single link flexible manipulator.

In: International Control Conference, pp. 1–6 (2006)
13. Subudhi, B., Morris, A.: Dynamic modelling, simulation and control of a manipulator with flexible links

and joints. Robot. Auton. Syst. 41, 257–270 (2002)
14. Banerjee, U., Kumar, S., Saha, S., Kar, I., Singh, S.: Tracking control of a single link flexible manipulator.

In: Advances in Robotics-5th International Conference of the Robotics Society, pp. 1–6 (2021)
15. Mishra, N., Singh, S., Nakra, B.: Dynamic analysis of a single link flexible manipulator using

Lagrangian-assumed modes approach. In: 2015 International Conference on Industrial Instrumentation
and Control (ICIC), pp. 1144–1149 (2015)

16. Mohan, A., Saha, S.: A recursive, numerically stable, and efficient simulation algorithm for serial robots
with flexible links. Multibody Syst. Dyn. 21, 1–35 (2009)

17. Ahmad, M., Mohamed, Z., Hambali, N.: Dynamic modelling of a two-link flexible manipulator sys-
tem incorporating payload. In: 2008 3rd IEEE Conference on Industrial Electronics and Applications,
pp. 96–101 (2008)

18. Khairudin, M., Mohamed, Z., Husain, A., Mamat, R.: Dynamic characterisation of a two-link flexible
manipulator: theory and experiments. Adv. Robot. Res. 1, 61 (2014)

19. Saha, S.: Dynamics of serial multibody systems using the decoupled natural orthogonal complement
matrices. J. Appl. Mech. 66(4), 986 (1999)

20. Singer, N., Seering, W.: Preshaping command inputs to reduce system vibration (1990)
21. Singhose, W.: Command shaping for flexible systems: a review of the first 50 years. Int. J. Prec. Eng.

Manuf. 10, 153–168 (2009)
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