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Abstract
A geometric nonlinear modeling approach for strong rigid–flexible–thermal coupling dy-
namics of a hub and multiplate system considering frictional contact is proposed. Based on
the absolute nodal coordinate formulation (ANCF), an ANCF thin-plate element with ther-
moelasticity is developed, where the temperature field is expressed with Taylor polynomials
to yield heat-conduction equations. In contrast to the traditional coupling formulations, the
influences of the attitude motion and structural deformation on the intensity of the solar
radiation, the geometric nonlinearity of the plate as well as the frictional contact are taken
into account. The frictional-contact formulations for a thin plate and a rigid body are pre-
sented, which can capture the stick–slip transition and address the multiple-point contact
scenarios. To solve the strong rigid–flexible–thermal coupling equations, a novel numerical
approach combining the generalized-α method and the modified central-difference method
is proposed. Two validations are performed to verify the proposed model, which proves
the importance of considering the geometric nonlinearity and reveals the phenomena of
thermally induced vibrations. Then, the thermal–dynamic coupling analysis for the satel-
lite and solar-array multibody system in a thermal environment is carried out. The dynamic
characteristics of the thermally induced vibration can be successfully revealed by the rigid–
flexible–thermal coupling model. Furthermore, it is indicated that the influence of contact
and thermal load on the nonlinear behavior of the solar-array deployment is essential, which
demonstrates the feasibility of the proposed approach.

Keywords Geometric nonlinearity · Rigid–flexible–thermal coupling dynamics · Thermally
induced vibration · Frictional contact

1 Introduction

Thermally induced vibrations of flexible spacecraft appendages may be initiated through the
rapid changes of thermal loading during the orbital-eclipse transitions. The thermal gradient
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in the thickness direction is caused by the difference of the heat flux applied on the up-
per and lower surfaces of the solar arrays, which may induce thermal deformation, thermal
vibrations, and even influence the attitude motion of the satellite. Additionally, the thermal–
dynamic modeling of the spacecraft in many cases involves contact interaction between
flexible appendages undergoing large deformations and overall motions. Therefore, an ac-
curate rigid–flexible–thermal coupling model is essential to guide the practical engineering
applications, and this study remains a worthy and challenging area.

Concerning the investigation of the thermal–structural coupling effect, Thornton and Kim
[1] developed an analytical approach for determining the dynamic response of a flexible
rolled-up solar array due to a sudden increase in external heating, in which the rotational
motion of the spacecraft was not taken into account. Johnston and Thornton [2] presented
an analytical model to investigate the effects of thermally induced vibrations of the flexible
appendages on the rotational motion of the spacecraft, and then further carried out an ex-
perimental investigation on the thermal–structural coupling dynamics [3]. Fan and Liu [4]
developed a 2D rigid–flexible–thermal coupling model to investigate the thermally induced
vibration of a hub–beam system. Shen et al. analyzed the thermal–structural coupling per-
formance for a space thin-walled beam [5] and a spinning spacecraft with an axial boom
[6], and further conducted a stability analysis for the thermally induced fluttering phenom-
ena [7]. Čepon et al. [8] proposed a new model for a coupled thermal–structural analysis of
the bimetallic strip based on the ANCF. Liu et al. [9–11] carried out a thermal–structural
analysis for a flexible spacecraft with a single or double solar panels, in which the coupling
effect among attitude motion, structural deformation, and thermal loading are taken into ac-
count. Li et al. [12] investigated rigid–flexible–thermal coupling dynamics for a hub–beam
system with a clearance joint considering torsional spring, latch mechanism, and attitude
controller.

Since the solar arrays are thin plates, it is necessary to extend the thermal–structural
coupling investigation to plate structures. Liu et al. [13] investigated the dynamic perfor-
mance of a hub–plate system. The influence of the rotational motion on the intensity of the
heat flux was included in the dynamic model. However, the temperature field expressed by
the 3D solid element is complicated, and the geometric nonlinearity as well as the contact
between the flexible bodies were not considered.

The Absolute Nodal Coordinate Formulation (ANCF) proposed by Shabana [14] has
been widely used for simulation of a plate with large deformation. Since the transverse shear
deformable of a thin plate can be neglected, based on Kirchhoff assumptions, Dmitrochenko
et al. [15, 16], Dufva [17], and Ren [18] parameterized the plate elements using slopes
in the element midsurface direction only. Schwab et al. [19] and Sereshk and Mahmoud
[20] compared the thin-plate elements against the plate element based on the conventional
finite-element approach. Hyldahl et al. [21] also compared the convergence of rectangu-
lar thin-plate elements in different mesh configurations and load conditions. In ANCF, the
gradient vectors are used to describe the nodal rotations instead of the rotation parameters,
avoiding the singularity problem and the interpolation problem of the finite rotation vari-
ables [22–24]. Hence, ANCF is suitable for the geometric nonlinear dynamics modeling
of rigid–flexible coupled or rigid–flexible–thermal coupled multibody systems. Based on
an ANCF shear-deformable plate element, Shen et al. [25] proposed a coupled thermal–
structural model of a laminated composite plate. Cui and Yu proposed a novel method of
the thermomechanical coupled analysis based on the unified description [26], and further
developed a thermal integrated ANCF thin plate, which depicts the displacement and the
temperature field integratedly [27].
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Since the contact may occur during the deployment of a hub and multiplate system, it
is necessary to consider the effect of frictional contact in the rigid–flexible–thermal cou-
pling modeling. The key to modeling the contact dynamics of multibody systems lies in the
treatment of contact-interface nonlinearities, which involves contact detection, contact dis-
cretization, enforcement of contact conditions, and a friction-force model [28–31]. In recent
years, some researchers have already developed several different formulations for modeling
the frictional-contact problem in multibody systems. Konyukhov and Schweizerhof [32, 33]
developed a geometrically exact theory for various 3D solid-contact elements, including the
normal, the tangential, and the rotational interactions. Yu et al. [34] established the frictional-
contact formulation between flexible and rigid bodies through the Hertz contact model and
the velocity-based friction model. Shi et al. [35] presented a rotation-free shell formulation
and an extended contact discretization for the dynamics of multibody systems with large
deformations and frictionless contacts. Sun et al. [36, 37] developed a new 2D segment-to-
segment algorithm of contact dynamics based on an ANCF and mortar method, including
both frictionless and friction cases. Gay Neto et al. [38] proposed a formulation to han-
dle pointwise frictional-contact interaction of a beam–shell system using the degeneration
of the local-contact problem. Tang and Liu [39] modeled the frictional contact in sliding
joints with clearances, and generalized the regularized Coulomb friction law into an ANCF
beam and rigid hole considering the stick–slip transition. Lei et al. [40] presented a strong
coupling modeling method for the rigid bodies and the large deformed beams in contact in-
teraction with the granular matter to simulate the flexible-brush sampling process. To avoid
mutual penetration of the plate element with large deformation, a mixed method combin-
ing the node-to-surface, edge-to-surface, and surface-to-surface contact elements based on
ANCF was proposed by the authors [41, 42]. Nevertheless, few studies have considered the
frictional contact interactions in the rigid–flexible–thermal coupling multibody systems.

In this paper, a strong rigid–flexible–thermal coupling dynamic model for a hub and mul-
tiplate system is proposed considering the geometric nonlinearity and frictional contact. The
remainder of the paper is organized as follows. In Sect. 2, an ANCF thin-plate element with
thermoelasticity is developed. Two frictional contact elements based on the ANCF thin-
plate element are presented in Sect. 3. In Sect. 4, the heat-conduction equations with solar
radiation are derived, and a complete rigid–flexible–thermal coupling model is introduced.
In Sect. 5, a new numerical approach combining the generalized-α method and the modi-
fied central-difference method is proposed to solve the strong rigid–flexible–thermal cou-
pling equations. Two validations are carried out to confirm the correctness of the proposed
thermal–structural coupling model in Sect. 6. Section 7 presents two interesting engineer-
ing numerical simulations of the satellite and solar-array multibody system in a thermal
environment. Summary and conclusions are presented in Sect. 8.

2 ANCF thin-plate element with thermoelasticity

A thin rectangular plate element with length ae , width be , and height h, is shown in Fig. 1.
As shown in the figure, O-XYZ and Oe-XeYeZe represent the inertial coordinate system
and the element coordinate system, respectively.

The global position vector of an arbitrary point of element i in the midsurface can be
defined using the linear combination of the element-shape function matrix S and the global
nodal coordinate vector q, which is given by

r = S(x, y)qi , qi = Biq, (1)
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Fig. 1 A thin rectangular plate
element of ANCF (Color figure
online)

where qi represents the element nodal coordinate vector, and x and y are the spatial coordi-
nates defined in the element coordinate system, respectively. Bi is a Boolean matrix. In the
absolute nodal coordinate formulation, qi contains the global position vectors and slopes
that are the spatial derivatives of the position vectors. The element nodal coordinate vector
can be written as

qi = [
qT

i1 qT
i2 qT

i3 qT
i4

]T
, (2)

where qij = [rT
ij rT

ij,x rT
ij,y rT

ij,xy ]T, j = 1, . . . ,4, and rij,x = ∂rij /∂x, rij,y = ∂rij /∂y,
rij,xy = ∂2rij /∂x∂y.

In the classical theory of linear thermoelasticity, the thermal strain tensor is a linear
relationship with temperature change [43, 44]. For a thin-plate structure, it is assumed that it
causes only a positive strain but not a shear strain [45]. Considering a plate element whose
temperature is raised from the reference temperature Tr at which strains and stresses are
zero, to the temperature T , the thermal strain of the thin plate due to the temperature change
�T = T − Tr is [43, 46] given by

εT = αT �T =
⎡

⎣
αx

αy

0

⎤

⎦�T, (3)

where αx and αy are the coefficients of thermal expansion along the x and y directions,
respectively.

Based on Kirchhoff assumptions, the virtual work done by the elastic force with ther-
moelasticity of the ANCF thin element i can be written as

δUei =
∫ ae

0

∫ be

0

∫ h/2

−h/2
δεTD (ε − αT �T )dzdydx, (4)

where D represents the matrix of modulus, and ε represents the Green–Lagrange strain
vector of an arbitrary point of the plate, which is given by

ε = ε0 − zκ, (5)
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where ε and κ represent the inplane Green–Lagrange strain vector and the curvature vector,
respectively, which can be given as

ε0 =
⎡

⎢
⎣

1
2

(
rT
x rx − 1

)

1
2

(
rT
y ry − 1

)

rT
x ry

⎤

⎥
⎦ , κ = 1

n

⎡

⎢
⎣

rT
xx n̄

rT
yy n̄

2rT
xy n̄

⎤

⎥
⎦ , (6)

where n̄ is a vector normal to the midsurface of the plate and n is the magnitude of n̄.
For an arbitrary point of the plate, the temperature change �T can be expressed with

Taylor polynomials as

�T (x, y, z, t) = T0 (x, y, t) + zT1 (x, y, t) + · · · + zmTm (x, y, t) , (7)

T0 (x, y, t) = �T (x, y,0, t),

Tk (x, y, t) = ∂kT (x, y, z, t)

∂zk

∣
∣∣
∣
z=0

(k = 1, . . . ,m) .
(8)

Considering that the thickness of the thin plate is small and the higher-order terms of
Eq. (7) can be neglected, �T can be reduced as

�T (x, y, z, t) = T0 (x, y, t) + zT1 (x, y, t) . (9)

Here, T0 represents the temperature change of the midsurface of the thin plate and T1

represents the temperature gradient along the thickness direction, which are obtained by
solving the heat-conduction equations, as discussed later in Sect. 4.

Substituting Eqs. (5) and (9) into Eq. (4), the virtual work done by the elastic force can
be rewritten as

δUei =
∫ ae

0

∫ be

0

(
hδεT

0 Dε0 + 1

12
h3δκTDκ

)
dydx

−
∫ ae

0

∫ be

0
hδεT

0 DαT T0dydx −
∫ ae

0

∫ be

0

1

12
h3δκTDαT T1dydx,

(10)

Variation of ε0 and κ leads to

δε0 = Hδqi , δκ = Gδqi , (11)

H =
⎡

⎢
⎣

rT
x Sx

rT
y Sy

rT
x Sy + rT

y Sx

⎤

⎥
⎦ , (12)

G = 1

n

⎡

⎢
⎣

rT
xxY

rT
yyY

2rT
xyY

⎤

⎥
⎦ + 1

n

⎡

⎢
⎣

n̄TSxx

n̄TSyy

2n̄TSxy

⎤

⎥
⎦ − 1

n2
κ n̄TY, (13)

n̄ = r̃xry, Y = r̃xSy − r̃ySx, (14)

in which r̃x and r̃y are the 3 × 3 skew-symmetric matrices corresponding to rx and ry ,
respectively.
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Substituting Eq. (11) into Eq. (10), the elastic force of the element is given by

Qei = (∂Uei/∂qi )
T

=
∫ ae

0

∫ be

0

(
hHTDε0 + 1

12
h3GTDκ

)
dydx

−
∫ ae

0

∫ be

0
HTDαT T0dydx − 1

12
h3

∫ ae

0

∫ be

0
GTDαT T1dydx.

(15)

Accordingly, the elastic force can be written as

Qe =
∑

i

BT
i Qei . (16)

Defining ρ as the mass density, g as gravitational acceleration, and μ as the structural
damping coefficient, the variational equations of motion read

δqT
(
Mq̈ + Cq̇ + Qe − Qg

) = 0, (17)

where M = ∑
BT

i (
∫ ae

0

∫ be

0 ρhSTSdydx)Bi is the constant generalized mass matrix, and

C = μM is the damping matrix, and Qg = ∑
BT

i (
∫ ae

0

∫ be

0 ρhSTgdydx) is the generalized
gravitational force vector.

3 Frictional contact formulations for a thin plate and a rigid body

In this study, two forms of contact are taken into account, i.e., plate-to-plate contact and
plate-to-rigid body contact. This section derives two frictional contact elements on the basis
of the ANCF thin-plate element, which can address multiple-point contact scenarios with
large deformations and overall motions.

The normal contact is formulated using the penalty method [28, 30], and the tangential
contact is modeled by the Coulomb friction law with a penalty regularization considering
the stick–slip transition [29, 32]. The virtual work of the contact force is

δWcf =
{

− ∫
�

δuT
cf (fN + fT )d�, if gN ≤ 0,

0, otherwise,
(18)

where gN is the normal penetration, � is the contact area. ucf is the relative displacement
vector of a contact pair, and fN , fT are the normal and tangential force vectors of a contact
pair, respectively. Contact between the contact pair occurs only if gN ≤ 0.

3.1 Contact between plates

Using the “master–slave” contact-detection approach [29], the contact is checked between
each integration points of the slave and the master surfaces, which is named as the STS
contact element. As shown in Fig. 2, the nodal vector for the STS contact element can be
given by

qec = [
qmT

ec qsT
ec

]T
,qm

ec ∈ �48×1,qs
ec ∈ �48×1. (19)
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Fig. 2 Geometry and kinematics
of the STS contact element
(Color figure online)

The normal penetration can be defined as

gN = (rS − rP )T n − hM + hS

2
, (20)

where hM and hS are the thicknesses of the master and slave surfaces, respectively. Follow-
ing Eq. (14), the unit normal vector is obtained via the crossproduct of gradient vectors of
the master surface, i.e., n = n̄/n. Here, the direction of the unit normal vector is perpendic-
ular to the master surface and points to the slave node [42, 47]. Thus, the variation of the
relative displacement vector of the contact pair SP is written as

δucf = δrS − δrP = Scf δqec, (21)

where Scf is the shape function matrix of the contact element, which can be defined as

Scf = [−Sm(ξM,ηM) Ss(ξ
S, ηS)

]
, (22)

where Sm and Ss are the shape functions of the master and slave surfaces, respectively. ξ

and η are the convective coordinates defined in the local surface-element coordinate system.
Based on the penalty method [28, 48], the normal contact force of the contact pair SP is

formulated as

fN = εNgN n, (23)

where εN is the normal penalty parameter.
In order to describe the stick–slip transition, it requires the history variables from the

previous step to describe the incremental nodal displacement [39]. Here, the points related
to the previous step are represented by a subscript (·)a . As shown in Fig. 2, the contact point
of the slave node Sa on the master surface is Pa in the previous step. Then, the incremental
relative displacement vector of the contact pair SP is [42]

�ucf = �rS − �rP , (24)

where

�rS = 0,

�rP = Sm(ξM
P ,ηM

P )qm
ec − Sma(ξ

M
Pa

, ηM
Pa

)qm
eca.

(25)
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Fig. 3 Geometry and kinematics
of STRS contact element (Color
figure online)

Accordingly, the incremental relative displacement vector on the current tangent plane is

gT = (
I3 − nnT

)
�ucf . (26)

The return-mapping scheme [32] for the Coulomb friction law with a penalty regular-
ization is applied to measure the friction force, it introduces the trial tangential force vector
as

ftrT = (
I3 − nnT

)
fT a − εT gT , (27)

where fT a is the real tangential force vector in the previous step, and εT is the tangential
penalty parameter. According to the yield function of the Coulomb friction law [29], the
real tangential force of the contact pair SP can be determined as

fT =

⎧
⎪⎨

⎪⎩

ftrT , if
∥
∥ftrT

∥
∥ − μs ‖fN‖ ≤ 0, sticking,

μd ‖fN‖ ftrT∥∥ftrT
∥
∥ , if

∥∥ftrT
∥∥ − μs ‖fN‖ > 0, sliding,

(28)

where μs and μd are the static and dynamic frictional coefficients, respectively.
Then, the element residual vector of the STS contact element can be summarized as

QST S
ec =

∫

�

ST
cf (fN + fT )d�. (29)

3.2 Contact between a plate and a rigid body

As shown in Fig. 3, the contact is checked between each integration points of the slave-plate
surface and the master rigid surface, which is named as the STRS contact element. Thus,
the nodal vector for the STRS contact element can be given by

qec = [
qT

c qsT
ec

]T
,qc ∈ �6×1,qs

ec ∈ �48×1. (30)
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Fig. 4 A thin plate with large deformation and overall motion under solar radiation (Color figure online)

The normal penetration can be obtained by

gN = (rS − rP )T n − hM

2
, (31)

where n = Acn′ is the unit normal vector of the STRS contact element, and Ac is the direc-
tion cosine of the rigid body, and n′ is the unit normal vector of the rigid surface, which is
defined in the body-fixed frame Oc-XcYcZc . Then, the shape function matrix of the STRS
contact element is

Scf = [−Sm(ξM,ηM) Ss

]
, (32)

where Ss = [ I3 −Acρ̃
′
P Kc ] is the shape function of the slave rigid surface, ρ′

P is the
position vector of the point P , which is defined in Oc-XcYcZc , and Kc is a function of
the Cardan orientation angle vector of Oc-XcYcZc with respect to the inertial frame [51].
Similar to the STS contact element, the element residual vector of the STRS contact element
can be obtained as

QST RS
ec =

∫

�

ST
cf (fN + fT )d�. (33)

Therefore, the generalized contact force vector related to Eq. (18) can be assembled as

Qcf =
∑

nc1

BST S
e

T
QST S

ec +
∑

nc2

BST RS
e

T
QST RS

ec , (34)

where BST S
e and BST RS

e are the connectivity matrices of the STS and STRS contact elements,
respectively. nc1 and nc2 are the numbers corresponding to STS and STRS contact elements,
respectively.

4 Heat-conduction equations with solar radiation

As shown in Fig. 4, the thermal loads due to solar radiation are applied on a thin plate with
large deformation and overall motion. According to the first law of thermodynamics and the
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Fourier law of heat conduction [43–45], the variational heat-conduction equations for the
three-dimensional continuum can be given by the authors’ previous study [13], as follows

∫

V

(
ρcδT Ṫ + k̄δTxTx + k̄δTyTy + k̄δTzTz − QT

)
dV

−
∫

S+
δT q+dS −

∫

S−
δT q−dS = 0,

(35)

where c is the specific heat of the material, k̄ is the thermal conductivity, QT is the intensity
of the heat source, and q+, q− represent the heat flux of the upper and lower surfaces,
respectively.

Since the distribution of solar-radiation input is affected by various factors, including its
position, attitude, and configuration, the absorption of incident solar rays needs to be further
evaluated by the heat flux [27]. The solar unit vector is defined as �s, the angle of incidence
is αθ , and the initial angle of incidence is α0. Taking into account the effect of the shadow
region, q+ and q− can be given by

q+ = csα
+
mξ+S0 − σς+ (

T +)4
,

q− = csα
−
mξ−S0 − σς− (

T −)4
.

(36)

where S0 is the solar-radiation heat flux, cs is the solar coefficient related to the shadow
region, α+

m , α−
m represent the effective solar absorptivity of the upper and lower surfaces,

respectively, ξ+, ξ− represent the albedo view factors of the upper and lower surfaces, re-
spectively, σ represents the Stefan–Boltzmann constant, ς+, ς− represent the emissivity of
the upper and lower surfaces, respectively, and T + = Tr + �T +, T − = Tr + �T − represent
the absolute temperature of the upper and lower surfaces, respectively. When the plate is in
a shadow region, cs = 0.

Considering the influence of rigid-body motion and elastic deformation on the albedo
view factors of the upper and lower surfaces, the albedo view factors are given by [2, 13]

ξ+ =
{

cosα+
θ , 0 ≤ α+

θ ≤ π/2,

0, π/2 < α+
θ ≤ π,

ξ− =
{

cosα−
θ , 0 ≤ α−

θ ≤ π/2,

0, π/2 < α−
θ ≤ π,

(37)

where α+
θ and α−

θ are given by

α+
θ = arccos

(
− 1

n+
(
n̄+)T

s
)

, α−
θ = arccos

(
− 1

n−
(
n̄−)T

s
)

, (38)

where the normal vectors are

n̄+ = r̃+
x r+

y , n̄− = r̃−
x r−

y . (39)

Since n̄+ and n̄− are closely related to the attitude motion of the rigid body as well
as the elastic deformation of the plate, the present formulation considers the influence of
the attitude motion and the structural deformation on the heat flux q+ and q−, which is a
complete rigid–flexible–thermal coupling model.

However, in the conventional formulation, with the neglect of the effects of rigid-body
motion and elastic deformation on the heat flux, α+

θ and α−
θ are assumed to be constant,
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which can be expressed as α+
θ (t) = α+

θ (0) = α0, α−
θ (t) = α−

θ (0) = π − α0. In this case, it is
not a complete rigid–flexible–thermal coupling model.

By means of Taylor polynomials, the three-dimensional temperature field of a thin plate
can be described by the change of the midsurface temperature T0 and the temperature gra-
dient along the thickness direction T1. Using a finite-element method, T0 and T1 can be
discretized as [49]

Tk = Npik (k = 0,1), (40)

where pik (k = 0,1) represent the vectors of temperature variables of plate element i, and N
represents the shape-function matrix. Defining pk (k = 0,1) as the global vectors of temper-
ature variables, the relation between the element vector and the global vector can be given
by pik = Bikpk (k = 0,1). Substituting Eq. (40) into Eq. (9), the absolute temperature in
Eq. (35) can be expressed as

T = Tr + �T = Tr + T0 + zT1 = Tr + NBi0p0 + NBi1p1. (41)

Accordingly, the variational heat-conduction equations can be rewritten as

δpT (MT ṗ + KT p − FT ) = 0, (42)

where

p =
[

p0

p1

]
,MT =

[
M0 0
0 M1

]
,KT =

[
K0 0
0 K1

]
,FT =

[
F0

F1

]
, (43)

Mk = bk

∫ ae

0

∫ be

0
ρcNTNdydx, (k = 0,1) , (44)

Kk = bk

∫ ae

0

∫ be

0
k̄
(
NT

x Nx + NT
y Ny

)
dydx + kh

∫ ae

0

∫ be

0
k̄NTNdydx, (k = 0,1) , (45)

Fk = bk

∫ ae

0

∫ be

0
QT NTdydx +

∫ ae

0

∫ be

0
(0.5h)k q+NTdydx

+
∫ ae

0

∫ be

0
(−0.5h)k q−NTdydx, (k = 0,1) ,

(46)

bk =
∫ h/2

−h/2
zkdz, (k = 0,1) . (47)

Considering that the temperature variable vector p is independent, the heat-conduction
equations are given by

MT ṗ + KT p − FT = 0. (48)

5 Dynamic equations for the rigid–flexible–thermal coupling
multibody system

Defining qc = [rT
c θT

c ]T as the generalized coordinate vector of the rigid body, where rc

is the position vector of the centroid defined in the inertial frame, and θ c is the Cardan
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orientation angle vector of Oc-XcYcZc with respect to the inertial frame. In addition, the
mass matrix Mc and the generalized force vector Qc of the rigid body are detailed in [50, 51].

Combining the constraint equations �(qc,q, t) = 0, the rigid–flexible coupling dynamics
equations [52] and the heat-conduction equations, the mixed differential-algebraic equations
for the rigid–flexible–thermal coupling multibody system are given by

� =
⎡

⎣
Md q̈d + Cd q̇d + �T

qd
λ − Qd (p)

�

MT ṗ + KT p − FT (qd)

⎤

⎦ = 0, (49)

where the generalized coordinate vector of the system is qd = [qT
c qT ]T, and the general-

ized mass matrix Md , damping matrix Cd , and force matrix Qd take the form

Md =
[

Mc 06×nq

0nq×6 M

]
, (50)

Cd =
[

06×6 06×nq

0nq×6 C

]
, (51)

Qd =
[

Qc

Qg − Qe

]
+ Qcf , (52)

where nq is the number of the generalized coordinates of the plate, and λ is the vector of the
Lagrange multiplier corresponding to the constraint equations.

A new numerical approach combining the generalized-α method and the modified
central-difference method is proposed to solve the strong rigid–flexible–thermal coupling
equations. The dynamic equations are solved by the generalized-α method [53, 54], and the
heat-conduction equations are solved by a modified central-difference method [49]. Then,
the Newton–Raphson algorithm is adopted to solve the combined nonlinear algebraic equa-
tions. The solution procedure can be divided into three steps, which are presented in detail
in the Appendix.

Figure 5 shows the computational flowchart of the new numerical method proposed in
this paper. Compared with the fourth-order Runge–Kutta method used uniformly in the au-
thors’ previous study [13], the computational efficiency of this proposed method is sig-
nificantly improved. Additionally, compared with the traditional uncoupled method, this
method ensures the accuracy of the full coupled simulation by solving the heat-conduction
equations and the dynamic equations simultaneously. Considering the geometric nonlin-
earities (large deformation) and boundary nonlinearities (frictional contact), the variable-
step-size control scheme [55] and the preconditioning strategy are employed to improve
efficiency.

6 Validations

In this section, in order to verify the correctness of the proposed thermal–structural coupling
model, simulation experiments of a plate clamped at two sides and a cantilevered plate
applied with thermal loads are carried out, while the results from the commercial finite-
element software ABAQUS are taken as benchmarks.
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Fig. 5 Computational flowchart for the proposed numerical approach (Color figure online)

6.1 Simulation of a plate clamped at two sides

As shown in Fig. 6, two sides of a plate are fixed on the inertial reference frame O – XYZ,
and a constant heat flux qT is applied to the upper surface of the plate. The initial temperature
of the whole plate is set at 0 K. The geometric properties and material data of the plate
are: length l = 4 m, width b = 2 m, thickness h = 0.01 m, mass density ρ = 36.8 kg/m3,
elastic modulus E = 1.93 × 109 Pa, Poisson ratio ν = 0.3, thermal-expansion coefficient
αx = αy = 2.3 × 10−5 (1/K), conductivity coefficient k̄ = 1.5 W/(m · K), and specific heat
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Fig. 6 A plate clamped at two
sides in a thermal environment
(Color figure online)

Fig. 7 Time histories of (a) midsurface temperature of point P ; (b) temperature gradient of point P in the z

direction (Color figure online)

c = 921 J/(kg · K). In this simulation, the heat flux of the upper and lower surfaces are
q+ = qT cosα0 and q− = 0, respectively, where qT = 1067 W/m2 and α0 = 0.

As shown in Fig. 7, the time histories of the midsurface temperature of point P and the
temperature gradient T1 = ∂T /∂z of point P are given, and the results are in good agreement
with the comparative results provided by ABAQUS, which demonstrates that the tempera-
ture field can be calculated precisely by the proposed method.

To further investigate the geometric nonlinear effects, the deflections of point P in the z

direction using linear and nonlinear models are compared in Fig. 8. Since the two edges of
the plate are fixed, the thermal load leads to compressive thermal stress. It is found that for
the nonlinear model, the thermal force causes the softening of the plate, which induces large
transverse deformations. However, the results obtained by the linear model are quite differ-
ent. Due to the neglect of the nonlinear stiffness matrices, the softening effect is not shown
and the transverse deformation is small. Furthermore, the results of this paper coincide with
the results achieved by ABAQUS, which validates the effectiveness of the proposed thermal
integrated ANCF thin-plate element in terms of geometric nonlinearity.

6.2 Simulation of a cantilevered plate

As shown in Fig. 9, the dynamic simulation of a cantilevered plate applied with thermal
loads is performed. The geometric properties and material data of the plate are the same
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Fig. 8 Time history of the
deflection of point P in the z

direction (Color figure online)

Fig. 9 A cantilevered plate in a
thermal environment (Color
figure online)

Fig. 10 Time histories of (a) temperature gradient; (b) deflection of point P in the z direction (Color figure
online)

as the numerical example 6.1. The time history of the temperature gradient of point P in
the z direction is given in Fig. 10(a), which shows that the results are in accordance with
the results obtained by ABAQUS. From the results of the deflections of point P in the z

direction shown in Fig. 10(b), we can obtain that the results of the linear and nonlinear
models coincide well, it can be concluded that for cantilevered plate without tip constraint,
the use of a linear model is computationally accurate and efficient.



378 T. Yuan et al.

Fig. 11 Time histories of (a) temperature gradient; (b) deflection of point P in the z direction (Color figure
online)

The thermal–structural analysis for the cantilevered plate applied with thermal loads is
further conducted through a comparative study of the thermal–structural coupling model
and the constant heat flux model, where qT = 2525 W/m2 and α0 = 65◦, which ensures
that q+ = 1067 W/m2. The time histories of the temperature gradient and the deflection of
point P in the z direction are shown in Fig. 11, respectively. As can be seen in the figures,
due to the neglect of the elastic deformation of the constant heat-flux model, such a model
cannot reveal the thermally induced vibration effect, therefore the vibration amplitude of
the temperature gradient and the deflection is constant. On the contrary, since the heat flux
varies with the deformation of the plate, the vibration amplitudes of the temperature gradient
and the deflection obtained by the thermal–structural coupling model keep increasing. In
summary, the proposed model takes into account the coupling effect of the heat flux and
the elastic deformation, so that it is able to capture the phenomenon of thermally induced
vibration, which is hardly achieved in the commercial finite element software ABAQUS.

7 Numerical simulations of a satellite and solar-array multibody
system in a thermal environment

Thermal–dynamic analysis of the solar array is of vital importance to the safe operation of
spacecraft. In this section, we present two numerical examples to demonstrate the effec-
tiveness of the proposed rigid–flexible–thermal coupling model for the satellite and solar-
array multibody system in a thermal environment. The first numerical example focuses on
comparing the different coupling models to reveal the dynamic characteristics of thermally
induced vibration. The other numerical example is employed to analyze the deployment
dynamic performance of the solar array considering contact and thermal loading.

7.1 Numerical simulation of a satellite and solar-array system in a thermal
environment

A satellite and solar-array system applied with solar radiation is shown in Fig. 12. The
flexible solar array is fully deployed, and its left edge is fixed to the rigid satellite. In this
simulation example, the rigid satellite is a cube, and the solar array is an isotropic flexible
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Fig. 12 A satellite and
solar-array system (Color figure
online)

Table 1 Geometric and material properties

Satellite

Size of the rectangular satellite 2 m × 2 m × 2 m

Mass 2000 kg

Inertia matrix in body-fixed frame Jx = Jy = Jz = 200 kg · m2

Solar array

Length LP = 8 m

Width WP = 1 m

Thickness h = 0.01 m

Elastic modulus E = 1.93 × 109 Pa

Poisson’s ratio γ = 0.3

Mass density ρ = 36.8 kg/m3

Damping coefficient μ = 0.0001 (1/s)

Thermal expansion coefficient αx = αy = 2.3 × 10−5 (1/K)

Specific heat of the plate c = 921 J/(kg · K)

Initial angle of incidence α0 = 65◦
Thermal conductivity k̄ = 1.5 W/(m · K)

Solar heat flux S0 = 1350 W/m2

Solar absorptivity of the plate αm = 0.79

Intensity of heat source QT = 0

Stefan–Boltzmann constant σ = 5.67 × 10−8 W/(m2 · K4)

Emissivity of the upper surface ζ+ = 0.7

Emissivity of the lower surface ζ− = 0.7

Gravitational acceleration g = 0

plate. The inertial reference frame O−XYZ is established at the centroid C of the rigid
satellite, and the geometric and material properties are given in Table 1.

Defining the initial angel of incidence α0 as the solar angle, the coordinate vector of the
solar sunlight is given by s = [

sinα0 0 − cosα0
]T

. Initially, the satellite is in a static
state, and the body-fixed frame of the satellite is parallel to the global coordinate system.
The reference temperature is 273 K.

7.1.1 Dynamic performance of an onorbit satellite and solar-array system

To reveal the advantages of the rigid–flexible–thermal coupling model proposed in this pa-
per for the satellite and solar-array system, two dynamic models are compared: the complete



380 T. Yuan et al.

Fig. 13 Time histories of (a) deflection of point P in the zc direction; (b) temperature gradient of point P in
the z direction (Color figure online)

rigid–flexible–thermal coupling model (RFTC) and the rigid–flexible coupling model con-
sidering the thermal effect (RFCT). In the RFTC formulation, α+

θ and α−
θ are closely related

to qt+�t
d . However, in the RFCT formulation, α+

θ and α−
θ are assumed to be constant, which

are equal to α0 and π − α0, respectively, and thus the temperature results are not influenced
by the rigid-body motion and the elastic deformation.

For a more intuitive description of the deformation, deflection is introduced. The deflec-
tion of an arbitrary point on the plate can be written as

u = [
u v w

]T = AT
p (r − r0) , (53)

where r0 is the origin of the body-fixed frame of the plate, and Ap is the transformation
matrix of the body-fixed frame with respect to the inertial frame.

The time histories of the deflection of the corner point P in the zc direction and the
temperature gradient T1 = ∂T /∂z of the corner point P are shown in Figs. 13(a) and (b),
respectively. As can be seen in the figures, due to ignoring the coupling effect of the solar
heat flux, the rigid-body motion, and the elastic deformation, the RFCT model cannot reveal
the thermally induced vibration. Accordingly, the vibration amplitude of the deflection is
constant. On the contrary, the vibration amplitudes of the deflection and the temperature
gradient obtained by the RFTC model keep increasing, which explains the phenomenon of
the thermally induced vibration effect.

In order to further analyze the effect of thermal load on the motion of the satellite, Fig. 14
gives the time histories of the centroidal velocity of the satellite in the z direction and the an-
gular velocity of the satellite in the yc direction. Due to the coupling of the translational and
the rotational motion of the satellite and the elastic deformation of the solar array, the vibra-
tion amplitudes of the angular velocity and the centroidal velocity of the satellite obtained
by the RFTC model also keep increasing. In summary, it reveals that the thermally induced
vibration phenomenon is obvious in practical engineering and needs to be paid attention to.

7.1.2 Parameter analysis of thermally induced vibration

In this section, based on the proposed rigid–flexible–thermal coupling model, some charac-
teristic parameters are investigated: the solar angle α0, the specific heat c of the plate, and
the damping coefficient μ of plate on the thermally induced vibration effect.
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Fig. 14 Time histories of (a) centroidal velocity of the satellite in the z direction; (b) angular velocity of the
satellite in the yc direction (Color figure online)

Fig. 15 Time histories of the angular velocity of the satellite in the yc direction: under different (a) solar
angles α0; (b) plate specific heats c; (c) plate damping coefficients μ (Color figure online)

According to the change of the solar angle, the time history of the angular velocity of
the satellite in the yc direction is shown in Fig. 15(a). It is indicated that with the decrease
of the solar angle, the average of the deflection increases because of the increase of the
intensity of the solar heat flux. However, the variation of the solar heat flux caused by the
angular deformation of the plate and the rotation of the satellite becomes less significant,
therefore, the thermally induced vibration due to the rigid–flexible–thermal coupling effect
also decreases.

Figure 15(b) depicts the time history of the angular velocity of the satellite in the yc

direction at different plate specific heats. As can be seen in the figure, due to the decrease
of c and the increase of the thermal coefficient k̄/(ρc), the thermally induced vibration also
weakens.

The time history of the angular velocity of the satellite in the yc direction under different
plate damping coefficients is compared, as shown in Fig. 15(c). It can be seen that with
the increase of the structural damping coefficient, the vibration amplitude of the deflection
attenuates applied with the damping force, which indicates that the increase of the structural
damping coefficient contributes to weakening the thermally induced vibration.
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Fig. 16 Time history of ωy

(Color figure online)

7.1.3 Dynamic performance of a maneuvering satellite and solar-array system

In this section, the nonlinear dynamic performance of the maneuvering satellite and solar-
array system applied with a thermal load is investigated. Additionally, the solar heat flux is
applied on the plate, and the satellite is applied with a translational constraint, which is given
by xc = 0, yc = 0, zc = 0, and a rotational constraint, which is given by ωx = 0, ωz = 0, and

ωy =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ωs

ts

(
t − ts

2π
sin

2πt

ts

)
, 0 ≤ t < ts,

ωs, ts ≤ t < tb − ts ,

ωs

ts

(
tb − t − ts

2π
sin

2π (tb − t)

ts

)
, tb − ts ≤ t < tb,

0, t > tb,

(54)

where tb = 200 s, ts = tb/8, ωs = π/50, which is shown in Fig. 16.
On the basis of the RFTC model proposed in this paper, the deformed configurations of

the satellite and solar-array multibody system as well as the distribution of the von Mises
stress of the solar array at some time steps are depicted in Fig. 17. Initially, the satellite
rotates with angular velocity around the yc-axis, which in turn drives the motion of the solar
array. In this situation, the solar array undergoes large deformations and overall motions. It
is shown that the stress concentration mainly occurs at the roots of the solar array, and the
stress wave gradually spreads toward the free edge of the solar array.

For the purpose of highlighting the advantages of the rigid–flexible–thermal coupling
model for dynamic analysis of the maneuvering satellite and solar-array system with large
deformations and overall motions, three dynamic models are compared: the RFTC model,
the RFCT model, and the rigid–flexible coupling model without considering the thermal
effect (RFC). In the RFC formulation, only rigid–flexible coupling effects are considered,
while thermal effects are ignored.

Figure 18 gives the time histories of the deflection w of the corner point P in the zc direc-
tion and the temperature gradient T1 = ∂T /∂z of the corner point P , respectively. As can be
seen in the figure, in the RFC model, except for the acceleration and deceleration phases of
ωy , the deflection of point P in the zc direction maintains a small-amplitude vibration due to
the rigid–flexible coupling effect. For t < 200 s, the satellite undergoes periodic rotational
motion in the y direction, which leads to the periodic deflection in the zc direction and the
periodic variation of the temperature gradient in the thickness direction due to the complete
rigid–flexible–thermal coupling effect, while the deflection and the temperature gradient
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Fig. 17 Motion of the satellite and solar-array system at some time steps (Color figure online)

Fig. 18 Time histories of (a) deflection of point P in the zc direction; (b) temperature gradient of point P in
the z direction (Color figure online)

obtained by the RFCT model shows neither periodic variation nor amplitude growing. Fur-
thermore, it is shown that for t > 200 s, with the release of the applied angular velocity
ωy , the amplitude of vibration obtained by the RFTC model keeps increasing slowly, which
reveals the phenomenon of the thermally induced vibration.

To further analyze the thermal–dynamic performance of the maneuvering satellite and
solar-array system, Fig. 19 gives the phase diagrams of point P in different models. From
the phase diagram in the RFC model, it can be seen that the trajectory of the phase diagram
exhibits a periodic motion without vibration under the action of ωy . In the RFCT model, the
trajectory of the phase diagram can be viewed as the thermal vibrations superimposed on
the basis of the RFC model. Since the thermal loads are assumed to be constant in the RFCT
model, the thermal vibrations appear as low-frequency oscillations. However, in the RFTC
model, it shows low-frequency periodic motion as well as the high-frequency thermally
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Fig. 19 Phase diagrams point P in (a) RFTC model; (b) RFCT model; (c) RFC model (Color figure online)

Fig. 20 A simplified model of the deployment satellite and solar-array system in a thermal environment: (a)
partially deployed configuration; (b) stowed configuration (Color figure online)

induced vibration, due to the consideration of the influences of rigid-body motion and elastic
deformation on the intensity of solar radiation. Therefore, it is necessary to adopt the more
precise rigid–flexible–thermal coupling model for dynamic analysis of maneuvering satellite
and solar-array systems, which can capture richer nonlinear characteristics.

7.2 Deployment dynamics of a solar array in a thermal environment with frictional
contact

The second example deals with the deployment of the solar array in a thermal environment
considering frictional contact. The simplified model of the satellite and solar-array system
in a thermal environment is illustrated by Fig. 20, which consists of four guide wires, eight
solar panels, and eight rotational hinges. It is worth mentioning that the translational and
attitude motion of the satellite is controlled during the deployment of the solar array, and
it can be regarded as points B , D, B1, and D1 are restricted to move on the guide wires
ignoring the deformation of the guide wires. Since the direction of sunlight is along the
negative z-axis, and the solar array are symmetrically distributed about the central satellite, it
is sufficient to analyze the deployment of the solar panels on one side. O−XYZ is the inertial
reference frame, which is consistent with the body-fixed frame of the satellite C − XcYcZc .

The length of one side of the solar array is LP = 5 m, and the solar angle α0 = 0, and
for the other geometric and material properties refer to Table 1. The initial angle between
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Fig. 21 Configurations and the von Mises stress of the satellite and solar-array system at some time steps
(Color figure online)

the adjacent solar panels is θ0 = 2◦, as shown in Fig. 20(b). Considering the contact of so-
lar panels and the contact between solar panel and satellite, it requires the STS and STRS
contact elements. The normal and tangential penalty parameters for the STS and STRS con-
tact elements are εN = εT = 105 N/m3, and the static and dynamic frictional coefficients are
μs = μd = 0.3. In addition, the points D and D1 are subjected to a prescribed translational
displacement vector d(t) = [d(t) 0 0 ]T m. The piecewise function is

d(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.5adt
2 + s0, 0 ≤ t < t1,

0.5adt
2
1 + adt1(t − t1) + s0, t1 ≤ t < t2,

LP − 0.5ad(t3 − t)2, t2 ≤ t < t3,

LP , t3 ≤ t ≤ te,

(55)

where t1 = 12 s, t2 = 108 s, t3 = 120 s and te = 200 s. s0 = 0.25LP cos(θ0/2) is the initial
x coordinate, and ad = (LP − s0)/t1t2 ensures that the deployment of the solar array ends
with a fully deployed configuration, and the maximum velocity of the drive is defined as
vm = vc = ad t1.

Based on the complete rigid–flexible–thermal coupling model proposed in this paper,
the changes of configuration at some time steps are shown in Fig. 21, and the color maps
represent the distribution of the von Mises stress. The initial stress of the folded solar panels
is set to zero, and then the solar panels are gradually deployed applied with the driving
constraints. Due to contact, it can be found that the stresses of panels 1 and 2 are greater than
those of panels 3 and 4 at t = 30 s and t = 60 s. As the thermal loads continue, panels 3 and
4 experience greater thermal stress, which can be seen in the configurations at t = 90 s and
t = 120 s. After the solar array is fully deployed, we can observe that the stress distribution
of the four solar panels is relatively balanced, accompanied by obvious thermal deflection.

Figure 22 presents the time history of temperature gradients of the points P , B , and Q

during the deployment of the solar array, and these test points can comprehensively reflect
the heating conditions of the solar array. It can be seen that for t < 50 s, the temperature
gradient at point P has a zero value, which is due to the fact that point P is in the shadow
region at the time of contact and cannot receive solar radiation. Since one of the plates
connecting the point B is in the shadow region at the initial stage, the temperature gradient
rate at point B is lower than that at point Q. This why panels 1 and 2 experience greater
thermal stress than panels 3 and 4 during the deployment of the solar array. Finally, the solar
panels are fully deployed, and the temperature gradients of the three points are the same.
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Fig. 22 Time history of
temperature gradients of points
P , B , and Q (see Fig. 20) in the
z direction (Color figure online)

Fig. 23 Configurations of the (a) contact model; (b) no contact model at t = 30 s (Color figure online)

Therefore, the influence of contact and thermal loads on the deployment process of the solar
array is essential, which needs to be paid more attention to in engineering.

7.2.1 Influence of contact

In order to illustrate the necessity of contact, two models are employed. The first one consid-
ers the integration of the STS and STRS contact elements, and the other does not consider
contact. For the sake of intuitiveness, the configuration of the satellite and solar-array sys-
tem at t = 30 s is selected for analysis, as shown in Fig. 23. It can be seen in Fig. 23(a)
that the solar array can deploy properly without overpenetration in consideration of contact.
On the contrary, it is clearly observed that the large penetration appears not only between
the solar panels, but also between the satellite and the solar panels when the contact is not
taken into account. In conclusion, for the deployment of the satellite and solar-array system,
it requires a combination of STS and STRS contact elements to avoid mutual penetration,
thereby ensuring computation accuracy.

With the view of further analyzing the effect of contact, Fig. 24 depicts the time history
of coordinate x of points B and P obtained by the contact and no contact models. It can
be seen that the values of the coordinate x of points B and P are less than 1, that is, the
solar panels penetrate into the satellite, which violates the real situation. After the contact
no longer occurs, the curves of the two contact models gradually tend to be consistent, and
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Fig. 24 Time history of
coordinates x of points B and P

in different contact models
(Color figure online)

Fig. 25 (a) Time history of coordinates z of point Q in different thermal models; (b) Configurations of
different thermal models at t = 55 s and t = 200 s (Color figure online)

the solar array is fully deployed at t = 120 s. Therefore, we can conclude that the contact
affects not only the motions of the system, but also the shadow regions, which is related to
the intensity of the solar radiation.

7.2.2 Influence of thermal load

Since the thermal loads have a significant effect on the deployment of the solar array, two
different thermal models are compared and analyzed in this section. Figure 25(a) presents
the time history of coordinates z of point Q obtained by the thermal and no thermal models,
respectively. By observing the coordinates zQ of the two models, it can be seen that when
the solar panels 3 and 4 are fully deployed, the thermal model excites high-frequency oscil-
lations with gradually decreasing amplitudes. Combined with the configuration at t = 55 s
in Fig. 25(b), it can be seen that since point B of the no thermal model moves later than
that of the thermal model, point Q has a greater vertical velocity as it passes the horizontal
position, resulting in a greater offset magnitude. In addition, the final configurations of the
thermal and no thermal models at t = 200 s are also presented in Fig. 25(b), in which we
can observe that obvious deflections of the thermal model occur at points P and Q due to
the effects of the boundary constraints and the thermal loads, which cannot be obtained by
the no thermal model.
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Fig. 26 Time history of
deflection of point P in different
thermal models (Color figure
online)

Fig. 27 Drive-speed curves in
three cases (Color figure online)

To further analyze the thermal expansion and deflection, the time history of the deflection
of point P in different models is given in Fig. 26. Here, u, v, and w denote the deflection
of point P in the x, y, and z directions, respectively. The values of u and v remain zero in
the no thermal model, but eventually exhibit positive expansion in the thermal model. By
comparing the curve of w in the two models, it can be observed that when the solar array is
fully deployed at t = 120 s, the vibration amplitude of the thermal model is greater than that
of the no thermal model, and the decay time is longer. From the results in the figure, it is
necessary to pay attention to the phenomenon of thermal deflection during the deployment
of the solar array.

7.2.3 Comparison of different drive speeds

In engineering, the effect of drive speed on the satellite and solar-array system is another
issue of concern. In this section, we focus on comparing the results of three different drive
speeds acting on the solar array in a thermal environment. As illustrated in Fig. 20, the points
D and D1 are subjected to a prescribed translational displacement along the x direction. As
shown in Fig. 27, the drive-speed curves in different cases have the same displacement at
t = te , in which the black curve represents the basic model, and its expression refers to
Eq. (55).
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Fig. 28 Time histories of (a) displacement; (b) velocity of point P in the x direction in different cases (Color
figure online)

Figure 28 plots the dynamic response of point P at three different drive speeds. It can be
seen in Fig. 28(a) that the deployment times of the solar array in the three cases are signif-
icantly different, and the changes of xP are relatively stable. From the results in Fig. 28(b),
we can observe that there are two obvious high-frequency vibrations during the deployment
of the solar array. The first occurs when the solar panels 3 and 4 are fully deployed, another
occurs when the solar panels 1 and 2 are fully deployed. Since the thermal effect is positively
related to the action time of the thermal load, the thermal stress increases with decreasing
drive speed, resulting in a greater amplitude of oscillation, especially when the plates are
fully deployed.

8 Conclusions

A strong rigid–flexible–thermal coupling dynamic model for a hub and multiplate multi-
body system with large deformations and frictional contact interactions is proposed. An
ANCF thin-plate element with thermoelasticity is developed, and the temperature field is
expressed with Taylor polynomials to gain the heat conduction equations. Accounting for
the influences of the attitude motion and structural deformation on the intensity of the solar
radiation, a complete rigid–flexible–thermal coupling model is created. Subsequently, the
STS and STRS frictional contact elements are developed, which can effectively avoid the
mutual overpenetration and capture the stick–slip behavior. Furthermore, a new numerical
approach combining the generalized-α method and a modified central-difference method is
proposed to solve the strong rigid–flexible–thermal coupling equations, which improves the
accuracy of the full coupled simulation by solving the heat-conduction equations and the
dynamic equations simultaneously.

By setting comparative tests in ABAQUS, the correctness of the proposed thermal–
structural coupling model is validated, and the necessary of the geometric nonlinearity is
proved. Moreover, the advantages of the proposed model in capturing thermally induced
vibration are revealed. To further demonstrate the effectiveness of the proposed rigid–
flexible–thermal coupling method, two numerical simulations of the satellite and solar-array
multibody system in a thermal environment are conducted. The first example compares the
results of three dynamic models: RFTC model, RFCT model, and RFC model. Due to the
consideration of the elastic deformation as well as the rigid-body motion on the intensity of
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heat flux, RFTC model can reveal the phenomena of the thermally induced vibrations, which
cannot be achieved by the other two models. Parameter analysis illustrates that the thermally
induced vibration effect can be reduced through the decrease of the solar angle and the spe-
cific heat or the increase of the damping coefficient. Then, the nonlinear coupling behavior
of the maneuvering satellite and solar-array system can be revealed by the proposed RFTC
model. The second example is employed to analyze the deployment dynamic performance
of the solar array in a thermal environment with frictional contact. It is concluded that the
contact affects not only the motions of the system, but also the intensity of the solar ra-
diation because of the shadow regions. Due to the effects of the boundary constraints and
the thermal loads, obvious thermal deflection and high-frequency vibration can be induced,
especially when the plates are fully deployed. Since the thermal effect is positively related
to the action time of the thermal load, the amplitude of thermal vibration increases with the
decreasing of the drive speed.

Appendix. Solution scheme for the rigid–flexible–thermal coupling
equations

The solution scheme for the rigid–flexible–thermal coupling equations is divided into the
following three steps:

• Step1: Prediction of the initial value

Assuming that q̈t+�t
d = 0, we combine Taylor’s formula, the generalized-α method, and a

modified central-difference method to predict at+�t
d , qt+�t

d , q̇t+�t
d , λt+�t , pt+�t , as follows:

at+�t
d = αf

1 − αm

q̈t
d − αm

1 − αm

at
d , (56)

qt+�t
d = qt

d + �t q̇t
d + �t2 (0.5 − β)at

d + �t2βat+�t
d , (57)

q̇t+�t
d = q̇t

d + �t (1 − γ )at
d + �tγ at+�t

d , (58)

λt+�t = λt , (59)

pt+�t = θpt+�t + (1 − θ)pt , (60)

where

αm = 2ρ∞ − 1

ρ∞ + 1
, αf = ρ∞

ρ∞ + 1
, (61)

γ = 0.5 + αf − αm, β = 0.25 (γ + 0.5)2 , (62)

and the numerical parameters ρ∞, θ ∈ [0,1]. The numerical parameters in this paper are
taken as ρ∞ = 0.6, θ = 0.5.

• Step2: Transformation into nonlinear algebraic equations

The dynamic equations can be transformed into nonlinear algebraic equations using the
generalized-α method [53]

[
Md q̈t+�t

d + Cd q̇t+�t
d + �T

qd

(
qt+�t

d

)
λt+�t − Qd(qt+�t

d ,pt+�t )

�(qt+�t
d , t + �t)

]

= 0, (63)
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where

∂q̈t+�t
d

qt+�t
d

= β ′I,
∂q̇t+�t

d

qt+�t
d

= γ ′I, (64)

β ′ = 1 − αm(
1 − αf

)
β�t2

, γ ′ = γ

β�t
. (65)

The heat-conduction equations in Eq. (48) are transformed into nonlinear algebraic equa-
tions by a modified central-difference method [49]

K̄pt+�t − Q̄(qt+�t
d ,pt+�t ) = 0, (66)

where

K̄ = MT

�t
+ θKT , (67)

Q̄ =
[

MT

�t
− (1 − θ)KT

]
pt + (1 − θ)Ft

T + θFt+�t
T . (68)

• Step3: Solution of the combined nonlinear algebraic equations

According to Eqs. (A8) and (A11), the combined nonlinear algebraic equations are
rewritten as

�
(
qt+�t

d ,pt+�t ,λt+�t , t + �t
)

=
⎡

⎢
⎣

Md q̈t+�t
d + Cd q̇t+�t

d + �T
qd

(
qt+�t

d

)
λt+�t − Qd(qt+�t

d ,pt+�t )

�(qt+�t
d , t + �t)

K̄pt+�t − Q̄(qt+�t
d ,pt+�t )

⎤

⎥
⎦ = 0.

(69)

The Newton–Raphson algorithm is used to find a solution of Eq. (A14). At an iteration
step k, the following equation is solved for a correction �qt+�t

(k) :

�qt+�t
(k) =

⎡

⎢
⎣

�pt+�t
(k)

�qt+�t
d(k)

�λt+�t
(k)

⎤

⎥
⎦ = −

[
∂�

∂pt+�t

∂�

∂qt+�t
d

∂�

∂λt+�t

]−1

�, (70)

where

∂�

∂pt+�t
=

⎡

⎢
⎢⎢
⎢⎢
⎣

−∂Qd(qt+�t
d(k) ,pt+�t

(k) )

∂pt+�t

0

K̄ − ∂Q̄(qt+�t
d(k) ,pt+�t

(k) )

∂pt+�t

⎤

⎥
⎥⎥
⎥⎥
⎦

, (71)

∂�

∂qt+�t
d

=

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

α′Md + β ′Cd + ∂
(
�T

qd

(
qt+�t

d(k)

)
λt+�t

(k)

)

∂qt+�t
d

− ∂
(
Qd(qt+�t

d(k) ,pt+�t
(k) )

)

∂qt+�t
d

�qd

(
qt+�t

d(k)

)

−∂Q̄(qt+�t
d(k) ,pt+�t

(k) )

∂qt+�t
d

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

, (72)
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∂�

∂λt+�t
=

⎡

⎣
�T

qd

(
qt+�t

d(k)

)

0
0

⎤

⎦ . (73)

An improved estimate can be obtained as

qt+�t
(k+1) = qt+�t

(k) + �qt+�t
(k) , k = 0,1, . . . , (74)

until the precision condition
∥
∥�qt+�t

(k)

∥
∥ ≤ δ is satisfied, in which δ is the precision error.
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