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Abstract
This research aims to advance the current state-of-the-art of earthworm-like robots by ex-
tending the gait study from rectilinear and planar locomotion to spatial locomotion. In detail,
the following five important but largely unaddressed issues are tackled in this paper, includ-
ing the multibody kinematic modeling of the robot with spatial locomotion capability, 3D
gait generation algorithm, spatial locomotion mode classification, spatial locomotion per-
formance evaluation, and 3D gait planning. Based on the multibody model of the metameric
earthworm-like robot and learning from the retrograde peristalsis wave, a gait-generation al-
gorithm is proposed for generating all admissible 3D locomotion gaits. The 3D locomotion
can be classified into four major types (rectilinear, sidewinding, circular, and cycloid), and
further, ten modes with their defining conditions in terms of the gait parameters being de-
rived. Among them, several spatial locomotion modes, such as the 3D cycloid locomotion,
are uncovered for the first time. For each mode, different kinematic indexes, including the
average (axial) velocity and the circumradius of the trajectory, are evaluated to comprehen-
sively clarify the relationship between the locomotion performance and the gait parameters.
Moreover, aiming at reaching the target both quickly and precisely, 3D gait planning is also
studied. With contradictory objectives, the Pareto front is determined via the genetic algo-
rithm so that a trade-off between the proximity and speed to the target can be achieved.

Keywords Bioinspired robot · Kinematic model · 3D locomotion gait · Peristalsis wave ·
Gait planning · Pareto front

1 Introduction

In the past several decades, there has been a rising demand for locomotion robots that are
capable of moving and operating in confined and hazardous spaces, such as navigating in
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Fig. 1 Morphology
characteristics and locomotion
capabilities of the earthworm. (a)
Schematic illustration of an
earthworm. (b) Longitudinal and
cross-sections of the earthworm.
(c) Axial extension and
contraction of the earthworm
segment. (d) One-side
contraction of the earthworm
segment. (e) Rectilinear, planar,
and spatial locomotion of the
earthworm

industrial pipelines to clean foreign objects [1], drilling in the seafloor to collect samples
[2], and entering in human gastrointestinal tracks to examine and resect lesions [3]. Due to
the complex structure and the limited miniaturization capability, conventional wheeled and
legged robots often fail to function properly in narrow and vulnerable environments. On
the other hand, the crawling robots, by regularly changing their body configurations [4–6],
could always move effectively in restricted spaces, without the need for active protruded
components (e.g., legs and wheels). As a result, the crawling robots are always simple in
structure and small in size, making them become a hotspot of robotic research.

Particularly, the earthworm, due to its extremely soft body and excellent environmental
adaptability, has inspired a great number of robot designs [7–9]. Fundamentally, as a lo-
comotion system [10], the earthworm possesses remarkable motion capability originating
from its unique morphology characteristics, manifested in three aspects: (i) the earthworm’s
body is divided into a large number of independently working segments separated by septa
(aka “metameric segmentation”) (Fig. 1(a)) [11]; (ii) each body segment possesses circular
and longitudinal muscles that interact antagonistically to each other, i.e., contraction of the
circular muscles will axially elongate and radially contract the body segment, and contrac-
tion of the longitudinal muscles will have the opposite effects (Fig. 1(b, c)) [12–15]; (iii) the
body segments are equipped with bristle-like setae (Fig. 1(b)) that can stretch out to from
temporary anchorage with the environment, thus preventing backward slippage when other
segments are moving forward [11]. Based upon these morphological features and with wave-
like contraction and relaxation of muscles that propagate backward along the body (aka “the
retrograde peristalsis wave” [11, 13]), the earthworm could move effectively in various en-
vironments. Note that the retrograde peristalsis wave is the most fundamental mechanism
of earthworm locomotion; however, when moving in different media and different safety
situations, the earthworm is capable of adjusting its muscular peristalsis wave, manifesting
as locomotion gaits, to survive, to adapt to different circumstances, and to move more effi-
ciently [16]. Especially, it has been observed that in addition to rectilinear locomotion, the
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earthworm could carry out planar and spatial locomotion by bending the body toward one
side (Fig. 1(d, e)).

Earthworms’ morphological characteristics also provide important guidelines for the de-
sign of earthworm-like locomotion robots. For example, many robots are designed to be
segmented to mimic the earthworm’s metameric body [2, 9, 17, 18]; each robot segment is
equipped with certain actuators to generate antagonistically radial and axial deformations,
as the earthworm’s body segment does [2, 9, 17, 18]; the robot segment also possesses active
or passive components to acquire anisotropic resistance or anchoring effects for directional
locomotion, which reproduces the functions of the earthworm’s setae [19–21]. Such design
principles have been implemented for achieving earthworm-like rectilinear locomotion both
in pipelines and on the ground. Representative robot prototypes include the origami-based
earthworm-like robot actuated by DC motors [22] and magnetic field [23], the mesh-worm
actuated by SMA springs [24], and the soft earthworm-like robot actuated by air pressure
[25]. In these examples, since the number of robot segments is relatively small and for the
purpose of verifying the design rationality, discrete actuation sequences of the robot seg-
ments are assigned by roughly mimicking the earthworm’s retrograde peristalsis wave.

In addition to robot design and prototyping, considerable efforts have been devoted to
understanding the relationship between the control strategies and the rectilinear locomo-
tion performance. For example, following the mechanism of retrograde peristalsis wave and
by establishing the correspondence between binary numbers (‘0’ and ‘1’) and robot seg-
ment states (axially-extended and axially-contracted), a generic gait generation algorithm
was proposed for a metameric locomotion robot with an arbitrary number of segments [26].
Based on the established multibody kinematic model of the robot, gait optimization was car-
ried out to maximize the average locomotion speed. Moreover, the effects of gaits on anchor
slippage were examined both theoretically and experimentally [9], which shows the neces-
sity and importance of considering the dynamics [27, 28] when evaluating the earthworm-
like robotic locomotion. Note that a similar gait generation algorithm has also been proposed
and implemented in inchworm-like robots [29], and based on the constructed dynamic model
[27], gait shift using adaptive control was also demonstrated [30]. From another perspective,
without any global prerequisite rules but by optimizing the actuation phases of the robot
segments based on symmetry theory, the optimum phase-difference pattern corresponding
to the maximum average locomotion speed was identified [31]. Numerical calculations and
experiments indicated that the optimized phase-difference pattern could naturally reproduce
the peristalsis wave, without global prerequisite wave-like rules. For the continuously de-
formable earthworm-like robot proposed by Boxerbaum et al., rather than discretely assign-
ing the states of the robot segments, the wave controller [32], stable heteroclinic channel
(SHC) controller [33], and neural network controller [34] have been proposed for achieving
locomotion, and their effects are evaluated in terms of average locomotion speed and energy
efficiency [35]. Although this robot shows obvious continuity in its body, it is still described
as a segmented model for examining its locomotion performance.

In nature, the earthworm can also perform planar locomotion, which thus promotes
the upgrade from rectilinear locomotion robots to planar locomotion robots. Note that the
earthworm achieves turning motion by contracting the longitudinal muscles at one side
[12], which indicates the necessity of incorporating additional actuators to the existing
earthworm-like rectilinear locomotion robots. For example, by setting two or three inde-
pendent actuators (e.g., servomotors or solenoid pairs) in each robot segment [7, 8, 36], the
robot segment could be effectively contracted, extended, and bent, thus endowing the robots
with planar locomotion capability. For continuous earthworm-like robots, additional longi-
tudinal SMA wires [35] or independent servomotors [37] are introduced to bend the robot
body to one side.
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To achieve earthworm-like planar robotic locomotion, the retrograde peristalsis wave still
plays the core role in designing control strategies. For metameric earthworm-like robots,
by prescribing the states of the robot segments following the retrograde peristalsis wave,
discrete locomotion gaits have been demonstrated to be effective in realizing planar loco-
motion [7, 38]. Specifically, two additional states of the robot segments are added (i.e.,
the leftward-contracted and rightward-contracted states) to the existing axially-relaxed and
axially-contracted states of the rectilinear locomotion robot. Zhan et al. carried out a com-
prehensive study on the generation, classification, and characterization of the planar loco-
motion gaits [36]. By establishing a correspondence between the discrete numbers (‘0’, ‘1’,
‘2’, and ‘3’) and the four states of the robot segments, a generic gait generation algorithm is
proposed. Based on an N -segment kinematic model of the planar locomotion robot, linear
and angular displacements of the robot in a locomotion period can be derived, which can
be then used to predict the average locomotion speeds (both linear and angular). Moreover,
Zhan et al. found that with different gaits, the robot could exhibit four qualitatively different
locomotion modes, namely, the rectilinear, sidewinding, circular, and cycloid locomotion.
This has been verified through both numerical simulations and experiments. Based upon
these findings, a framework of in-plane gait planning based on the genetic algorithm is pro-
posed to help the robot to choose the optimal gait to reach the target, which is evaluated by
two objective functions, namely, the distance to the target position on the plane and the num-
ber of locomotion steps the robot taken before reaching the target [39]. For the continuous
earthworm-like robot (mesh-worm), based on the retrograde peristalsis wave, Kandhari et
al. proposed nonperiodic waveforms for eliminating the undesired slip of the robot [40, 41].

Despite the progress in achieving and understanding the earthworm-like robotic rectilin-
ear and planar locomotion, there is still a significant gap between the current earthworm-like
robot technology and what is needed for practical applications. For earthworm-like robots
used in complex environments (e.g., unstructured underground space and 3-dimensional
(3D) pipelines), spatial (or 3D) locomotion capability is necessary and important for in-
creasing spatial accessibility, improving environmental adaptability, and enriching potential
functionality. It is worth remarking here that another type of bio-inspired robot, the snake-
like robot, which has similar shape characteristics to the earthworm-like robot, is capable
of performing 3D locomotion [42–44]. However, the locomotion mechanisms of snake-like
robots and earthworm-like robots are fundamentally disparate. The snake-like robot relies
on swinging the active/passive joints between adjacent body segments to acquire forward
propulsion[45, 46], which is referred to as lateral undulation [5, 47, 48]; while for the
earthworm-like robot, as mentioned above, it relies on axial deformations of robot segments
that propagate backward of the body to achieve locomotion, which is referred to as the ret-
rograde peristalsis wave. Actually, developing earthworm-like spatial locomotion robots has
become a recent research hotspot, and a few designs and prototypes have been reported. For
instance, Yang et al. developed a worm-inspired robot with pneumatic suction cups mounted
on the segments; the robot could crawl on horizontal, inclined, or vertical walls [49]. In our
previous work, we designed and prototyped a novel earthworm-like spatial locomotion robot
based on the Yoshimura-ori structure. Actuated by four independent SMA springs and an
inner pneumatic balloon, each robot segment could bend in four directions (i.e., upward,
downward, rightward, and leftward), making the robot able to achieve effective rectilinear,
turning, and rising locomotion [50]. Note that in these two examples, the robot body is made
up of a small number of segments (say, four segments in [49] and five segments in [50]).
This, on the one hand, makes it relatively easy to control the robot by directly prescribing
the actuation sequence of the robot segments and, on the other hand, severely limits the spa-
tial locomotion performance. Actually, by incorporating more segments into the body, the
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metameric robot would be more flexible in motion such that rich spatial locomotion modes
with qualitatively and quantitatively different characteristics can be expected, but the direct
actuation-assignment approach would become tedious and infeasible to acquire all possi-
ble gaits. However, aside from the abovementioned case studies, a generic kinematic robot
model with an arbitrarily large number of segments has not been established, and a system-
atic 3D locomotion gait study is still blank. With a large number of robot segments, there is
an almost complete lack of knowledge on how to generate and describe the 3D locomotion
gaits, and we are completely in the dark about the effects of different gaits on locomotion
performance.

The above-mentioned challenging issues constitute the major motivation of this research,
i.e., to get profound insights into the spatial locomotion of earthworm-like metameric robots
in terms of 3D gait generation and gait analysis. To achieve this goal, the following funda-
mental but largely undressed issues will be tackled:

(1) How to build a generic model of the earthworm-like metameric robot that can well
capture the 3D deformations of the segments and the overall spatial locomotion of the
robot?

(2) How to generate all admissible 3D locomotion gaits for an arbitrary number of robot
segments?

(3) How to classify the 3D locomotion gaits based on the robot’s locomotion characteris-
tics?

(4) How different gait parameters would affect the robot’s spatial locomotion performance,
both qualitatively and quantitatively?

(5) How to choose the optimal 3D gait to reach the target position in 3D space, and espe-
cially, if both proximity and speed are aimed for?

These questions are all answered in this paper via comprehensive theoretical and numer-
ical investigations. In the 3D scenario, each robot segment needs six states to achieve 3D
deformations, which would significantly amplify the library of locomotion gaits. Assum-
ing ideal anchoring and ideal actuation, a multibody kinematic model of an N -segment
earthworm-like robot is established. Based on the retrograde peristalsis wave, a generic
gait generation algorithm is proposed for producing all admissible 3D locomotion gaits.
Controlled by different 3D gaits, the robot could exhibit four major types and, further, ten
qualitatively different spatial locomotion modes, which completely include the 1D and 2D
locomotion modes reported in previous studies [26, 36]. Among them, several spatial loco-
motion modes, including the 3D sidewinding, 3D circular, and 3D cycloid, are uncovered for
the first time. Corresponding to each mode, the robot’s locomotion performances under all
admissible gaits are systematically evaluated, and the relationship between the performance
indexes and the gait parameters are clarified. Finally, based on the genetic algorithm, a gait
planning framework is proposed. To achieve the target in 3D spaces with better proximity
and faster speed, bi-objective optimization is carried out to obtain the Pareto front, which
helps us to make tradeoffs.

2 Kinematic modeling and gait generation

The earthworm’s morphology characteristics provide important guidelines for modeling the
metameric earthworm-like robots with spatial locomotion capability. In this section, by ab-
stracting the deformation characteristics of an origami earthworm-like robot, a kinematic
model is developed. The N -segment model also holds generality in that it is also applicable
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Fig. 2 Kinematic models of the robot segment and the robot as a whole. (a) The snapshot of the Yoshimura-
ori based earthworm-like robot under rectilinear, turning, and rising locomotion. (b) The photo of the robot
segment staying at six states. (c)The simplified model of six states. (d) Configuration vectors corresponding
to the axially-relaxed, axially-contracted, and one-side contracted states. (e) A generic kinematic model of
the metameric earthworm-like robot with spatial locomotion capability, which includes six types of segments,
and the heading direction is indicated. For each segment, both the configuration vector and its label in the
global index system are given

to other metameric robots with similar 3D deformation capabilities, and it thus serves as the
basis for studying the 3D locomotion gaits.

2.1 Kinematics of a single robot segment

In our previous research [49], we have designed and prototyped a Yoshimura-ori based
earthworm-like robot that is able to perform effective 3D locomotion (e.g., rectilinear, turn-
ing, and rising, Fig. 2(a)). Specifically, following the morphology characteristics of the
earthworm’s body segment, each robot segment is equipped with four SMA springs, a pneu-
matic balloon, and a pair of electromagnets: the SMA springs are used to bend the seg-
ment, the pneumatic balloon is employed for extending and contracting the segment, and the
electromagnets are used for anchoring with the working environment. Each robot segment
could stay at six states, namely, the axially-relaxed, the axially-contracted, the leftward-
contracted, the rightward-contracted, the upward-contracted, and the downward-contracted
states (Fig. 2(b)). Considering the generality of the deformation patterns presented by the
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Table 1 Configuration vectors corresponding to the six segment states

Digits States Configuration vectors

1 Axially-relaxed r1 = (0,L0,0)T

2 Axially-contracted r2 = (0,L1,0)T

3 Leftward-contracted r3 = (−L2 sin(α),L2 cos(α),0)T

4 Rightward-contracted r5 = (L2 sin(α),L2 cos(α),0)T

5 Upward-contracted r4 = (0,L2 cos(α),L2 sin(α))T

6 Downward-contracted r6 = (0,L2 cos(α),−L2 sin(α))T

origami robot segment prototype, they are abstracted and used for robot state description
(Fig. 2(c)). Specifically, the six states are respectively denoted by digits ‘1’, ‘2’, ‘3’, ‘5’, ‘4’,
and ‘6’ (Table 1). Particularly, when the segment is axially contracted, the electromagnets
will be activated to achieve anchoring.

To quantify the deformations of the robot segment (Fig. 2(a)), a kinematic model of the
robot segment is developed, shown in Fig. 2(d). The posterior and anterior boundaries rep-
resent the acrylic plates of the robot segment, which keep rigid during segment deformation.
Based upon this model, the spatial position and orientation of each segment can be described
by a configuration vector ri (the subscript i = 1, . . . ,6 indicates the segment state), which
points from the center of the posterior boundary of a segment to the center of the anterior
boundary (Fig. 2(d)). For all six states, the components of the configuration vectors in the
xyz coordinate system are listed in Table 1. Specifically, L0 and L1 represent the lengths
of the segment (along the y-direction) at the axially-relaxed state and the axially-contracted
state, respectively; L2, α, and β are used to quantify the one-side contracted states, with L2

denoting the length of the one-side contracted segment, α denoting the intersection angle
between the configuration vector and the y-axis, and β denoting the angular deformation of
the segment. In this research, β/π (β < π ) must be rational so that the robot could achieve
all possible locomotion modes (the details would be explained in Sect. 3). For the axially-
relaxed and axially-contracted segments, α = β = 0. Considering the geometric relations,
the angles α and β are not independent; rather, they satisfy

β = 2α. (1)

Each segment could switch among the six states by its actuators, and the state transition
can be finished within a unit time interval �t . Particularly, if the robot segment remains at
the axially-contracted state during an interval �t , it is assumed to anchor ideally with the
working medium. Note that anchoring to the environment is necessary for earthworm-like
robots that move in three dimensions in the soil [2, 7], and anchoring is also achieved by
radial expansion of the robot segment to increase the normal pressure and friction with the
soil. Here, as a generic study of 3D earthworm-like robotic locomotion gait, a kinematic
model of a robot segment with 3D deformation capabilities is developed. We do not discuss
exactly how anchoring is achieved, but introduce it into the model as an assumption (see the
next section for details).

2.2 A generic kinematic model of the robot and the fundamental locomotion
mechanism

By connecting multiple segments at different states in series under the continuity conditions
of displacement and orientation, a generic kinematic model of the metameric earthworm-like
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robot can be established (Fig. 2(e)). In this model, the number of segments at state ‘i’ is de-
noted by ni (i = 1, . . . ,6), which are natural numbers. Without loss of generality, segments
of the same states are gathered, and they are organized in the order of axially-relaxed (‘1’),
leftward-contracted (‘3’), rightward-contracted (‘5’), upward-contracted (‘4’), downward-
contracted (‘6’), and axially-contracted (‘2’), from the tail to the head. With different sort
orders of segments, while the robot’s moving direction, velocity, or even the locomotion
mode may change, the proposed analysis method remains effective in predicting the loco-
motion.

To achieve effective earthworm-like spatial locomotion, the fundamental locomotion
mechanism of the earthworm, i.e., the retrograde peristalsis wave, is mimicked, from three
aspects. First, we assume that the segment states are propagated backward by np segments
in each transition; this constitutes the core of the robotic locomotion mechanism. Second,
when the segment states are propagated to the tail of the robot, they will return to the robot
head and keep propagating. Third, during each state transition, there should always exist
some segments that remain at the axially-contracted (‘2’) state to form an anchor with the
working environment so that other segments can lean against it and deform to achieve ef-
fective displacements. For achieving steady-state locomotion, the number of anchoring seg-
ments should remain unchanged during each transition. To this end, additional np axially-
contracted segments are needed and are placed at the tail of the robot (Fig. 2(c), denoted by
subscripts ‘p’). Hence, the total number of axially-contracted segments is n2 + np ,and the
robot has (Ntotal = n1 + n3 + n5 + n4 + n6 + n2 + np) segments in total.

In what follows, to indicate a specific segment in the robot model, the configuration
vector rj

i will be cited, where the subscript i = 1, . . . ,6 indicates the state of the segment,
and the superscript j = 1, . . . , ni indicates the j th segment of state ‘i’ in the robot. The
segments can also be cited in a global index system, where the tail segment is labeled as
#1; numbering the segments in turn from the tail to the head, the head segment is labeled as
#N total (Fig. 2(c)). The head point, which is defined as the front boundary center of the head
segment, is adopted to represent the spatial position of the robot; and the orientation of the
head segment is regarded as the heading direction of the robot. Specifically, as a kinematic
model, it is reasonable to propose the following two model assumptions on each segment:

Model ssumption 1 The anchoring segment could provide infinite friction/anchoring force
to prevent them from slipping when their adjacent segments are deforming.

Model ssumption 2 The non-anchored segments suffer friction during moving, while the
axially-relaxing, axially-contracting, and bending processes are powerful enough to over-
come the friction, deform the segment into the assigned state, and pull or push adjacent
segments.

We emphasize here again that the kinematic model, although developed based on the
Yoshimura-ori robot design, is applicable to other metameric robots with similar 3D de-
formability. As a result, this model is used as a platform for subsequent generic gait studies.

2.3 Gait parameters, constraints, and gait generation algorithm

Inherited from 1D and 2D earthworm-like locomotion robots [9, 36], the state vector and
the locomotion gait are defined below to describe the state of the robot with respect to time.
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Definition 1 (State vector) The state vector is used to describe the state of each segment in
a N total-segment robot, which could be defined as

st = (s1
t , s

2
t , . . . ...s

Ntotal
t ), s

j
t ∈ {1,2,3,4,5,6}, (2)

where s
j
t denotes the state of the j th (j = 1, . . . ,Ntotal) segment at the time instant t .

Definition 2 (Locomotion gait) The locomotion gait of an N total-segment robot can be de-
fined as a sequence of the state vectors, which depicts the transitions of the state vector with
respect to time

(st0 , st0+�t , . . . ...stf ), (3)

where st0 and stf are the state vectors at the initial and final time instants of a period, respec-
tively. To ensure periodicity of the locomotion, st0 and stf are asked to be identical.

In the generic robot model shown in Fig. 2(e), the number of segments at different states
(ni (i = 1, . . . ,6)) and the number of propagated segments np are variable. With different
assignments of these numbers, the robot would exhibit different spatial locomotion. Hence,
in this research, ni (i = 1, . . . ,6) and np serve as the parameters to define the gait, and we
use G = {n1, n3, n5, n4, n6, n2|np} to denote a group of gait parameters. Among these seven
parameters, n1 determines the forward thrust, n2 determines the anchoring capability, n3,
n4, n5, n6 determine the spatial turning, and np determines the speed for state propagation
along the robot body. Note that these seven parameters are not independent of each other;
rather, they have to satisfy the following four constraints:

Gait parameter constraint 1 The total number of segments is a constant Ntotal, i.e.,

Ntotal = n1 + n3 + n5 + n4 + n6 + n2 + np, (4)

which reduces the number of independent parameters to 6.

Gait parameter constraint 2 During each state transition, the robot should possess at least
one anchoring segment, and the segment states should be propagated backward by at least
one segment. Hence, n2 and np should satisfy

n2 ≥ 1, np ≥ 1. (5)

Gait parameter constraint 3 The robot should have enough segments for at least one com-
plete propagation of states without overlap, which calls for

Ntotal ≥ n2 + 2np. (6)

Gait parameter constraint 4 At any time, to avoid the overlapping of the robot’s body, the
robot is not allowed to bend over 180°, which requires

n3β ≤ π,n5β ≤ π,n4β ≤ π,n6β ≤ π. (7)
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Algorithm 1 Generic Gait Generation

Input: initialize the gait parameters
{
n1, n3, n5, n4, n6, n2

∣
∣np

}
that satisfy the four

constraints (Eq. (4)–(7)); initialize the unit time interval �t for a state transition.
Parameters: si

t : the state vector of the robot at time t ; N total is the total number of the
robot segments

1 st0 ←
(
s1
t0
, s2

t0
, . . . ...s

Ntotal
t0

)
, si

t0
∈ {1,2,3,4,5,6}

// initialize the state vector
2 for k = 1 to LCM(Ntotal, np)/np do
3 tk = t0 + k�t

4 for j = 1 to Ntotal do
5 s

j
tk

= s
Mod[j−1+k·np,Ntotal]+1
t0

6 return stj

With the developed robot model (Fig. 2(c)) and a group of prescribed gait parameters,
the state vector of the robot at each time instant can be determined, which further con-
stitutes the locomotion gait. According to the retrograde peristalsis wave mechanism, the
segment states will propagate backward by np segments during each transition [36]; when
reaching the robot tail, the propagation will continue from the head. Hence, the robot needs
LCM(Ntotal, np)/np transitions to finish a complete period of steady-state locomotion, and
the period yields

T = (
LCM(Ntotal, np)/np

)
�t, (8)

where LCM computes the least common multiple of Ntotal and np . The backward propa-
gation of segment states, which is the essence of the retrograde peristaltic wave, can be
expressed by the switch of the state

s
j
tk

= s
Mod[j−1+k·np,Ntotal]+1
t0

, j = 1,2, . . . ,Ntotal, k = 1,2, . . . ,LCM(Ntotal, np)/np + 1, (9)

where Mod[·] donates the modulo operation. Based on this, a generic gait generation algo-
rithm can be constructed (Algorithm 1), and all admissible gaits can be generated.

Figure 3 displays an example with gait parameters G = {0,1,0,1,0,1 |2 }, initial state
vector st0 = (2,2,3,4,2), and initial heading direction (0,1,0)T. Based on Eq. (8), this
5-segment robot needs five transitions to finish a period of steady-state locomotion. To de-
scribe the movement, the center of the posterior boundary of the left-most anchoring seg-
ment is selected as the reference point. Figure 3 reveals clearly that in each transition, the
states (e.g., characterized by the reference point) are propagated backward by np = 2 seg-
ments; moreover, in each transition, there is n2 = 1 axially-contracted segment that anchors
with the environment (denoted by red vertical lines) so that the other segments can lean
against them and achieve net displacements. After two transitions, the reference point is
propagated to the rear part of the robot, and it experiences a rear-front switch to the forepart
of the robot during the 3rd transition. Such a rear-front switch is observed again during the
5th transition, which lets the robot return to its initial state. In what follows, the propagation
process of the reference point from the forepart to the rear-part, and back to the forepart,
is defined as a loop. With given gait parameters G, μ loops are required to finish an entire
locomotion period. The number of required loops μ is given by

μ = LCM(Ntotal, np)/Ntotal. (10)
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Fig. 3 A period of the robot’s
steady-state locomotion with gait
parameters
G = {0,1,0,1,0,1 |2 }. The
robot needs five transitions to
finish a locomotion period.
During each transition, the
anchoring segments (denoted by
oblique lines) remain fixed
(denoted by red vertical lines),
and the robot states are
propagated backward by np = 2
segments. The loops required by
a period are also indicated (Color
figure online)

In particular, if the total number of segments Ntotal is divisible by np , the number of required
loops μ = 1. In the lth (l ∈ [1,μ]) loop, the number of state transitions yields

Nl =
⌈

Ml

np

⌉
, l = 1,2, . . . ,μ, (11)
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where �.� donates the ceiling function, and Ml is the number of segments passed by in the
lth loop, given by

M1 = Ntotal − (n2 − 1),

Ml+1 = Ntotal − (Nlnp − Ml), l = 1,2, ..,μ.
(12)

Hence, for the example shown in Fig. 3, the number of required loops μ = 2. In the first
loop, N1 = 3 transitions are needed and M1 = 5 segments are passed by; in the second loop,
N2 = 2 transitions are needed and M2 = 4 segments are passed by. Detailed derivation and
interpretations of Nl and Ml can be found in the Supplementary, Section S1.

2.4 Robot kinematics

Inherited from 2D earthworm-like locomotion robots [36], two kinematic indexes are de-
fined in this research to evaluate the locomotion performance of the N total-segment robot.

Definition 3 (Linear displacement vector) The linear displacement vector D = (Dx,Dy,

Dz)
T, which is defined to characterize the spatial motion of the head point in a period. It

depends on the configuration vectors of all segments and the gait parameters.

Definition 4 (Rotation matrix) The rotation matrix � (a 3 × 3 matrix) of the robot [51],
which is used to describe the change of the heading direction vector Ht = (Ht,x,Ht,y,Ht,z)

T

(i.e., the unit outer normal vector of the head segment’s anterior boundary denoted by the
blue arrow shown in Fig. 3) in a period. It is closely related to the gait parameters and the
angular deformation of a segment β . Without loss of generality, the robot’s heading direction
vector at t = 0 is set to be parallel with the y-axis, i.e.,

Ht=0 = (0,1,0)T. (13)

To derive the expression of �, the rotation matrices P and Q are firstly defined, which
depict the rotation of the anterior boundary to the posterior boundary of the one-side con-
tracted segment. Specifically, for the rightward-contracted segment, the rotation matrix P
yields

P =
⎡

⎣
cos(−β) − sin(−β) 0
sin(−β) cos(−β) 0

0 0 1

⎤

⎦ . (14)

For the upward-contracted segment, the rotation matrix Q gives

Q =
⎡

⎣
1 0 0
0 cos(β) − sin(β)

0 sin(β) cos(β)

⎤

⎦ . (15)

The rotation matrices for the leftward-contracted and downward-contracted segments can
be obtained by inverse operation, i.e., P−1 for the leftward-contracted segment and Q−1 for
the downward-contracted segments.

Hence, for given gait parameters G and based on Eq. (11)–(12), the rotation matrix of
the robot after the lth loop (denoted by �l) can be expressed via the rotation matrices of the
one-side contracted segments (i.e., P, Q, P−1, and Q−1)

�l = (Pn3−n5 Qn4−n6)l, l = 1,2, . . . ,μ. (16)
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The linear displacement vector after the lth loops yields

� l =
l∑

j=1

(�1)
j−1

⎡

⎢
⎢
⎣

(−npNj + np + n2 − Ntotal − 1 + Mj)r2

+(Ntotal + 1 − Mj+1)�1r2

+∑n3−1
i=0 Pir3 + ∑n5−1

i=0 Pn3−ir5 + ∑n4−1
i=0 Pn3−n5 Qir4

+∑n6−1
i=0 Pn3−n5 Qn4−ir6 + n1r1

⎤

⎥
⎥
⎦ . (17)

Particularly, when l = μ, an entire locomotion period is finished. The rotation matrix � and
the linear displacement vector D of the robot in a period yield

� = �μ,D = �μ. (18)

The heading direction vector of the robot after a locomotion period changes to

Ht=T = �Ht=0. (19)

Overall, with the defined linear vectors D and the rotation matrix �, the position
and heading direction of the robot head are given by stringent mathematical formulations
Eq. (17)–(19), which serve as the basis for the subsequent locomotion analysis.

3 Locomotion modes

By varying the gait parameters, the robot is expected to perform various types of locomo-
tion. Previous research has shown that in the 1D scenario, only rectilinear locomotion can
be achieved by the metameric earthworm-like robot [2, 9]; in the 2D scenario, four planar
locomotion modes, namely, rectilinear, sidewinding, circular, and cycloid locomotion, are
possible [36]. Here, we show that in the 3D scenario, ten qualitatively different spatial lo-
comotion modes can be achieved, which completely cover the 1D and 2D cases. Moreover,
for the first time, a few spatial locomotion modes, including 3D sidewinding, 3D circular,
and 3D cycloid locomotion, etc., are uncovered. Specifically, for each locomotion mode, an
example is given and the corresponding trajectory (i.e., the position of the robot head point
during each transition) is shown in Fig. 4.

3.1 Rectilinear locomotion

When the robot does not contain any one-side contracted segments, the trajectory will be a
straight line without turning. Such a locomotion mode is the rectilinear locomotion, which
has been reported in our previous work [9]. The conditions for achieving rectilinear loco-
motion yield

n3 = 0, n5 = 0, n4 = 0, n6 = 0. (20)

Figure 4(a) displays an example of rectilinear locomotion with gait parameters G =
{1,0,0,0,0,1 |1 }. The robot has three segments in total, and the locomotion is shown in
five periods.
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Fig. 4 Trajectories of the ten locomotion modes. The yellow pentacle denotes the initial position of the robot’s
head point (i.e., (0, 0, 0) in the o-xyz coordinate system), the red circles are the position of the head point after
each locomotion period, and the grey circles are passed positions of the head point during each transition.
Circles are connected by blue lines, which represent the corresponding net displacement. The red and blue
planes indicate that the robot’s trajectory stays within the yoz and the xoy coordinate plane, respectively. (a)
rectilinear locomotion; (b)–(c) 2D and 3D sidewinding locomotion; (d)–(e) 2D and 3D circular locomotion;
(f)–(g) 2D and 3D cycloid locomotion. (h)–(j) Period-k cycloid locomotion, irrational cycloid locomotion,
and ‘bowl’ locomotion (Color figure online)

3.2 Sidewinding locomotion

When the robot contains the same numbers of leftward-contracted and rightward-contracted
segments and the same number of upward-contracted segments and downward-contracted
segments, the robot will perform sidewinding locomotion. The characteristic feature of the
sidewinding locomotion is that the robot will achieve nonzero linear displacements but re-
stores the heading direction after a locomotion period. Based on whether the trajectory is
in-plane or out-of-plane, sidewinding locomotion can be further divided into 2D and 3D
types.

3.2.1 2D sidewinding locomotion

If the one-side contracted segments are made up of leftward-contracted and rightward-
contracted segments only, the robot will perform 2D sidewinding locomotion in the xoy
coordinate plane, which asks the gait parameters to satisfy

n3 = 0, n5 = 0, n4 = 0, n6 = 0. (21)

On the other hand, if the one-side contracted segments are of upward-contracted and
downward-contracted types, the 2D sidewinding locomotion will stay in the yoz coordinate
plane, which is determined by the following condition

n4 = n6 �= 0, n3 = n5 = 0. (22)

Figure 4(b) displays two examples of 2D sidewinding locomotion. The robot has seven
segments in total, and four locomotion periods are shown. With G = {1,2,2,0,0,1 |1 }, the
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locomotion stays in the xoy coordinate plane (blue plane); and with G = {1,0,0,2,2,1 |1 },
the locomotion stays in the yoz coordinate plane (red plane).

3.2.2 3D sidewinding locomotion

If all four types of one-side contracted segments are included in the robot, and the following
conditions are satisfied

n3 = n5 �= 0, n4 = n6 �= 0, (23)

the robot will exhibit 3D sidewinding locomotion. Here, the trajectory no longer stays
in a plane, while the heading direction can still be restored after a locomotion period.
Figure 4(c) shows an example of the 3D sidewinding locomotion with gait parameters
G = {1,2,2,2,2,1 |1 }. The robot has 11 segments in total, and 3 locomotion periods are
shown.

3.3 Circular locomotion

In the sidewinding locomotion, due to the same number of leftward/rightward contracted
segments (n3 = n5), and the same number of upward/downward contracted segments (n4 =
n6), the robot can always regain its heading direction after a locomotion period. If n3 �=
n5 orn4 �= n6, the heading direction will experience a change after a locomotion period.
Based on (18), the rotation matrix and the linear displacement vector after k locomotion
periods can be expressed

�k = �k,Dk =
k∑

i=1

�i−1D. (24)

If �k and Dk satisfy the following conditions

�k = I,Dk = 0 for k > 1, (25)

the robot’s head point will return its initial position and regain its initial heading direction
after k locomotion periods. Such locomotion is named circular locomotion. Equation (25)
not only imposes constraints on the gait parameters but also puts requirements on the angular
deformation of the segment (i.e., β). Based on whether the trajectory is in-plane or out-of-
plane, circular locomotion can also be divided into 2D and 3D types.

3.3.1 2D circular locomotion

In the 2D scenario, to ensure (25), β has to be the rational number multiple of 2π (β > 0)
[36]. Moreover, if the robot only contains leftward/rightward contracted segments, and their
numbers are different, i.e.,

n3 �= n5, n4 = n6 = 0,�k = I,Dk = 0 for k > 1, (26)

the robot will perform 2D circular locomotion in the xoy coordinate plane; if the robot only
contains upward/downward contracted segments, and their numbers are different, i.e., the
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robot will perform 2D circular locomotion in the xoy coordinate plane; if the robot only
contains upward/downward contracted segments, and their numbers are different, i.e.,

n4 �= n6, n3 = n5 = 0,�k = I,Dk = 0 for k > 1, (27)

the robot will perform 2D circular locomotion in the yoz coordinate plane. Figure 4(d)
shows two examples of the 2D circular locomotion. The robot has five segments in total,
and eight locomotion periods are shown. With gait parameters G = {1,2,0,0,0,1 |1 } and
{1,0,0,2,0,1 |1 }, the locomotion stays in the xoy plane and yoz plane, respectively.

3.3.2 3D circular locomotion

If the robot contains both leftward/rightward contracted segments or upward/downward con-
tracted segments (i.e., n3 and n5 cannot all equal to zero, n4 and n6 cannot all equal to zero),
and their numbers satisfy the following conditions

n3 �= n5 orn4 �= n6,�k = I,Dk = 0 for k > 1, (28)

the robot will carry out 3D circular locomotion. Figure 4(e) displays an example with gait
parameters G = {6,8,0,1,0,1 |4 }. The robot possesses 20 segments in total, and the robot
head can return the initial position and regain the initial heading direction in two locomotion
periods.

3.4 Cycloid locomotion

In addition to the above five locomotion modes, the rest locomotion modes are categorized
into cycloid locomotion. Considering the characteristics of the linear displacement and the
rotation matrix, cycloid locomotion can be further classified into three major types: period-1
cycloid locomotion, period-k cycloid locomotion, and irrational cycloid locomotion.

3.4.1 2D and 3D period-1 cycloid locomotion

If the following conditions are satisfied

�k = I,Dk �= 0, for k = 1, (29)

the robot will regain its heading direction and acquire a nonzero net displacement after a
period of locomotion. Such locomotion is named period-1 cycloid locomotion. Unlike the
circular locomotion, the robot will no longer return its initial position, no matter how many
locomotion periods are executed. The period-1 cycloid locomotion can be further divided
into 2D and 3D types considering the coplanarity of the trajectory. If the gait parameters
meet the following conditions

n3 �= n5, n4 = n6 = 0,�k = I,Dk �= 0, for k = 1, (30)

or

n4 �= n6, n3 = n5 = 0,�k = I,Dk �= 0, for k = 1, (31)

the robot will perform 2D period-1 cycloid locomotion in the xoy or yoz coordinate
plane, respectively. Figure 4(f) shows two examples of 2D period-1cycloid locomotion
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with gait parameters G = {1,0,4,0,0,4 |4 } (the trajectory stays in the xoy plane) and
G = {1,0,0,0,4,4 |4 } (the trajectory stays in the yoz plane). The robot has 13 segments in
total, and the trajectories of the head point in 4 periods are characteristic cycloids.

If the following conditions are met

n3 �= n5, n4 �= n6,�k = I,Dk �= 0, for k = 1, (32)

the robot will perform 3D period-1 cycloid locomotion. With gait parameters G =
{0,4,0,4,0,2 |6 }, an example is demonstrated in Fig. 4(g), in which the robot has 16 seg-
ments in total, and 3 periods of locomotion are demonstrated. Here, the trajectory of the
robot’s head point no longer stays in a plane.

3.4.2 Period-k cycloid locomotion

If the robot contains both leftward/rightward contracted segments or upward/downward con-
tracted segments (i.e., n3 and n5 cannot all equal to zero, n4 and n6 cannot all equal to zero),
and the following conditions are met

n3 �= n5 orn4 �= n6,�k = I,Dk �= 0, for k > 1, (33)

the robot’s head point will regain its initial heading direction and acquire a nonzero displace-
ment after k locomotion periods. This is named period-k cycloid locomotion. Similarly, the
robot will no longer return its initial position in period-k cycloid locomotion. An example
with gait parameters G = {2,2,1,0,8,1 |2 } is demonstrated in Fig. 4(h), in which the robot
has 16 segments in total, and 6 locomotion periods are plotted.

3.4.3 Irrational cycloid locomotion

If we cannot find a positive integer k within an upper bound (say, k < 3000 in this research)
to meet the condition �k = I, the robot’s head point will not return to its initial position
or regain its initial heading direction. Figure 4(i) displays an example of irrational cycloid
locomotion of a 5-segment robot with gait parameters G = {0,2,0,0,1,1 |1 }.

Particularly, if the robot’s head point after each locomotion period locates in the same
plane, while the head point during a locomotion period locates outside this plane, the
trajectory is similar to a ‘bowl’ shape. An example of ‘bowl’ locomotion is shown in
Fig. 4(j), in which the robot has eight segments in total, and the gait parameters are
G = {2,0,2,1,0,1 |2 }.

Overall, the metameric earthworm-like robot is capable of exhibiting four major types
of locomotion (rectilinear, sidewinding, circular, and cycloid) that are qualitatively differ-
ent in characteristics. Considering the coplanarity and the shape of the robot’s head-point
trajectory, they are further classified into ten locomotion modes. The conditions for these
ten modes are specifically derived and are summarized in Table 2; they not only depend
on the gait parameters but also relate to the angular deformability of the segment. For each
mode, video illustrations are also provided in the Supplementary and are indexed in Table 2.
In the next section, the locomotion performance corresponding to these ten modes will be
systematically examined.
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4 Locomotion performance

In this section, the following parameters of the robot segment are adopted for examining the
locomotion performance: L0 = 15 cm, L1 = 6 cm, L2 = 7.13 cm, β = 22.5◦; the unit time
interval for a state switch of the segment is set to be �t = 1s; the initial position of the head
point is (0,0,0)T, and the initial heading direction is Ht =0 = (0,1,0)T. Considering that the
trajectories corresponding to the ten locomotion modes are qualitatively different, different
indexes are employed for evaluating the locomotion performance. Note that a systematic
study on rectilinear locomotion has been carried out [9, 26], which includes locomotion
kinematic and dynamics, gait optimization, and experimental verification. As a result, this
research is primarily concerned with spatial locomotion.

4.1 Performance of the sidewinding locomotion

As mentioned above, the robot would only achieve nonzero linear displacement along a
specific direction in sidewinding locomotion. Thus, the motion direction vector ev and the
average velocity V̄ are sufficient to evaluate the performance of sidewinding locomotion.
Note that in sidewinding locomotion, the robot will maintain its heading direction after each
period, and the linear displacement is along an oblique line. Hence, the motion direction
vector for sidewinding locomotion is defined as

ev = D/‖D‖ , (34)

and the average velocity is defined as

V̄ = ‖D‖
(LCM(Ntotal, np)/np)�t

. (35)

Figure 5(a) shows an example of sidewinding locomotion with gait parameters G =
{0,1,1,1,1,1 |1 }, in which the linear displacement vector and the motion direction vec-
tor are denoted.

We first examine the motion direction vector. Note that the robot needs at least four seg-
ments to achieve sidewinding locomotion. Based on the arrangement of one-side contracted
segments given in Fig. 2(e) (i.e., ‘3-5-4-6’), all the sidewinding gaits for Ntotal = 4 ∼ 30
(52,577 gaits in total) are traversed, and the terminal points of the motion direction vectors
are plotted in Fig. 5(b). It reveals that the motion direction vectors are distributed through-
out octants I and IV. Particularly, if conditions (21) or (22) are satisfied, the motion direction
vectors will locate in the xoy coordinate plane (blue points) or the yoz coordinate plane (red
points), respectively. The motion direction can also point to other octants if the arrangement
of one-side contracted segments is changed (Fig. 5(c)). For instance, the robot’s motion di-
rection vector can point to octants II and III if the one-side contracted segments are organized
in the order of ‘5-3-4-6’ or ‘4-6-5-3’. In other words, by adjusting the arrangement of one-
side contracted segments and the gait parameters, the direction of the robot’s sidewinding
locomotion can be effectively tailored to any of the eight octants.

The robot’s average velocity is closely related to the gait parameters. Figure 5(d) displays
the distribution of the average velocity with respect to the total number of segments Ntotal. It
reveals that the range of achievable average velocity expands significantly as Ntotal increases,
and the maximum average velocity (V̄max) is linearly dependent on Ntotal, which can be
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Fig. 5 Performance of sidewinding locomotion. (a) Locomotion trajectory and the corresponding transition
based on gait parameters G = {0,1,1,1,1,1 |1 }. (b) Distribution of the motion direction vectors in octants
I and IV. The blue and red points represent the motion direction vectors in the xoy and yoz planes, respec-
tively. (c) With different arrangements of the one-side contracted segments, the motion direction vectors can
point to all the eight octants. (d) Distribution of the average velocity V̄ for N total ranging from 4 to 30. The
relationship between the maximum average velocity V̄max and N total is fitted by a linear line (in red); the

normalized maximum average velocity ˜̄Vmax is denoted by the orange curve. (e) For N total = 30, the rela-
tionship between the number of sidewinding gaits corresponding to different ranges of average velocity and
the value of np . (f) Distribution of the MAAV with respect to np and n1/n2 (Color figure online)

approximated by the following linear equation (coefficient of determination r2 = 0.992,
denoted by the red line in Fig. 5(d))

V̄max = 2.15Ntotal − 9.37. (36)

Equation (36) could effectively exhibit the upper limit of the reachable average velocity. On
the other hand, the maximum average velocity is normalized by the initial length of the robot
to quantify the locomotion capability, i.e.,

˜̄Vmax = V̄max/(Ntotal · L0), (37)

which is denoted by the orange curve in Fig. 5(d). Rather than a linear relationship with
Ntotal, the normalized maximum average velocity increases rapidly when Ntotal is relatively
small, and then gradually saturates when Ntotal is larger than 20, indicating that the robot’s
locomotion capability cannot be increased infinitely by increasing the number of segments.
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To further understand the relationship between the average velocity and the gait param-
eters, the case with Ntotal = 30, which corresponds to a wide range of achievable average
velocity, is examined in detail. Here, the gait parameter np is particularly focused because
it determines the speed of state propagation, and thus imposes a strong impact on the av-
erage velocity. Figure 5(e) shows the relationship between the number of sidewinding gaits
corresponding to different ranges of average velocity and the values of np . From a general
view, with the increase of np , the number of sidewinding gaits reduces substantially, but the
achievable average velocity range expands. When np = 1, there are 1029 sidewinding gaits,
but they all correspond to relatively low average velocities within (0,10)(cm/s). When np

is increased to 3, although the number of sidewinding gaits declines to 876, there are 9 gaits
that correspond to higher average velocities within (10,30)(cm/s). As np grows, the num-
ber of gaits corresponding to low average velocities (within (0,10)(cm/s)) keeps reducing,
while the gaits corresponding to relatively high average velocities become the majority. For
example, when np = 11, there are only 2 of 284 gaits that correspond to the low average ve-
locity range (0,10)(cm/s); for np = 12 ∼ 14, all gaits correspond to relatively high average
velocities within (10,56)(cm/s).

On the other hand, the gait parameters n1 and n2 also relate to the forward thrusting of
the robot, and their effects on average velocity are thus looked into. Considering that for
given values of n1/n2 and np , multiple gaits are possible; among these gaits, the maximum
achievable average velocity (MAAV) is picked out. Figure 5(f) displays the distribution of
the MAAV with respect to n1/n2 and np . In general, with a fixed Ntotal, the growth of np will
narrow the admissible range of n1/n2 but increase the MAAV. The ratio n1/n2 could also af-
fect the MAAV, while the relationship between them is not intuitive or clear. Particularly, for
Ntotal = 30, the global maximum average velocity of sidewinding locomotion (55.54 cm/s)
is achieved at n1/n2 = 13 and np = 14.

4.2 Performance of the circular locomotion

During 2D/3D circular locomotion, the trajectory of the robot is a closed curve, and its cir-
cumcircle can be characterized by the radius and the corresponding trajectory plane. Based
upon this, three indexes are needed to evaluate the performance of the circular locomotion:
the average velocity V (defined by Eq. (35)), the normal vector of the trajectory plane enormal,
and the circumradius of the trajectory R. Different from the sidewinding locomotion, the po-
sition of the head point would return to its initial position after a certain number of periods;
and the last position of the head point after each locomotion period stays in the same plane
(i.e., the trajectory plane, see the proof in the Supplementary, Section S2). To quantify the
trajectory plane, its normal vector is defined

enormal = D1 × D2

‖D1 × D2‖ . (38)

By projecting the whole trajectory onto the trajectory plane, a curved polygon is obtained,
and its circumcircle can be determined, whose radius R can be numerically derived. Fig-
ure 6(a) and Fig. 6(b) display an example of 3D circular locomotion with gait parameters
G = {8,5,1,5,1,1 |7 }, in which the spatial trajectory, the linear displacement vector, the
trajectory plane, and the associated normal vector, and the circumcircle are denoted. As pre-
dicted, the initial position and the last position of the head point after each locomotion period
stay in the same plane; after three periods, the head point returns to its initial position.

Note that the robot needs at least three segments to achieve circular locomotion. Based
on the ‘3-5-4-6’ arrangement of the one-side contracted segments (Fig. 2(c)), all circular
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Fig. 6 Performance of circular locomotion. (a) Locomotion trajectory based on gait parameters
G = {8,5,1,5,1,1 |7 }. (b) The circumcircle of the trajectory. (c) Distribution of the normal vectors. The
red and blue lines represent the normal vectors of the yoz and xoy planes, respectively. (d) Distribution of the
circumradius R for N total ranging from 3 to 30. The relationship between the maximum circumradius Rmax
and N total is fitted by a linear line (in red); the normalized maximum circumradius R̃max is denoted by the or-
ange curve. (e) The trajectories of the head point during a period with gait parameters G = {5,8,3,0,0,1|12}
and {6,8,3,0,0,1|12}. (f) Distribution of the average velocity V̄ for N total ranging from 3 to 30. The re-
lationship between the maximum average velocity V̄max and N total is fitted by a linear line (in red); the

normalized maximum average velocity ˜̄Vmax is denoted by the orange curve. (g) For N total = 30, the rela-
tionship between the number of circular gaits corresponding to different ranges of circumradius and the value
of np . (h) For N total = 30, the relationship between the number of circular gaits corresponding to different
ranges of average velocity and the value of np (Color figure online)

locomotion gaits for T N = 3 ∼ 30 (207,276 gaits in total) are traversed. Figure 6(c) displays
the distribution of the terminal points of the normal vector enormal, which are sparse in space.

Figure 6(d) demonstrates the distribution of the circumradius with respect to the total
number of segments Ntotal. It reveals that with the increase of Ntotal, the range of achievable



Spatial locomotion of a metameric earthworm-like robot: generation. . . 347

circumradius expands notably. To better show the upper limit of the reachable circumra-
dius, a linear model is used to approximate the growth of the maximum circumradius Rmax

(coefficient of determination r2 = 0.925, denoted by the red line shown in Fig. 6(d))

Rmax = 23.15Ntotal − 63.71. (39)

The normalized maximum circumradius, defined by

R̃max = Rmax/(T N · L0), (40)

is also evaluated to quantify the robot’s turning capability, shown in Fig. 6(d). It reveals that
R̃max is not linearly dependent on Ntotal. When Ntotal is relatively small, R̃max climbs rapidly
with Ntotal; and when Ntotal > 10, the rising tendency gradually slows down.

Note that both Rmax and R̃max experience an upsurge at Ntotal = 30, which is because the
locomotion trajectory changes dramatically when the gait parameters are slightly adjusted.
Actually, the locomotion trajectory is extremely sensitive to the gait parameters. As an ex-
ample, the following two gait parameters G = {5,8,3,0,0,1|13} and {6,8,3,0,0,1|13} are
evaluated, and the corresponding locomotion trajectories in a period are plotted in Fig. 6(e).
The only difference between these two groups of gait parameters is the value of n1. With
gait parameters G = {5,8,3,0,0,1|12}, the robot (with Ntotal = 30 segments in total) could
achieve a 285.56 cm linear displacement in a period (denoted by bold arrow), and the cir-
cumradius is 841.79 cm. If we add another axially-relaxed segment into the robot, the robot
would have Ntotal = 31 segments in total, and the gait parameters are slightly changed to
G = {6,8,3,0,0,1|13}. Intuitively, the robot would attain larger linear displacement in a
period due to the increased number of axially-relaxed segments; however, surprisingly, the
achieved linear displacement slumps to 42.71 cm, and the circumradius drops to 370.16 cm.

To further understand the effects of the gait parameters on the distribution of the cir-
cumradius, the case with Ntotal = 30, which corresponds to the widest range of achievable
circumradius, is examined in detail. Figure 6(g) shows how np (np determines the speed of
state propagation) affects the number of circular gaits corresponding to different ranges of
circumradius. With the increase of np , the number of circular gaits gradually reduces. For
np = 1 ∼ 10, the gaits corresponding to relatively small circumradii (within (0,180)(cm))
account for the major part. Note that the relationship between the achievable circumradius
and the value of np is not clear. For example, large circumradii within (720,842)(cm) are
achievable for np = 13 (including 64 gaits) but are unachievable for np = 14. Actually, for
np = 14, the achievable circumradii do not exceed 360 mm, while for np = 1 ∼ 13, the range
(360,540)(cm) is achievable, and for np = 1 ∼ 4, (540, 720)(cm) is attainable. It is also
worth noting that there is a trough at np = 8, which is because the conditions for period-1
cycloid locomotion are fulfilled by some gait parameters.

We further investigate the distribution of the average velocity with respect to Ntotal, shown
in Fig. 6(f). Overall, the maximum average velocity V̄max increases monotonously with the
total number of segments Ntotal, which can be roughly fitted by a linear equation (coefficient
of determination r2 = 0.759, denoted by the red line shown in Fig. 6(f))

V̄max = 2.44Ntotal − 8.37. (41)

This curve could effectively show the upper limit of the reachable average velocity with
Ntotal segments. However, fluctuations are significant at some Ntotal because the locomotion
trajectory and linear displacement are highly sensitive to the gait parameters. The maximum

normalized average velocity ˜̄Vmax (defined in (37)) is also examined (Fig. 6(f)). After a
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quick monotonous increase for Ntotal < 10, the growth trend of ˜̄Vmax gradually slows, and
large fluctuations are observed. This manifests that for circular locomotion, enlarging N total

has a limited effect on improving the locomotion capability.
Moreover, the case with Ntotal = 30 is exemplified in detail in Fig. 6(h). Similar to

Fig. 6(g), the relationship between the number of circular gaits corresponding to different
average velocity ranges and the value of np is unclear. For np = 1, all the 3,050 circu-
lar gaits correspond to relatively low average velocities within (0,12) (cm/s); as np rises
to 4, the number of circular gaits reduces to 2,494, while higher average velocities within
(24,36)(cm/s) become achievable. The highest average velocity range (48,65)(cm/s) is
attainable for np = 9,10,12. Nevertheless, the average velocity range is narrowed from
(0,65)(cm/s) to (0,24)(cm/s) when np = 11 and 13, and it is expanded to (0,48)(cm/s)
again when np = 14.

4.3 Performance of the cycloid locomotion

4.3.1 Performance of the period-1 cycloid locomotion

For period-1 cycloid locomotion, the robot regains its heading direction after a period and
only achieves a nonzero linear displacement. Therefore, similar to the sidewinding loco-
motion, two indexes are sufficient to evaluate the period-1 cycloid locomotion, which are
the motion direction vector ev (defined in (34)) and the average velocity V̄ (defined in
(35)). Figure 7(a) shows an example of the period-1 cycloid locomotion with gait param-
eters G = {0,0,3,0,8,1 |8 }, in which the corresponding transitions, linear displacement
vector, and the motion direction vector are denoted.

Based on the physical parameters of a single segment, the robot needs at least nine
segments to fulfill the conditions for period-1 cycloid locomotion (i.e., (29)). For Ntotal =
9,11,13 ∼ 30 and the ‘3-5-4-6’ arrangement of the one-side contracted segments, all period-
1 cycloid locomotion gaits (72,656 in total) are traversed. The distribution of the terminal
points of the motion direction vectors ev is shown in Fig. 7(c), which does not exhibit a
dispersive feature. The terminal points of ev mainly stay on a few circles with origin (0,0,0),
including the circles on the xoy and yoz planes (denoted by blue and red points, respectively).

The relationship between the average velocity V̄ and the gait parameters is also exam-
ined. Figure 7(c) displays the distribution of the average velocity with respect to the total
number of segments Ntotal. It shows that the maximum average velocity V max increases
monotonously with Ntotal, and the relationship can be approximated by a second-order poly-
nomial (coefficient of determination r2 = 0.9924, denoted by the red line shown in Fig. 7(c))

V max = −0.041N2
total + 0.57Ntotal − 7.53. (42)

The fitted curve could effectively show the upper limit of the reachable average velocity. The

maximum normalized average velocity ˜̄Vmax (defined in (37)) is also plotted in Fig. 7(b).

When Ntotal is relatively small, ˜̄Vmax climbs rapidly with significant fluctuations; when Ntotal

is relatively large, being different from the sidewinding and circular locomotion, a flattening

trend is not observed, and ˜̄Vmax keeps swelling quickly. This indicates that for the period-1
cycloid locomotion, increasing the number of segments is a feasible approach to enhance
the robot’s locomotion capability.

With Ntotal = 30, the effect of np on the number of period-1 cycloid gaits corresponding
to different ranges of average velocity is further exemplified, shown in Fig. 7(d). Unlike
sidewinding and circular locomotion, the conditions for period-1 cycloid locomotion (i.e.,
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Fig. 7 Performance of the period-1 cycloid locomotion. (a) Locomotion trajectory and the corresponding
transitions based on gait parameters G = {0,0,3,0,8,1 |8 }. (b) Distribution of the motion direction vectors
in space. The blue and red points represent the motion direction vectors corresponding to the 2D period-1
cycloid locomotion in the xoy and yoz planes, respectively. (c) Distribution of the average velocity for N total
ranging from 9, 11, 13-30. The relationship between the maximum average velocity V̄max and Ntotal is fitted

by a quadratic curve (in red); the normalized maximum average velocity ˜̄Vmax is denoted by the orange curve.
(d) For Ntotal = 30, the relationship between the number of period-1 cycloid gaits corresponding to different
ranges of average velocity and the value of np (Color figure online)

conditions given in (29)) can only be satisfied at certain np (np = 4,8,9,12). This explains
why the numbers of admissible gaits for np = 4,8,9,12 in circular and period-k cycloid
locomotion are diminished (see Fig. 6(g), 6(h) and Fig. 8(f), (g)). With larger np , the achiev-
able average velocities can be higher. For example, when np = 4, all gaits correspond to
relatively low average velocities within (0,20)(cm/s), while for np = 12, the achievable
range becomes (10,46)(cm/s).

4.3.2 Performance of the period-k cycloid locomotion

For period-k cycloid locomotion, the robot will regain its heading direction and reach a
nonzero linear displacement after k periods, and the shape of the corresponding trajectory is
similar to a cylinder. Hence, the trajectory can be characterized by the height, the direction
of the central axis, and the radius. Based on this, three indexes are proposed to evaluate the
performance of period-k cycloid locomotion, which are the direction vector of the cycloid’s
central axis eAxial, the circumradius of the trajectory R, and the average axial velocity V Axial

along the central axis.
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Fig. 8 Performance of the period-k cycloid locomotion. (a) Locomotion trajectory and the corresponding
transition based on gait parameters G = {0,1,1,1,0,1 |2 }. (b) The circumcircle of the trajectory on the
projection plane. (c) Distribution of the direction vectors in space. The blue and red points represent the
direction vectors within the xoy and yoz planes, respectively. (d) Distribution of the circumradius for Ntotal
ranging from 3 to 30. The relationship between the maximum circumradius Rmax and Ntotal is fitted by a
linear line (in red); the normalized maximum circumradius R̃max is denoted by the orange curve. (e) Dis-
tribution of the average velocity V̄ for Ntotal ranging from 3 to 30. The relationship between the maximum
average axial velocity V̄max and Ntotal is fitted by a quadratic curve (in red); the normalized maximum av-

erage axial velocity ˜̄Vmax is denoted by the orange curve. (f) For Ntotal = 30, the relationship between the
number of period-k cycloid gaits corresponding to different ranges of circumradius and the value of np .(h)
For Ntotal = 30, the relationship between the number of period-k cycloid gaits corresponding to different
ranges of average axial velocity and the value of np (Color figure online)

Note that the cycloid’s central axis is parallel to the vector pointing from the initial posi-
tion to the last position of the head point after k periods. Hence, the direction vector of the
cycloid’s central axial can be calculated as

eAxial = Dk/‖Dk‖ . (43)

With this direction vector as the projection axis, the projection plane can be determined. By
projecting the trajectory to the projection plane, the circumcircle of the projected trajectory
with circumradius R can be determined through numerical methods. The average axial ve-
locity is defined as the average velocity of the robot’s head point along the central axis of
the cycloidal trajectory in a period. It can be calculated by projecting the linear displace-
ment vector D in a period onto the central axis eAxial, and then divided by the period time
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μ(Ntotal/np)�t , i.e.,

V̄Axial = ‖D · eAxial‖
(LCM(Ntotal, np)/np)�t

. (44)

Figure 8(a) shows an example of the period-k cycloid locomotion with gait parameters
G = {0,1,1,1,0,1 |2 }. The corresponding transitions, linear displacement vector, projec-
tion plane, and the direction vector of the cycloid’s central axis eAxial are denoted. It is worth
noting that the projected trajectory after k periods will overlap the previous one (Fig. 8(b)).

Based on the physical parameters of a single segment, the robot needs at least five seg-
ments to fulfill the conditions for period-k cycloid locomotion (i.e., (33)). For Ntotal = 5 ∼ 30
and the ‘3-5-4-6’ arrangement of the one-side contracted segments, all period-k cycloid lo-
comotion gaits (744,392 in total) are traversed, and the terminal points of the direction vector
eAxial are plotted in Fig. 8(c). Overall, the points are sparse in distribution. The vectors lo-
cated within the xoy and yoz planes (denoted by blue and red dots, respectively) account
for the main part of the points, while the points located outside the xoy and yoz planes are
scares.

Figure 8(d) displays the distribution of the circumradius R with respect to Ntotal. Overall,
the range of achievable circumradius expands notably with the increase of Ntotal, and the
maximum circumradius Rmax exhibits an almost linear relationship with Ntotal, which can
be approximated by a linear model (coefficient of determination r2 = 0.925, denoted by the
red line shown in Fig. 8(d))

Rmax = 23.34Ntotal − 99.41. (45)

The curve determined by Eq. (45) can effectively show the upper limit of the reachable
circumradius. For the normalized radius defined in (40) (orange curve in Fig. 8(d)), rather
than linear growth, it will gradually saturate when N total increases. Note that at Ntotal =
17,18,22,23,30 obvious fluctuations can be observed because the locomotion trajectory is
highly sensitive to the gait parameters (see examples in Supplementary, Section S3).

Similarly, the case with Ntotal = 30 is examined in detail to understand the effects of the
gait parameters on the distribution of the circumradius. Figure 8(f) shows the distribution of
the circumradius with respect to np . Overall, the number of period-k cycloid gaits reduces
as np increases. Among the 126,448 admissible gaits, 97.44% correspond to relatively small
circumradii ranging between (0,300)(cm), and only 192 gaits (0.15%) correspond to large
circumradii between (600,866)(cm), which are achieved when np = 13. Also, the number
of period-k cycloid gaits experiences troughs at np = 4 and 8, which is because the condi-
tions for period-1 cycloid locomotion are met (see Fig. 7(d)).

The distribution of the average axial velocity for different values of Ntotal is also ex-
amined, shown in Fig. 8(e). The upper limit of the reachable axial velocity (the maximum
axial velocity V Axial,max) increases monotonously with Ntotal, which can be approximated by
a second-order polynomial (coefficient of determination r2 = 0.9996, denoted by the red
curve in Fig. 8(e))

V Axial,max = 0.045N2
total + 0.28Ntotal − 2.45. (46)

The normalized maximum average axial velocity ˜̄VAxial,max (defined in (37)) is also inves-
tigated, shown in Fig. 8(e) with the orange curve. Rather than the saturation phenomena

observed in the sidewinding and circular locomotion, ˜̄VAxial,max keeps increasing with re-
spect to Ntotal in an almost constant slope.
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Considering the case with Ntotal = 30, we also demonstrate the effects of np on the num-
ber of period-k cycloid gaits corresponding to different average axial velocities (Fig. 8(h)).
It reveals that when np = 1,2, all period-k cycloid gaits (35,760 in total) correspond to rel-
atively low average axial velocity within (0,10)(cm/s). With the increase of np , relatively
high velocities become attainable, while the number of gaits is limited. For example, average
axial velocities ranging between (40,47)(cm/s) are achievable when np = 9 ∼ 11,13,14,
while the number of gaits is only 60, which accounts for 0.047% of the total period-k cycloid
gaits.

4.3.3 Performance of the irrational cycloid locomotion

The trajectory of irrational cycloid locomotion is very similar to the period-k cycloid loco-
motion, whose shape is also similar to a cylinder. As a result, we still choose the direction
vector of the cycloid’s central axis eAxial, the circumradius of the trajectory R, and the aver-
age axial velocity V Axial along the central axis to evaluate the performance of the irrational
cycloid locomotion. Note that for irrational cycloid locomotion, the robot will not regain its
initial heading direction within 3,000 periods. Hence, the direction vector of the cycloid’s
central axis cannot be expressed by (43) anymore and is re-defined via

(Dk+1 − Dk) · eAxial = (Dk+2 − Dk+1) · eAxial, k > 1. (47)

Equation (47) indicates that the projection of the linear displacement vector onto the central
axis keeps constant in each period, and it can be solved via numerical methods. Based on
this direction vector, the projection plane can be determined. By projecting the trajectory to
the projection plane, the circumcircle of the projected trajectory with circumradius R can be
obtained via numerical methods. The average axial velocity can still be calculated by (44).
Figure 9(a) shows an example of irrational cycloid locomotion based on gait parameters
G = {0,1,0,2,0,1 |1 }, in which the linear displacement vector and the direction vector of
the cycloid’s central axis eAxial are denoted. Figure 9(b) displays the projected trajectory in
30 periods and the corresponding circumcircle. Note that the projected trajectory of each
period does not overlap, and they will constitute a dense ring when the number of periods
increases.

Based on the physical parameters of a single segment, the robot needs at least four seg-
ments to meet the conditions for the irrational cycloid locomotion. For Ntotal = 4 ∼ 30 and
based on the ‘3-5-4-6’ arrangement of one-side contracted segments, 2,783,152 gaits are
admissible for the irrational cycloid locomotion, and they are comprehensively analyzed.
Specifically, corresponding to these gaits, the terminal points of the direction vector eAxial

are plotted in Fig. 9(c). It shows that the direction vectors are dense in spatial distribution,
indicating that many directions are available for the cycloid’s central axis. However, it is
worth noting that, being different from the period-k cycloid locomotion, direction vectors
locating within the xoy plane or the yoz plane are not found.

The circumradius of the trajectory is also studied. Figure 9(d) plots the distribution of
the circumradius with respect to Ntotal in logarithmic coordinate. Overall, the achievable cir-
cumradii are densely distributed, and the range gradually enlarges as Ntotal increases. When
Ntotal ≥ 16, some dispersed large radii (over 103 (cm) or even over 104 (cm)) are observed,
although their quantities are small. In fact, 99.57% of the irrational cycloid locomotion gaits
correspond to the circumradius range (100,103)(cm).

The case with Ntotal = 30 is also exemplified to uncover the relationship between the
number of irrational cycloid gaits corresponding to different ranges of circumradius and
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Fig. 9 Performance of the irrational cycloid locomotion. (a) Locomotion trajectory and the corresponding
transition based on gait parameters G = {0,1,0,2,0,1 |1 }. (b) The circumcircle of the trajectory on the pro-
jection plane. (c) Distribution of the direction vectors in space. (d) Distribution of the circumradius for Ntotal
ranging from 3 to 30. (e) Distribution of the average velocity V̄ for Ntotal ranging from 3 to 30. The rela-
tionship between the maximum average axial velocity V̄max and Ntotal is fitted by a quadratic curve (in red);

the normalized maximum average axial velocity ˜̄Vmax is denoted by the orange curve. (f) For Ntotal = 30,
the relationship between the number of irrational cycloid gaits corresponding to different ranges of circumra-
dius and the value of np .(h) For Ntotal = 30, the relationship between the number of irrational cycloid gaits
corresponding to different ranges of average axial velocity and the value of np (Color figure online)

the values of np (Fig. 9(f)). The number of irrational cycloid gaits reduces steadily as np in-
creases. Among the 452,470 admissible gaits, 93.86% correspond to relatively small circum-
radii ranging between (0,200)(cm), while only 0.33% correspond to large circumradii rang-
ing between (800,5119)(cm). Particularly, the highest circumradius range (800,5119)(cm)

can only be achieved when np = 11,13.
We further investigate the relationship between the average axial velocity and the total

number of segments Ntotal, as shown in Fig. 9(e). As Ntotal increases, the upper limit of
reachable average axial velocity (maximal average axial velocity V̄Axial,max) improves sig-
nificantly, which can be approximated by a second-order polynomial (coefficient of deter-
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mination r2 = 0.9993, denoted by the red curve in Fig. 9(e))

V̄Axial,max = 0.052N2
total + 0.14Ntotal − 1.63. (48)

The maximum normalized average axial velocity ˜̄VAxial,max (defined in (37)) is also exam-
ined, denoted by the orange curve in Fig. 9(e). Similar to the period-k cycloid locomotion,

there is an almost linearly increasing relationship between ˜̄VAxial,max and Ntotal, without a
saturation phenomenon.

Taking the case with Ntotal = 30 into consideration, the effects of np on the number of
irrational cycloid gaits corresponding to different average axial velocity ranges are demon-
strated (Fig. 9(g)). Overall, the number of irrational cycloid gaits and np are inversely cor-
related, while the achievable average axial velocity range expands with np . When np = 1,
all the 62,163 irrational cycloid gaits correspond to relatively low average axial velocities
ranging between (0,10)(cm/s). When np is increased to 4, the number of admissible gaits is
reduced to 47,980, while 28 gaits could achieve higher average axial velocities ranging be-
tween (20,30)(cm/s). As np keeps growing, the number of gaits corresponding to relatively
low average axial velocities within (0,10)(cm/s) keeps reducing but would never decline
to zero. When np takes a value between 10 ∼14, a wide range of the average axial velocity
(0,49)(cm/s) could be achieved, although the gaits corresponding to the high average axial
velocity range (40,49)(cm/s) are rare.

In sum, the above investigation systematically uncovers the relationship between the gait
parameters (mainly focused on Ntotal and np) and the locomotion performance. Considering
that the trajectories for different locomotion types are qualitatively different in geometric
characteristics, different kinematic indexes are examined to evaluate the locomotion perfor-
mance. The revealed results, demonstrated in Fig. 5–9 and Table 2, could provide useful
guidelines for inverse gait design aiming at different tasks.

5 3D gait planning

With the above-mentioned rich locomotion types, we are interested to know how to choose
appropriate gait parameters to reach a given goal point in space. This, however, is a tough
problem for spatial locomotion because the gait library is vast and expands exponentially as
the number of total segments increases (Fig. 10(a)). For example, for Ntotal = 3 ∼ 30, the
total number of gaits is 3,862,188. As a result, the 3D gait planning problem is tacked via
the genetic algorithm [39] in this research.

5.1 Problem definition and objectives

The earthworm-like robot is asked to reach the target position in 3D space from the starting
position in terms of the head point. Here, we assume that there is no barrier in the robot’s
working environment. The path between the starting and target positions is not prescribed
but determined by gait parameters. Hence, the aim of gait planning is to determine the opti-
mal gait so that the robot can reach the target position with the best performance. Generally,
the robot is expected to reach the target position accurately and quickly. To this end, two ob-
jective functions are defined to evaluate the proximity to the target position and the required
time to reach the target position.



Spatial locomotion of a metameric earthworm-like robot: generation. . . 355

Fig. 10 Bi-objective gait
planning. (a) The number of gaits
increases significantly with
Ntotal. The number of gaits
corresponding to different
locomotion modes are indicated
by different colors. (b)–(f) The
Pareto fronts (denoted by red
points) of the sidewinding,
circular, period-1 cycloid,
period-k cycloid, and irrational
cycloid locomotion. Particularly,
the proximity-optimal gait (red
triangle) and the speed-optimal
gait (red circle) are marked,
respectively. (g) The Pareto front
of all locomotion modes (Color
figure online)

Specifically, the proximity to the target position is defined as the Euclidean distance
between the target position x∗ = (x∗, y∗, z∗)T and the robot head position xt = (xt , yt , zt )T

at current time t , i.e.,

f1(G, t) = d(x∗,xt ) = ∥∥x∗ − xt
∥∥

2
. (49)

The robot is closer to the target position if f1 is smaller. The required time for reaching the
target position is equivalently defined by the number of transitions (denoted by f2(G)) the
robot undergoes for reaching the target. It quantifies the speed of the robot. A smaller value
of f2 suggests that the robot reaches the target more quickly. Note that f2 is meaningless if
the robot cannot reach the target under a certain gait.

The two objective functions are considered simultaneously when planning the gait for im-
proving the locomotion performance. Fundamentally, this is a multi-objective optimization
problem. In this research, it is handled by the genetic algorithm, and the gaits are evaluated
numerically. Considering the huge gait library and to improve the optimization efficiency,
two stopping criteria are set for the numerical simulation process. Before describing the cri-
teria, the neighborhood of the target position x∗ = (x∗, y∗, z∗)T is defined, which is as an
open ball with the center x∗ and the radius ε

B(x∗, ε) = {x ∈ R
3 : d(x∗,x) = ∥∥x∗ − x

∥∥
2
< ε}. (50)

Hence, the two stopping criteria can be described as follows.
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Criteria 1 If the robot head has already been located within the neighborhood B(x∗, ε) at
time ts , and through the next transition during the interval (ts , ts + �t ), the Euclidean dis-
tance between the current position and the target position (i.e., f1(G, ts + �t)) increases
with respect to the last transition (i.e., f1(G, ts)), the numerical simulation will be stopped,
and the current gait parameters will be output. The aim of this criterion is to prevent the
deterioration of an optimized gait.

Criteria 2 If the robot head has not entered the neighborhood B(x∗, ε), and the Euclidean
distance between the current position and the target position keeps increasing for CN

consecutive state transitions, the numerical simulation will be stopped and the under-
investigated gait will be abandoned. The aim of these criteria is to prevent from spending
too much simulation time on a bad gait.

If any of the stopping criteria is triggered, the simulation of the current gait will be
stopped, and the optimization process will jump out of the current gait and evaluate the next
admissible gait.

5.2 3D gait planning

As an example, we consider the 3D gait planning problem of a 30-segment robot, which
possesses 2,783,152 admissible gaits in total. The starting position of the robot’s head point
is set as (0,0,0)T, the initial heading direction is toward the positive y-axis (i.e., the heading
direction vector is Ht =0 = (0,1,0)T), and the target position is set as (400,600,20)T. The
critical values in Criteria 1 and 2 are set as ε = 30 cm, CN = 480. Note that the robot will
keep moving along the y axis in rectilinear locomotion. Hence, only sidewinding, circular,
period-1 cycloid, period-k cycloid, and irrational cycloid locomotion are included in 3D gait
planning.

Figure 5–9 have revealed that the gaits with larger np are more likely to induce a rela-
tively high average velocity of the robot. However, the gaits with larger np also give rise
to larger stride lengths that may keep the robot head from entering the neighborhood of the
target position. In other words, the two objective functions may contradict each other, and
tradeoffs are needed when searching for the optimal gait. As a result, the Pareto front, which
is the set of nondominated solutions [52], is sought so that tradeoffs can be made within this
set, rather than considering the full gait library. Figure 10(b) ∼10(f) respectively displays the
Pareto front (denoted by the red points) corresponding to the sidewinding, circular, cycloid,
period-k cycloid, and irrational cycloid locomotion. The dominated solutions are plotted by
the grey point.

For sidewinding locomotion (Fig. 10(b)), the Pareto front consists of four points, which
are connected by solid lines. These four solutions are considered as optimal since no objec-
tive can be improved without sacrificing at least one other objective. Among them, two gaits
are special. The first one G = {11,5,5,1,1,6|1} (denoted by the red triangle in Fig. 10(b))
is the optimal gait in terms of proximity (f1 = 4.62 cm), which means that under this gait,
the robot can reach the target position more accurately than the other gaits. The second one
G = {7,4,4,0,0,1|14} (denoted by the red circle in Fig. 10(b)) is the optimal gait in terms
of the required time, indicating that under this gait, the robot can enter the neighborhood of
the target position with the least number of transitions (f2 = 26). For the other four locomo-
tion modes, the proximity optimal and the required-time optimal gaits can also be identified.
Integrating the five cases, the global Pareto front can be obtained, shown in Fig. 10(g). The
proximity-optimal (f1 = 4.62 cm) gait is a sidewinding locomotion gait with parameters
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G = {11,5,5,1,1,6|1}, while the speed-optimal (f2 = 21) gait is a circular locomotion
gait with parameters G = {22,1,0,0,0,1|6}. Overall, the optimization results, including
the global Pareto front and the Pareto front for each locomotion mode, could provide useful
guidelines for selecting gait aiming at different objectives.

6 Summary and conclusions

Previous research has uncovered the relationship between the gaits and the locomotion per-
formance of the earthworm-like robot in the 1D and 2D scenarios, while the investigation
of spatial locomotion is a complete blank. To advance the state of the art, this research sys-
tematically investigates the 3D locomotion of the earthworm-like robot from five aspects:
multibody kinematic modeling, 3D gait generation, locomotion classification, spatial loco-
motion characteristics, and 3D gait planning.

First, a generic N -segment multibody kinematic model is developed in this research. The
model not only captures the main deformation characteristics of the origami earthworm-like
robot prototype, but also applies to other metameric robots with similar 3D deformability.
Based on this model and learning from the fundamental locomotion mechanism, i.e., the ret-
rograde peristalsis wave, a generic gait-generation algorithm is proposed, based on which,
all admissible locomotion gaits can be generated. By examining the characteristics of the tra-
jectory, the robot’s locomotion is classified into four major types, and further, ten modes, and
their defining conditions in terms of the gait parameters are derived. Among these modes,
3D sidewinding, 3D circular, and 3D cycloid locomotion are observed for the first time. For
each mode, different indexes, including the average velocity, the direction vector, and the
trajectory’s circumradius, are comprehensively evaluated to clarify the relationship between
the robotic locomotion performance and the gait parameters.

With a vast gait library for spatial locomotion, the 3D gait planning problem is also
tackled in this research. Aiming at reaching the target position both quickly and precisely,
a bi-objective optimization of the gait parameters is carried out. Two objective functions
are defined to evaluate the proximity to the target position and the required time to reach
the target position. Noting that these two objective functions are always contradictory, the
Pareto front is determined via the genetic algorithm so that tradeoffs between the accuracy
and the speed can be made within this set.

This research is a crucial step toward a generalized 3D gait analysis framework. At the
current stage, the proposed gait generation, analysis, and planning algorithms still lack an
experimental verification, because a mature robot platform for spatial gait study is not yet
available. As a result, this research offers not only important guidelines but also a strong
impetus to the design of earthworm-like robots with spatial locomotion capability. Another
possible topic for future research is the dynamic analysis of spatial locomotion by consid-
ering the actuation force and the environmental contact [53]. In this study, the actuation and
the anchoring are all assumed to be ideal, which confines the problem within the kinematic
realm. However, the assumptions cannot be always met for a practical robot prototype, and
a fine dynamic model by incorporating the limited actuation force and the nonsmooth fric-
tion force becomes a necessity. Previous studies on the dynamics of earthworm-like robot
rectilinear locomotion [9, 26] and snake-like robot locomotion [54] could provide some
reference.
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