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Abstract
The dynamic behaviour of parachutes is highly complex and characterised by non-linear,
time-dependant, Fluid–Structure Interactions, which is computationally intensive and hence
not a viable option for incorporating into trajectory simulations. The paper describes mod-
elling of a “Computationally efficient, High Fidelity Multi-Body” Parachute–Elastic Riser–
Payload system, capable of simulating trajectory from parachute deployment to parachute
separation. The matrix form of Kane’s method is used to derive the kinematic and dynamic
equations of motion for the system, which avoids the complications of symbolically de-
riving these equations. The developed model is validated with published literature results
formulated using the Newton–Euler method and simulation results describing the typical
trajectory and attitude of the system during the descent phase are presented.

Keywords Multi-body dynamics · Parachute–Riser–Payload system · Kane’s method ·
Generalised coordinates · Parachute opening transients · Equations of motion

1 Introduction

Parachutes belong to the class of aerodynamic decelerators, serving the primary purpose
of controlling the descent rate of any payload and ensuring a smooth and accurate landing.
They are used in a wide variety of applications like skydiving, planet-probe landing, human-
capsule recovery, aerial delivery of equipments and supplies, etc. [10]. A typical deceleration
system for spacecraft recovery consists of a clustered parachute system comprising different
kinds of parachutes, which deploy in a predetermined sequence to bring down the velocity
of the spacecraft to safe levels at the instant of splash-down whilst maintaining the stability
of the system [13].

Available literature like Fallon (1991) [2], Guglieri (2012) [4], Ibrahim and Engdahl
(1974) [8] and Paul et al. (2016) [13], have modelled a multi-body Parachute Payload sys-
tem using the Newton–Euler method with varying degrees of freedom and validated their
model with actual flight data. However, this formulation involves deriving the internal con-
straint forces, which tends to become tedious when the complexity of the system increases,
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as in the case of a multi-chute system. On the other hand, analytical methods like the Euler–
Lagrange method requires differentiation of a scalar Lagrangian function, which can become
a laborious task for systems with higher degrees of freedom and can lead to the issue of in-
termediate swell, as reported by Duan (2006) [1]. Kane’s method is widely used to model
complex multi-body systems with high degrees of freedom, attributable to its use of gener-
alised speeds. It results in a simplistic vectorial form of equations of motion involving partial
velocity and accelerations, describing the system as a whole and eliminating the need to de-
rive constraint forces and moments. Stoneking (2013) [16] presented a matrix formulation
of Kane’s equation for fixed-mass systems, which has a form more suitable for computers
and that can be numerically solved in a faster and efficient manner [12]. However, matrix
expressions to model variable-mass systems are not provided, which has been addressed in
this paper.

Ke et al. (2009) [10] presented a generic algorithm to model and simulate the dynam-
ics of any general parachute-payload configuration, including the parachute-opening tran-
sients and contact forces, using the analytical form of Kane’s equation. During the phase of
parachute deployment and inflation, the canopy shape as well as volume of trapped air in-
side the canopy increases quickly due to inflation, resulting in a change in drag as well as the
overall CG of the parachute, which is not accurately modelled in Ke et al. (2009) [10]. How-
ever, modelling these processes with high fidelity is essential as maximum axial as well as
lateral loads on the payload occurs in this phase, which is highly critical for human-capsule
recovery missions.

This paper discusses the modelling of a Parachute–Riser–Payload System (PRPS) con-
sisting of a rigid payload and a rigid parachute linked using an elastic riser having a non-
zero mass using the matrix form of Kane’s equation. This high-fidelity model is capable
of simulating the parachute dynamics from parachute deployment till parachute separation,
including the parachute-opening transients where the PRPS acts as a constant-mass system
with variable-mass bodies. The variation in drag as well as parachute geometry during the
parachute inflation are also accounted for and validated with flight results achieved from the
payload-airdrop tests. Analytical expressions for fore-body wake effects and energy modifi-
cations due to apparent mass have also been included to make the model more realistic.

1.1 Notations

The list of notations used in this paper to represent various vector quantities and matrices is
given in Table 1, following the standards used in Pal (2020) [12].

2 Kane’s method for variable-mass systems

Hurtado (2018) derived the Lagrange–Cayley equations for variable-mass systems from first
principles, considering the kinematic relationships due to mass variations [7]. For a variable-
mass multi-body system, consisting of Nb rigid bodies with n degrees of freedom, the sys-
tem dynamics in Kane’s form is developed as a set of scalar equations following Kane and
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Table 1 Notations

Notation Description

BCA Transformation matrix to transform vector from frame A to frame B

C �ωA/B Angular velocity of body A with respect to body B expressed in frame C

C �αA/B Angular acceleration of body A with respect to body B expressed in frame C

C �rP/n Vector representing position of point P with respect to reference point n expressed in frame C

C �vP/n Vector representing velocity of point P with respect to reference point n expressed in frame C

C �aP/n Vector representing acceleration of point P with respect to reference point n expressed in
frame C

C �FB
name Force vector identified with name acting on body B expressed in the frame C

C �MB/o
name Moment vector identified with name acting on body B about the point o, expressed in the

frame C

Levison (1985) [9], extended from the Hurtado formulation using d’Alembert principle:

Nb∑

k=1

[
�ωk

r ·
( �Mk − Ik �αk − İk �ωk − �ωk×Ik �ωk

)]
+

Nb∑

k=1

[
�vk
r ·

( �Fk − mk�ak − ṁk �vk

)]

+
Nb∑

k=1

⎡

⎣
∑

j

(
�vk
r,j ·

( �fj,k − ṁj,k �vj,k

))
⎤

⎦= 0,

r = 1,2, . . . , n,

(1)

where �Fk and �Mk are the active forces and moments acting on the kth body, respectively.
�vk
r and �ωk

r are the partial linear velocity and partial angular velocity of the kth body with
respect to the r th generalised speed. �ak and �αk are the linear and angular acceleration of
the kth body, and �vk and �ωk are the respective linear velocity and angular velocity of the
CG. mk defines the mass, and Ik defines inertia tensor of the kth body in its own body axis
with respect to the CG [12]. �vk

r,j is the partial linear velocity of the ejected mass from the

j th ejection location of kth body with respect to the r th generalised speed, �fj,k is the force
acting on the j th ejected mass from the kth body and �vj,k is the inertial velocity of the j th
ejected mass from the kth body.

Stoneking (2013) [16] styled the matrix form of Kane’s formulation for a constant-mass
rigid-body system. This is extended to include variable-mass effects, consistent with Equa-
tion (1) as

(
�T [I ]�+V T [m]V )

u̇ =
�T

({M}−[I ]{αr}− ˙[I ]{ω}−{ω}×[I ]{ω})

+V T
({F }− ˙[m]{v}−[m]{ar}

)+V T
EJ

({FEJ }− ˙[MEJ ]{vEJ }) ,
(2)

where V and � are the partial linear and angular velocity matrices, ar and αr are the remain-
der linear acceleration and angular acceleration respectively, v and ω are the linear velocity
and angular velocity vectors, F and M are the multi-body force and moment matrices, m

and I are the multi-body mass and inertia matrices and �u is column vector of generalised
speeds, consistent with the nomenclature used by Stoneking (2013) [16]. VEJ represents the
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Fig. 1 Illustration of Coordinate
System and 12-DoF PRPS model

partial linear ejection velocity matrix, FEJ is the ejected mass force matrix and MEJ is the
generalised multi-body ejection mass matrix.

VEJ defined in Equation (2) is a 3-dimensional array, which can result in computationally
intensive multiplication operation. Hence, a generalised reaction thrust generated as a direct
consequence of mass variation is added in �Mk and �Fk matrices, as described in Ge et al.
(1982) [3], simplifying Equation (2) as

(
�T [I ]�+V T [m]V )

u̇ =
�T

({M}−[I ]{αr}− ˙[I ]{ω}−{ω}×[I ]{ω})

+V T
({F }− ˙[m]{v}−[m]{ar}

)
.

(3)

3 Mathematical modelling

3.1 Modelling of Parachute–Riser–Payload system

The 3-body PRPS presented in this paper is shown in Fig. 1, with O1, O2 and O3 being
the CGs of payload, riser and parachute, respectively. An elastic riser is connected to the
payload (at the riser attachment point) on one end using a universal joint J1 and to the
parachute (at the parachute confluence point) on other end with a spherical joint J2. From J2,
the suspension lines of the parachute fork out, with a semi-oblate spheroid canopy attached
to it, forming the rigid-body parachute.

The following assumptions are considered while modelling the PRPS, consistent with
the assumptions used in Ke et al. (2009) [10] and Fallon (1991) [2]:
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– The surface area of the suspension lines and riser are considered small enough to neglect
aerodynamic forces and moments.

– The forces due to twisting of the riser and suspension-line cables are considered negligi-
ble.

– Variation in parachute geometry and aerodynamic forces and moments due to distortion
in the shape of the canopy are neglected.

– The aerodynamic centres of pressure remain on the axes of symmetry of the vehicle and
the parachute, but do not necessarily coincide with the centres of mass of those bodies.

– Trajectory simulations are carried out considering the flat-Earth assumption.

3.2 Coordinate frames

The reference frames used in modelling the PRPS, as shown in Fig. 1, are described below:

– Inertial reference frame N (XN , YN , ZN ) – This reference frame is selected as the Launch
Point Inertial (LPI) frame. The origin is fixed at time t = 0 on the Earth’s surface directly
below the Payload CG. The XN axis is along the local vertical pointing away from the
ground, ZN lies in the horizontal plane making an angle ψL with local north and the YN

axis completes the right-handed coordinate system.
– B1 frame (XB1, YB1, ZB1) – This is the payload body frame with its origin at payload CG

O1. The XB1 axis is along the longitudinal axis and positive towards the apex cover, ZB1

axis is in the horizontal plane and pointing towards the hatch and the YB1 axis completes
the right-handed coordinate system.

– B2 frame (XB2, YB2, ZB2) – This is the riser body frame with origin at riser CG O2 and
the XB2 axis along the length of the riser pointing towards the parachute confluence point
J2.

– B3 frame (XB3, YB3, ZB3) – This is the parachute body frame with its origin at the
parachute CG O3. The XB3 axis is along the longitudinal axis of the parachute point-
ing towards the canopy.

3.3 Vector of generalised coordinates and speeds

The degrees of freedom for this multi-body system are designated as:

– Payload is represented as a rigid body having 6 degrees of freedom – 3 translational de-
grees of freedom in the inertial space, given by N �r0 = (x0, y0, z0) and 3 rotational degrees
of freedom about the CG O1, denoted by space-fixed Euler angle θpay and intermediate
body-fixed Euler angles ψpay and φpay . The rotational transformation from the N frame
to the B1 frame is characterised using the following sequence of rotation:

N
about Y−−−→
by θpay

B ′
1

about Z−−−−→
by ψpay

B ′′
1

about X−−−−→
by φpay

B1.

The rotation matrix is derived using the methodology as mentioned in Henderson (1977)
[6]:

NCB1 = (
B1CN

)T



604 P.G. Iyer

=

⎡

⎢⎢⎢⎣

cos θpay cosψpay − cos θpay sinψpay cosφpay cos θpay sinψpay sinφpay

+ sin θpay sinφpay + sin θpay cosφpay

sinψpay cosψpay cosφpay − cosψpay sinφpay

− sin θpay cosψpay sin θpay sinψpay cosφpay − sin θpay sinψpay sinφpay

+ cos θpay sinφpay + cos θpay cosφpay

⎤

⎥⎥⎥⎦.

(4)

– The riser B2 has 2 rotational degrees of freedom about the joint J1, denoted by the body-
fixed relative Euler angles θriser and ψriser and 1 translational degree of freedom due to
its elastic property, i.e. Lriser . The rotational transformation from the B1 frame to the B2

frame is characterised using the following order of rotation:

B1
about Y−−−−→
by θriser

B ′
2

about Z−−−−→
by ψriser

B2.

The rotation matrix corresponding to the rotation sequence is

B1CB2 = (
B2CB1

)T =
⎡

⎣
cos θriser cosψriser − cos θriser sinψriser sin θriser

sinψriser cosψriser 0
− sin θriser cosψriser sin θriser sinψriser cos θriser

⎤

⎦ . (5)

– Parachute B3 is considered a rigid body having 3 rotational degrees of freedom about
the joint J2, denoted by the body-fixed relative Euler angles θpar , φpar and ψpar . The
following order of rotation defines the rotational transformation from B2 to B3 frame:

B2
about Y−−−→
by θpar

B ′
3

about X−−−−→
by φpar

B ′′
3

about Z−−−−→
by ψpar

B3.

The rotation matrix is given by

B2CB3 = (
B3CB2

)T

=

⎡

⎢⎢⎢⎢⎣

sin θpar sinφpar sinψpar sin θpar sinφpar cosψpar sin θpar cosφpar

+ cos θpar cosψpar − cos θpar sinψpar

cosφpar sinψpar cosφpar cosψpar − sinφpar

cos θpar sinφpar sinψpar cos θpar sinφpar cosψpar cos θpar cosφpar

− sin θpar cosψpar + sin θpar sinψpar

⎤

⎥⎥⎥⎥⎦
.

(6)

Based on the 12 degrees of freedom of the system, the selected generalised speeds are
represented as a column vector as follows:

�u = [�ω1, σ2, σ3, �v1, L̇riser ]T , (7)

where,

�ω1 =
⎧
⎨

⎩

ppay

qpay

rpay

⎫
⎬

⎭ , σ2 =
{

θ̇riser

ψ̇riser

}
, σ3 =

⎧
⎨

⎩

θ̇par

φ̇par

ψ̇par

⎫
⎬

⎭ , �v1 =
⎧
⎨

⎩

ẋ0

ẏ0

ż0

⎫
⎬

⎭ . (8)
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3.4 Derivation of equations of motion

The relative angular body rates of each of the bodies (ω) can be represented in terms of the
joint angular rates (σ ) using a “joint partial matrix (	) [16]” as follows:

B1 �ωB1/N = �ω1
B2 �ωB2/B1 = 	2σ2

B3 �ωB3/B2 = 	3σ3, (9)

where,

	2 =
⎡

⎣
sinψriser 0
cosψriser 0

0 1

⎤

⎦ ,	3 =
⎡

⎣
cosφpar sinψpar cosψpar 0
cosφpar cosψpar − sinψpar 0

− sinφpar 0 1

⎤

⎦ . (10)

The angular velocities of the three bodies Bi , i = 1,2,3, with respect to the inertial frame
N expressed in the corresponding body frame can be derived as:

B1 �ωB1/N = �ω1, (11a)

B2 �ωB2/N = B2CB1B1 �ωB1/N + B2 �ωB2/B1

= B2CB1ω1 + 	2σ2,
(11b)

B3 �ωB3/N = B3CB2B2 �ωB2/N + B3 �ωB3/B2

= B3CB1ω1 + B3CB2	2σ2 + 	3σ3.
(11c)

Angular velocities derived in Equation (11a)–(11c) can be added together to form the
“partial angular velocity matrix (�) [16]”, consisting of partial derivatives of angular ve-
locity with respect to the generalised speeds of the system:

⎡

⎣
B1 �ωB1/N

B2 �ωB2/N

B3 �ωB3/N

⎤

⎦=
⎡

⎣
I3×3 03×2 03×3 03×3 03×1

B2CB1 	2 03×3 03×3 03×1
B3CB1 B3CB2	2 	3 03×3 03×1

⎤

⎦

︸ ︷︷ ︸
�

�u. (12)

Subsequently, the angular acceleration of the each of the bodies Bi , i = 1,2,3 with re-
spect to frame N expressed in their corresponding body frame can be derived, as mentioned
in Pal (2020) [12]:

B1 �αB1/N = B1 �̇ωB1/N , (13a)

B2 �αB2/N = B2CB1B1 �̇ωB1/N + 	2σ̇2 + B2 �αB2/N
r , (13b)

B3 �αB3/N = B3CB1B1 �̇ωB1/N + B3CB2	2σ̇2 + 	3σ̇3 + B3 �αB3/N
r , (13c)

where B2 �αB2/N
r and B3 �αB3/N

r are the “remainder angular accelerations [16]”, and 	̇2

and 	̇3 are the time derivatives of the joint partial matrices 	2 and 	3, respectively:

B2 �αB2/N
r = 	̇2σ2 + (

B2CB1 �ω1

)× B2 �ωB2/B1, (14a)

	̇2 =
⎡

⎣
ψ̇riser cosψriser 0
−ψ̇riser sinψriser 0

0 0

⎤

⎦ , (14b)
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B3 �αB3/N
r = B3 �αB2/N

r + 	̇3σ3 + (
B3 �ωB2/N

)× B3 �ωB3/B2, (14c)

	̇3 =
⎡

⎣
−φ̇par sinφpar sinψpar + ψ̇par cosφpar cosψpar −ψ̇par sinψpar 0
−φ̇par sinφpar cosψpar − ψ̇par cosφpar sinψpar −ψ̇par cosψpar 0

−φ̇par cosφpar 0 0

⎤

⎦ . (14d)

Next, the position of the CGs of the three bodies Oi , i = 1,2,3 as well as the joints Ji ,
i = 1,2 are derived with respect to a point n fixed in the inertial space (assumed to be the
CG of the inertial frame N ) and expressed in the inertial frame N :

N �rO1/ON = N �r0, (15a)

N �rJ1/ON = N �rO1/ON + NCB1B1�rJ1/O1 , (15b)

N �rO2/ON = N �rJ1/ON − NCB2B2�rJ1/O2 , (15c)

N �rJ2/ON = N �rO2/ON + NCB2B2�rJ2/O2 , (15d)

N �rO3/ON = N �rJ2/ON − NCB3B3�rJ2/O3 , (15e)

where,

– B1�rJ1/O1 is derived based on the riser attachment point on the payload.
– B2�rJ1/O2 and B2�rJ2/O2 satisfy the following equation assuming that the riser has a uniform

mass distribution
⎡

⎣
Lriser

2
0
0

⎤

⎦= −B2�rJ1/O2 = B2�rJ2/O2 . (16)

– B3�rJ2/O3 is worked out based on the Parachute centre of mass, which has been derived
as per Ibrahim and Engdahl (1974) [8] assuming the parachute canopy is a semi-oblate
spheroid with instantaneous height h, radius r and mass mC , and suspension lines having
length Ls and mass mL:

B3�rJ2/O3 =
⎡

⎣
−Lcm

0
0

⎤

⎦=
⎡

⎣
− (mLLcms )+(mCL1)+(mI L1)

mL+mC+mI

0
0

⎤

⎦ , (17)

where, Lcm is the centre of mass of the parachute, which is derived considering the in-
cluded mass of the canopy mI = 2

3ρπr2h, the density of the atmosphere ρ, the centre of
mass of the canopy and the included mass L1 and the centre of mass of the suspension
lines of the parachute Lcms .

Lcms = (0.5Ls cos(sin−1(
r

Ls

))). (18)

The instantaneous height h and radius r are computed by multiplying the steady-state
canopy radius and height as derived in Ibrahim and Engdahl (1974) [8] with finf as de-
rived in Equation (33).

Now, the velocity of the CGs for each of the bodies with respect to the inertial frame
origin expressed in the inertial frame N can be computed as in Equation (19a)–(19c):

N �vO1/ON = �v1, (19a)
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N �vO2/ON = N �vO1/ON + (
N �rO1/O2 ×NCB1B1 �ωB1/N

)

+ (
N �rJ1/O2 ×NCB2B2 �ωB2/B1

)

+ NCB2 L̇riser

2
,

(19b)

N �vO3/ON = N �vO1/ON + (
N �rO1/O3 ×NCB1B1 �ωB1/N

)

+ (
N �rJ1/O3 ×NCB2B2 �ωB2/B1

)+ (
N �rJ2/O3 ×NCB3B3 �ωB3/B2

)

+ NCB2L̇riser .

(19c)

The angular velocities of the bodies can be expanded in terms of generalised speeds as
mentioned in Equation (11a)–(11c) and then, Equation (19a)–(19c) can be grouped to form
the “partial velocity matrix V [16]”, derived in Equation (20):

⎡

⎣
N �vO1/ON

N �vO2/ON

N �vO3/ON

⎤

⎦=
⎡

⎣
03×3 03×2 03×3 I3×3 03×1

Nr
O1/O2× NCB1 Nr

J1/O2× NCB2	2 03×3 I3×3
NCB2/2

Nr
O1/O3× NCB1 Nr

J1/O3× NCB2	2
Nr

J2/O3× NCB3	3 I3×3
NCB2

⎤

⎦

︸ ︷︷ ︸
V

�u.

(20)
Nr

J1/O2× and other similar terms in Equation (20) are skew-symmetric matrices of vectors,
which equivalently perform a cross-product of the given vector with some other vector.

Next, the accelerations of the points O1, O2 and O3, with respect to the origin of the
inertial frame are expressed as

N �aO1/ON =N �̇v1, (21a)

N �aO2/ON =N �aO1/ON

+ NCB1B1 �̇ωB1/N ×N �rO2/O1 + NCB2	2σ̇2×N �rO2/J1

+ N �ωB2/N ×NCB2L̇riser + N �aO2/n
r ,

(21b)

N �aO3/ON =N �aO1/ON

+ NCB1B1 �̇ωB1/N ×N �rO3/O1 + NCB2	2σ̇2×N �rO3/J1

+ NCB3	3σ̇3×N �rO3/J2 + 2 × N �ωB2/N ×NCB2L̇riser + N �aO3/n
r ,

(21c)

where the “remainder accelerations [16]” N �aO2/ON
r and N �aO3/ON

r are

N �aO2/ON
r =NCB2B2 �αB2/N

r ×N �rO2/J1

+ N �ωB1/N ×(
N �ωB1/N ×N �rJ1/O1

)+ N �ωB2/N ×(
N �ωB2/N ×N �rO2/J1

)
,

(22a)

N �aO3/ON
r =N �aO2/ON

r

+ NCB2B2 �αB2/N
r ×N �rJ2/O2 + NCB3B3 �αB3/N

r ×N �rO3/J2

+ N �ωB2/N ×(
N �ωB2/N ×N �rJ2/O2

)+ N �ωB3/N ×(
N �ωB3/N ×N �rO3/J2

)
,

(22b)

N �ωB1/N = NCB1 B1 �ωB1/N , N �ωB2/N = NCB2 B2 �ωB2/N , N �ωB3/N = NCB3 B3 �ωB3/N .

(22c)
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The active forces and moments acting on the system are the force due to gravity, aerody-
namic forces and moments, and forces and moments due to elasticity of the riser. Further-
more, during the parachute deployment and inflation phase, an additional generalised thrust
is also added to cater for the effects due to variable mass, as described in Ge et al. (1982)
[3].

The translational kinematics of the systems are derived in an inertial frame as seen from
Equations (15a)–(15e), (19a)–(19c) and (21a)–(21c), hence the active forces are to be ex-
pressed in the inertial frame, with translational dynamics being solved in the inertial frame.
Similarly, inspection of Equations (11a)–(11c) and (13a)–(13c), clearly shows that rotational
dynamics is to be solved in the body frame requiring the active moments to be expressed in
the corresponding body frame.

For body B1, i.e. payload, the active forces and moments acting are

N �FB1 = N �FB1
G + N �FB1

A + N �FB1
S + N �FB1

ME, (23a)

B1 �MB1/O1 = B1 �MB1/O1
A + B1 �MB1/O1

S + B1 �MB1/O1
ME . (23b)

For body B2, i.e. the riser, the active forces and moments acting are

N �FB2 = N �FB2
G , (24a)

B2 �MB2/O2 = 03×1 (24b)

and for body B3, i.e. the parachute, they are

N �FB3 = N �FB3
G + N �FB3

A + N �FB3
S + N �FB3

GT , (25a)

B3 �MB3/O3 = B3 �MB3/O3
A + B3 �MB3/O3

S , (25b)

where, �FG, �FA, �FS and �FME are the gravitational force, aerodynamic force, elastic spring
force, and mass ejection force, respectively, and �MA, �MS and �MME are the aerodynamic
moment, spring moment and mass ejection moment, respectively.

Considering the flat-Earth assumption, the gravitational forces acting on all the three
bodies expressed in the inertial frame N can be written as

N �FBi

G =
⎧
⎨

⎩

−mig

0
0

⎫
⎬

⎭ , (26)

where, mi is the mass of body Bi , i = 1,2,3, and g is the acceleration due to gravity.
The spring force caused by elasticity of the riser is computed in the riser body frame B2

as

B2 �FB3
S = −B2 �FB1

S =
⎧
⎨

⎩

K(�Lriser ) − ζ L̇riser

0
0

⎫
⎬

⎭ , (27)

where, K and ζ are the spring constant and damping constant for the elastic riser.
�FGT is the generalised thrust added to the parachute to cater for the variable-mass effects

during the deployment and inflation phase as described in Ke et al. (2009) [10], with the
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equation

B3 �FB3
GT =

⎧
⎨

⎩

ṁl̇

0
0

⎫
⎬

⎭ . (28)

The mass ejection force and moment acting on the payload CG expressed in its body
frame is derived as follows:

B1 �FB1
ME = ṁ

(
B1ωB1/N ×B1 rJ1/O1

)
, B1 �MB1/O1

ME = B1rJ1/O1 ×B1 �FB1
ME. (29)

The aerodynamic forces and moments acting on the payload and the parachute CGs (i =
1,3) are expressed in their corresponding body frames as:

Bi �FBi

A = finf

⎧
⎨

⎩

CA,iQiSi

CS,iQiSi

CN,iQiSi

⎫
⎬

⎭ , Bi �MBi/Oi

A = finf

⎧
⎨

⎩

CRM,iQiSiLi

CPM,iQiSiLi

CYM,iQiSiLi

⎫
⎬

⎭+Bi rOi/CPi ×Bi �FBi

A ,

(30)

where Si is the reference area, Li is the reference length and Qi is the dynamic pressure
of the ith body. Since, the payload acts as a forebody to the parachute, Qpar would not
be the freestream dynamic pressure. Hence, a simplistic model as given in Peterson and
Johnson (2013) [15] is incorporated to simulate the wake effects, which consists of empirical
constants (a,k,m and n) proposed by Heinrich and Eckstrom (1963) [5]:

Qpar = Q∞ ×
(

1 +
(

2

r2

D1

D2

[
1 − eD2r2 + D1

4
e2D2r2 − D1

4

]))
, (31)

where,

D1 = a

(Z/DB)m
and D2 = −1

0.435k2(Z/DB)2n
. (32)

finf is the inflation factor that models the increase in drag and normal forces during the
parachute-inflation phase. The force factor is modelled as shown in Equation (33) with the
interpolation scheme considered to be linear interpolation and freef being the ratio of reefing
of the canopy:

finf =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for t < tstretch,

interpolation (t, [0, freef ]) for tstretch ≤ t < tstretch + tinf late,

freef for tstretch + tinf late ≤ t < tstretch + treef cut ,

interpolation (t, [freef , 1]) for tstretch + treef cut ≤ t

< tstretch + treef cut + tdisreef ,

1 for t ≥ tstretch + treef cut + tdisreef .

(33)

The remaining terms in Equation (3), i.e. [m], [I ], {ω}, {αr}, {ar}, {F } and {M} are
derived as follows:

[m] =
⎡

⎣
m1I3×3 0 0

0 m2I3×3 0
0 0 (m3 + m3A)I3×3

⎤

⎦ , [I ] =
⎡

⎣
IB1/O1 0 0

0 IB2/O2 0
0 0 IB3/O3

⎤

⎦ ,

(34a)
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{ω} =
⎧
⎨

⎩

B1 �ωB1/N

B2 �ωB2/N

B3 �ωB3/N

⎫
⎬

⎭ , {αr} =
⎧
⎨

⎩

B1 �αB1/N
r

B2 �αB2/N
r

B3 �αB3/N
r

⎫
⎬

⎭ , {ar} =

⎧
⎪⎨

⎪⎩

N �aO1/ON
r

N �aO2/ON
r

N �aO3/ON
r

⎫
⎪⎬

⎪⎭
, (34b)

{F } =
⎧
⎨

⎩

N �FB1

N �FB2

N �FB3

⎫
⎬

⎭ , {M} =
⎧
⎨

⎩

B1 �MB1/O1

B2 �MB2/O2

B3 �MB3/O3

⎫
⎬

⎭ , (34c)

where, IB1/O1 , IB2/O2 and IB3/O3 are the inertia matrices of the bodies B1, B2 and B3,
respectively, and m3A is the apparent mass of the parachute.

– m3A is computed considering the potential flow around the semi-oblate spheroid geometry
of the canopy as described in Kidane (2009) [11]:

m3A = α0

2 − α0

2

3
ρπr2h, (35a)

α0 = r2h

∫ ∞

0

dλ

(h2 + λ)(r2 + λ)
√

(h2 + λ)
. (35b)

– IB1/O1 is the inertia tensor of the payload, which is an input.
– IB2/O2 can be computed assuming the riser to be a uniform cylindrical rod of infinitesi-

mally small radius, which would result in

IB2/O2 =
⎡

⎢⎣
0 0 0

0
m2L2

riser

12 0

0 0
m2L2

riser

12

⎤

⎥⎦ . (36)

– The inertia tensor for the parachute, i.e. IB3/O3 is derived as expressed in Ibrahim and
Engdahl (1974) [8]:

IB3/O3 =
⎡

⎣
Ixx 0 0
0 Iyy 0
0 0 Izz

⎤

⎦ , (37)

where,

Ixx = 1

12
mLL2

s sin2(sin−1(
r

Ls

)) + 2

3
mCr2 + 0.063ρR5

0, (38a)

Izz = Iyy = 1

12
mLL2

s cos2(sin−1(
r

Ls

)) + mL(Lcms − Lcm)2

+ 1

3
mC(h2 + r2) + m3A(L1 − Lcm)2

+ m3A(L1 − Lcm)2 + 0.042ρR5
0 .

(38b)

All the above terms are assembled into Equation (3), to form the system of equations
describing the dynamics of the Parachute–Elastic Riser–Payload System.
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Table 2 Model parameters used
in validation simulation Parameters Value

g 9.80665 m·s−2

m1 69,321 kg

m2 1 × 10−6 kg

m3 2210.991 kg

mC 1020.121 kg

mL 1190.87 kg

I
B1/O1
xx 2,259,151 kg·m2

I
B1/O1
yy 9,667,065.6 kg·m2

I
B1/O1
zz 9,667,065.6 kg·m2

B1�rJ1/O1 (25,0,0) m

Lriser 20.1 m

Ls 82.5 m

L1 93 m

R0 18.5 m

h 12.675 m

r 14.04 m

4 Results and validation

This section describes the simulations carried out using the formulated model and analysis
of the results. The matrix form of the equations derived in Equation (3) is solved at each
instant using a LU-decomposition solver implemented in C++ to obtain the generalised
accelerations �̇u. These are integrated to obtain the generalised speed �u that involves the
attitude and position of the payload and the joint angles for the riser and parachute [12].

The developed model is validated by modelling the SRB parachute-recovery system us-
ing Newton–Euler formulation as described in Ibrahim and Engdahl (1974) [8] and sub-
jecting the system to a 20 deg pendulum disturbance at an altitude of 1800 m and initial
downward velocity of 60 m/s. Furthermore, the reference literature assumes the riser to be
a massless body that transmits only axial forces to the attachment points, which has been
modelled by forcing mriser to be an extremely small value. Additionally, the literature also
considers the simulation starts at the time instant when the parachute is fully deployed and
inflated. The simulation has been carried out assuming a flat-Earth model and altitude-based
density variation considering the Indian Standard Atmosphere. Table 2 gives the system
parameters used for validation.

The aerodynamic coefficients of SRB and parachute are given in polynomial form de-
scribed in Equation (39), with the polynomial coefficients as mentioned in Ibrahim and
Engadhl (1974) [8] and tabulated in Table 3:

CA/N/PM =
N∑

i=0

pi ∗ αi. (39)

Figure 2 shows an exact match between the two formulations, validating Kane’s formu-
lation for the system.

Furthermore, experiments to quantify the advantage offered by Kane’s method over the
Newton–Euler method in terms of time complexity is carried out by running 100 simula-
tions with the above model considering varying initial conditions, on a system with an Intel
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Table 3 Polynominal Coefficients for Aerodynamics Modelling (Ref: [8])

Coefficients p0 p1 p2 p3 p4

CASRB 0.6989 0.1915E−8 12.56 −0.1682E−7 −35.59

CNSRB 0.2355E−9 3.645 −0.8473E−8 15.20 0.4432E−7

CPMSRB −0.1927 −7.032 −1.114 −12.87 33.24

CAPAR 0.5755 −0.1637E−10 −0.8091 0.3483E−10 0.4228

CNPAR 0.2172E−11 0.3795 −0.9339E−11 0.3631 0.0

CPMPAR −0.7229E−4 −0.2742 0.2576E−2 −1.271 −0.02333

Fig. 2 Pitch Angles of Parachute and Payload (SRB) w.r.t Inertial Frame

Table 4 Execution time comparison between Kane’s method and the Newton–Euler method

Method Average simulation
execution time (s)

Average execution time
per integration step (ms)

Average time to solve EoM alone
per integration step (ms)

Newton–Euler 1.49 0.149 0.098

Kane 1.33 0.133 0.087

Improvement (%) 10.73 11.23

Core i7-7700 processor, 3.60 GHz clock frequency and 8 GB RAM. Computational gain
was quantified by computing the average execution time for each simulation run as well as
execution time required for solving the equations of motion (EoM) alone in every integra-
tion step. The results from the experiment are given in Table 4 wherein an improvement
in average execution time to solve EoM by 11.23% is observed due to the elimination of
constraint-force computation and an improvement in execution time per integration step by
10.73% is observed. This advantage is also aided by the modular matrix formulation adopted
in this paper.

Next, the correctness of Equation (33) modelling the variation in aerodynamic force dur-
ing the opening transient is validated by matching the descent velocity in the simulation with
the velocity observed in the airdrop tests carried out. The results are shown in Fig. 3, where
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Fig. 3 Reconstruction of payload
descent velocity during the
parachute-opening transients

Fig. 4 Effect of variable parachute geometry on the parachute and payload pitch angles

the mean descent velocity is closely captured in the simulation. Oscillations are observed in
flight, due to porosity and flexibility of the canopy material (whereas our simulation consid-
ers a rigid canopy), which affects the drag of the system. Pei et al. (2019) [14] modelled the
canopy breathing, wherein the deformation of the canopy is modelled as a second-order sys-
tem with an incremental drag modelled as a function of deformation. This incremental drag
is added to the basic drag to capture the oscillatory characteristics of the payload velocity.

The variation in attitude of parachute and payload, due to inclusion of varying parachute
geometry during the inflation phase, is studied considering a planar simulation with the
results shown in Fig. 4. When the parachute geometry is considered fixed, the CG of the
parachute Lcm is fixed due to a constant included mass mI of the canopy. When a variable
geometry is considered, the mass of included air changes during inflation, and based on
Equation (17) the CG of the parachute O3 is affected. With L1 assumed to be the centre of
pressure (CP) of the parachute, L1 − Lcm (i.e. the distance between CP and CG) defines the
stability characteristics of the parachute. In Fig. 5, due to the variable geometry considered,
the distance between the parachute CP and CG is higher during the reefed motion, resulting
in generation of a higher stabilising moment, and with the absence of damping derivatives in
the simulation, higher oscillations in parachute-pitch angles observed in Fig. 4. These higher
oscillations affect the total angle of attack of the parachute, affecting the moment exerted by
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Fig. 5 Effect of variable
parachute geometry on the
CP − CG of the parachute

Fig. 6 Effect of riser elasticity on payload velocity and attitude

the parachute on the payload, causing the slightly higher amplitude of oscillations observed
in the payload.

The PRPS model formulated in Sect. 3, considers the riser to be an elastic element with
the spring force and moment modelled as per Equation (27). The effect of riser flexibility on
the trajectory as well as attitude of the payload is shown in Fig. 6. When the riser is mod-
elled as an elastic element, the riser initially elongates as parachute drag acts on one end of
the riser and payload gravity acts on the other end, imparting forces in opposite directions.
As the elasticity of the riser increases (i.e. the spring constant decreases), the elongation
length increases, as seen from Fig. 7. During this elongation, the drag force generated by the
parachute is not entirely transferred to the payload, due to which the initial reduction in pay-
load velocity for the elastic model is less than the rigid-body model. Once the riser is elon-
gated enough, a restoring force is generated, which acts on the payload and the parachute.
This restoring force acts in the upward direction for the payload, due to which the payload
velocity in the downward direction is observed to decrease. It also generates a moment on
the payload, which results in the higher variation in amplitude of oscillations in the pitch
angle compared to the rigid-body model. The steady-state riser length is determined by the
elasticity of the riser, and the amplitude of the pendulum oscillation is observed to be di-
rectly proportional to the length of the riser, an observation consistent with the pendulum
motion amplitude derived in Pei et al. (2019) [14].
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Fig. 7 Effect of riser elasticity on
riser elongation

Fig. 8 Effect of riser mass and parachute apparent mass on parachute and payload pitch angles

The effect of inclusion of the apparent mass (as mentioned in Equation (35b)) and in-
clusion of the riser mass (m2 = 14.594 kg) is shown in Fig. 8. The effect of riser mass
on the system attitude is minimal with the small variation occurring due to the inertia of
the riser, which is much small than the inertia of the payload as well as the parachute. In-
clusion of the apparent mass on the other hand has comparatively greater effects on the
parachute and payload attitude. This is because during the steady-state phase the apparent
mass m3A = 3455.154 kg is higher than the mass of the canopy m3 = 2210.991 kg itself,
which is used in the multi-body mass matrix. Kidane (2009) [11] reported that the effect
of apparent mass on parachute drag is minimal, which was also observed from simulations
carried out with the model formulated in this paper.

Finally, end-to-end simulations from parachute deployment to separation are carried out
by modelling the parachute-opening force in reefed and disreefed modes (as defined in Equa-
tion (33)), considering the effects of mass variations and the effect of parachute CG variation
during the opening transients. The additional parameters used for this simulation are shown
in Table 5.

Figure 9 shows the velocity profile and aerodynamic load profile for an end-to-end
parachute simulation. When the time is less than tstretch, i.e. when the parachute and riser
stretches out of the payload, the aerodynamic load acting on the payload is 0 and the pay-
load velocity increases due to gravity. Once inflation begins, the velocity reduces, which is
attributable to increasing parachute drag, and the aerodynamic load first increases as a result
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Table 5 Additional parameters
used in end-to-end simulations Parameters Value

B1�rJ1/O1 (25,1,0) m

m2 14.594 kg

tstretch 1.28 s

tinf lation 0.63 s

treef cut 7.0 s

tdisreef 1.4 s

freef 0.45

Fig. 9 End-to-end velocity and aerodynamic load profile

of increasing drag of the inflating parachute, followed by an exponential reduction owing to
the reduction in dynamic pressure (reducing velocity). A similar profile is observed when
disreefing begins. After disreefing, the velocity profile slowly converges to the terminal ve-
locity of descent, but since the simulation considers altitude-based density variation, the
velocity tends to convergence only.

The motion of the CGs of the parachute and payload is shown in Fig. 10. During the
parachute-deployment phase, the payload descents vertically because of gravity and the
parachute CG moves in the lateral direction owing to the stretching of bridles and suspension
lines. When inflation begins, the drag builds up, and stable aerodynamic behaviour ensures
the initial lateral movement is corrected by the parachute. Post the deployment process, the
descent trajectory of the payload is determined by the parachute, where the lateral movement
is dependent on the direction of the wind, as the parachute drag force acts opposite to the
air relative velocity vector. In the current simulation PRPS movement is predominantly in
the eastward direction due to higher zonal wind, as shown in Fig. 11. It is also observed that
the pendulum motion undergone by the system is in a plane perpendicular to the dominant
motion of the PRPS system.

The rotational states of the system from parachute deployment to splashdown are shown
in Fig. 12. The oscillations in inertial pitch and yaw angles define the pendulum motion
wherein the parachute and payload oscillate about the mean vertical axis of the inertial
frame N . Oscillations in the payload are observed to have higher amplitude because of the
pivot point of the pendulum oscillation being closer to the parachute. The inertial yaw angle
of the payload, has a steady-state offset from 0◦ owing to the lateral offset in the attachment
point of the riser on the payload, as given in Table 5. The relative joint angles made by the
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Fig. 10 Trajectories of Payload and Parachute mass centres

Fig. 11 Simulation Wind

riser w.r.t. the payload, and the parachute w.r.t. the riser are plotted in Fig. 12, which clearly
indicates that relative motion between parachute and payload predominantly occurs at the
riser–payload joint.

5 Conclusion

The dynamics of a Single Parachute–Riser–Payload system, consisting of a Parachute and
a Payload sculpted as rigid bodies connected using a elastic riser with non-zero mass, is
modelled as a 12-DoF system using the matrix form of Kane’s method. A simplistic reac-
tion thrust-based methodology is adopted to model the effects during a parachute-opening
transient due to mass ejection.

The formulated model is validated by comparing the achieved results with the results
obtained by using Newton–Euler formulation, with an improvement in execution time by
10.73% reported when using the model developed in this paper. This paper also described an
accurate modelling of drag variation during the parachute-inflation phase that was validated
with flight results. Furthermore, the effect of varying parachute geometry, inclusion of riser
mass and apparent mass, on payload and parachute rotational states were also critically
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Fig. 12 Inertial and Relative Angles of Parachute and Payload w.r.t. Inertial Frame (End-to-End Simulation)

analysed, with apparent mass and variable parachute geometry observed to have significant
effects on the parachute and payload rotational dynamics. The attitude dynamics variation
due to modelling the riser as an elastic element is also discussed, with a clear requirement of
modelling the riser as an elastic body brought out to simulate the parachute dynamics during
the inflation phase with highest accuracy.

The modular matrix formulation of PRPS system ensures that the model can easily be
extended to a cluster of parachutes, either by considering a single parachute equivalent to
a cluster (using a cluster coefficient factor to be used in parachute aerodynamics) or by ex-
tending the derived velocity, mass-inertia and force matrices for multiple parachutes (con-
sidering each parachute as separate bodies and modelling the contact aerodynamics). The
fidelity provided by the above model would enable analysis of parachute dynamics, espe-
cially the cluster interactions leading to various modes during descent, optimisation of the
loads exerted on the payload and understanding the effects on the payload trajectory.
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