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Abstract
The efficient algorithm for high-order inverse dynamics of serial robots is an essential need
in design and model-based control of robots equipped with serial elastic joints. Although
several efficient algorithms have been proposed, the introduction of new frameworks can
lead to new understanding and further improvements. Based on the projective geometric
algebra (PGA) for Euclidean geometry, this paper provides a recursive algorithm that is
computationally efficient, intuitive, uniform, and coordinate invariant. In the PGA-based
method, calculations of the exponential map and Lie brackets are simplified and rigid body
motions are represented as vectors instead of matrices. All geometric elements used to model
robots are represented as vectors uniformly, and all operations are modeled as algebraic
operations with explicit geometric meaning. The validation of the algorithm is presented for
the second-order inverse dynamics of the Franka Emika Panda using the algorithm based on
PGA and the algorithm based on product of exponentials (POE) respectively. The proposed
algorithm is 15% faster than the POE-based algorithm with correct results. It turns out that
the kinematics part of the algorithm saves 69.82% multiplications and 73.58% additions than
that in the POE-based algorithm. The relation between PGA and other popular concepts in
robotics, such as dual quaternions, is also discussed.

Keywords Projective geometric algebra · Serial robots · High-order inverse dynamics

1 Introduction

Various applications of robots necessitate to compute the first-order and the second-order
derivatives of the joint torques or forces. Typical examples include the motion planning
with constrains on the motion of the end-effector and the motion control of robots equipped
with serial elastic actuators and variable stiffness actuators [1]. Taking the elastic actuator
as an example, it is usually modeled as a rotor connecting a spring. The equations of motion
of the robot are usually formulated as differential equations about the rotation variables of
motors rather than those of joints. The variables of joints in the equations are canceled by
substituting the equations of motion of rotors, and the derivatives of the joint torques are
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included [2]. With the equations considering the model of elastic actuators, energy-saving
and efficient control strategies can be designed [3–5]. An efficient but simple and intuitive
algorithm is thus desired to implement the high-order inverse dynamics of serial robots.

Different methods have been developed to model serial robots and to construct the al-
gorithms for high-order inverse dynamics. The Denavit–Hartenberg method (D-H method)
[6] provides a standard procedure to model serial robots, and it has been a classic method.
However, the special procedure to attach references to links can be cumbersome. A compu-
tationally recursive algorithm for the inverse dynamics was then constructed based on the
Newton–Euler formulation and the D-H method. Translations and rotations are treated sep-
arately in this method, and it makes the high-order inverse dynamics hard to be formulated.
Based on Ball’s screw theory, the product of exponentials (POE) is proposed [7] and gains
more and more robotics researchers’ interest [8]. The POE method models serial robots with
lower pair joints directly in terms of geometric data, and it simplifies the modeling proce-
dure significantly. In the perspective of the POE, translations and rotations are both part of
screw motions. The dynamic equations of a single rigid body are formulated in a compact
form, which simplifies the recursive algorithm for the inverse dynamics. The exponential
map in the POE method maps an element in the Lie algebra of the special Euclidean group
SE(3), denoted as se(3), to an element in SE(3). It is actually a map from a Lie algebra to
a Lie group. The theory of the Lie group and the Lie algebra is then introduced to the POE
method [9]. It turns out that the derivatives of inertia items in the dynamics equation and the
geometric Jacobian can both be implemented by Lie brackets. It significantly simplifies the
calculations of derivatives. Based on this property, Müller proposed an efficient recursive
algorithm for 2-order inverse dynamics of serial robots [2, 10] and explored the applications
of this property in other problems [11]. Singh et al. [12] proposed an efficient analytical
algorithm for this problem using spatial vector algebra. Cibicik and Egeland [13] analyzed
kinematics and dynamics of robots using dual screws. Silva et al. [14] provided a compre-
hensive introduction to the dynamics of robots using dual quaternion algebra. These theories
provide diverse views to understand the geometry of serial robots, and efficient algorithms
are constructed. However, space for improvement remains. In the POE theory, repetitive el-
ements in the adjoint matrix of twists and homogeneous matrices should be reduced without
the loss of physical or geometric meaning. The exponential map with complex matrix cal-
culations should also be simplified. A more uniform and intuitive theory with the ability to
construct efficient algorithms still needs to be explored.

One common base of methods mentioned above is the system of Gibbs’ vectors [15].
However, a more general system of vectors exists, named geometric algebra (GA), also
known as Clifford algebra. GA constructs a space with not only “inner product” but also
“outer product”. It generalizes the representations of different geometric elements and mod-
els geometric operations in algebraic operations. The great power of GA has stood out in
the field of theoretical physics [16] [17], signal processing [18], and computer science. Re-
searchers also begin to introduce it in the field of robotics. However, related research is
scattered in the literature, and advanced study is still desired. Among the related research,
Bayro-Corrochano has discussed GA’s applications in robotics and has solved many prob-
lems such as the kinematics [19], machine vision [20], and motion control [21]. Selig [22]
formulated rigid body dynamics using GA and pointed out that the dynamics of serial robots
can be cast into a GA form. Hestenes [23] discussed the application of GA in rigid body me-
chanics with elastic coupling and proposed the simplification brought by GA.

Gunn [24–26] proposed a method applying projective geometric algebra (PGA) for Eu-
clidean geometry and found it suitable to solve problems in not only Euclidean geometry,
but also elliptic and hyperbolic geometry. He also specified the dual projectivized Clifford
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algebra and established that it is the smallest structure-preserving GA for Euclidean geom-
etry. Hadfield [27] then implemented constrained dynamics with both the PGA proposed by
Gunn and conformal geometric algebra (CGA). PGA is also applied to classical mechanics,
and the dynamic models of both mass particles and rigid bodies can be constructed. How-
ever, research that applies PGA to serial robots and constructs both the kinematics and the
dynamics model is still not reported in the literature.

Based on the research of Gunn [25], this paper proposes a method for modeling se-
rial robots based on the PGA for Euclidean geometry, including the geometric model, the
kinematics model, and the dynamics model. A recursive algorithm to implement the high-
order inverse dynamics of serial robots is then constructed. It turns out that the algorithm
is computationally efficient, intuitive, and friendly to beginners, and it is coordinate invari-
ant, the same as the POE method. In this method, calculations of the exponential map and
Lie brackets are simplified and rigid body motions are represented as vectors instead of
matrices, which improves the efficiency and saves memories. All operations are modeled
as algebraic operations with explicit geometric meaning, and this characteristic makes the
method intuitive.

The paper is organized as follows. Section 2 introduces basic concepts of the PGA used
to model serial robots. Section 3 presents the geometry model, the kinematics model, and the
dynamics model of a serial robot successively and constructs the algorithm for high-order
inverse dynamics. In Sect. 4, the computational performance of Lie brackets, the exponential
map, and the algorithm is analyzed and mics of the Franka Emika Pand is used to verify the
algorithm based on the PGA. Then the algorithm is compared with the algorithm proposed
by Müller in [2] for the efficiency. The paper closes with conclusion about the advantages
of PGA-based method and discussion about the relation between PGA and other concepts
used in robotics, including manifolds, Lie group, Lie algebra, and dual quaternions.

2 Theory about projective geometric algebra

2.1 The projective space RP 3

A projective space is obtained from a vector space V by introducing an equivalence relation:
∀x,y ∈ V \ {0}, x ∼ y ⇐⇒ ∃λ �= 0, s.t. x = λy. If V = R

n+1, then the projective space is
called a real projective n-space and is denoted as RP n.

Classical mechanics is constructed in a 3-dimensional Euclidean space E
3, which is an

affine space A
3 with Euclidean metric [28]. In the space, a plane is represented as a linear

equation: ax + by + cz + d = 0. A one-to-one map is then established between the coeffi-
cients of the equation and a vector in the vector space R4: p = ae1 +be2 + ce3 +de0, where
{ei} is a set of basis vectors. However, λp (λ ∈ R, λ �= 0) represents the same plane as p.
Thus, a plane is treated as an element in the projective space RP 3.

In projective geometry, a projective space is called a dual projective space when its ele-
ments represent hyperplane. It is denoted as (RP n)∗. In this article, the denotation RP n is
used instead. Projective geometric algebra is then constructed on the basis of RP 3.

2.2 The projectivized exterior algebra P
(∧

R
4)

Define an anti-symmetric bilinear associative operator in R
4, named outer product and de-

noted as “∧”. According to the property of anti-symmetric, the outer products of basis vec-
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tors are as follows:

ei ∧ ei = −ei ∧ ei = 0, (1a)

ei ∧ ej = −ej ∧ ei = eij (i �= j). (1b)

As shown above, new basis vectors emerge: {e23, e31, e12, e01, e02, e03}, and a new
6-dimensional vector space is generated. We denote the 6-dimensional vector space as∧2 (

R
4
)
. Vectors in this space are called 2-vectors, and the space is with grade 2. Like-

wise, other two vector spaces of higher grade are generated by the outer product of basis
vectors: a 4-dimensional vector space with basis {e032, e021, e013, e123} and a 1-dimensional
vector space with basis {I = e0123}. More specifically, eijk = ei ∧ ej ∧ ek and e0123 =
e0 ∧ e1 ∧ e2 ∧ e3, where i, j, k = 0,1,2,3. The two higher grade spaces are denoted as∧3 (

R
4
)

and
∧4 (

R
4
)
, and vectors in them are called 3-vectors and pseudo-scalars, respec-

tively. The real number is with grade 0 as defined,
∧0

(Rn) :=R. The direct sum of them is
defined as the exterior algebra

∧
R

4:

∧
R

4 :=R⊕R
4 ⊕

2∧(
R

4
) ⊕

3∧(
R

4
) ⊕

4∧(
R

4
)
. (2)

The exterior algebra can also be projectivized by applying the equivalence relation to the
vector space

∧k
(
R

4
)
. It yields the projectivized exterior algebra

P
(∧

R
4
)

:= P (R) ⊕ P
(
R

4
) ⊕ · · · ⊕ P

(
4∧(

R
4
)
)

. (3)

Operations between geometric elements can be implemented by outer product. Without
loss of generality, two vectors in R

4 are given, representing two planes p1 and p2 as follows:

p1 = a1e1 + b1e2 + c1e3 + d1e0, (4a)

p2 = a2e1 + b2e2 + c2e3 + d2e0. (4b)

Suppose that they are not parallel to each other, and the outer product is

p1 ∧ p2 =(b1c2 − b2c1)e23 + (a2c1 − a1c2)e31

+ (a1b2 − a2b1)e12 + (a2d1 − a1d2)e01

+ (b2d1 − b1d2)e02 + (c2d1 − c1d2)e03

=[e23 e31 e12 e01 e02 e03] L.

(5)

L ∈R
6 is the coordinate with respect to the basis. It turns out that L is the Plücker coordinate

of the intersecting line of two planes, up to a scalar factor [29]. In the projective space

P
(∧2 (

R
4
))

, L and λL(λ �= 0) represent the same line.

To be more specific, the plane x−1 = 0 and the plane y = 0 are represented as e1 −e0 and
e2. The outer product is e12 − e02, and L = (0,0,1,0,−1,0)T . It represents the line parallel
to z axis and crossing the point (1,0,0). Its Plücker coordinate is (0,0,1,0,−1,0)T .

If two planes are parallel, then (a1, b1, c1) = λ(a2, b2, c2) (λ �= 0). The outer product is

p1 ∧ p2 =(d1 − λd2)(a2e01 + b2e02 + c2e03)

=[e23 e31 e12 e01 e02 e03] L.
(6)
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Table 1 The representation of
geometry elements in P(

∧
R

4) Name Representation in P(
∧

R
4)

Planes p = ae1 + be2 + ce3 + de0

Lines l = dxe23 + dye31 + dze12 + pxe01 + pye01 + pze03

Points P = xe032 + ye013 + ze021 + e123

In projective geometry, the intersection of two parallel planes is an infinite line [30]. The
coordinate of the outer product L is again the Plücker coordinate of the intersecting infinite
line. In summary, the outer product of any two planes implements the operation “meet” and

produces a 2-vector in P
(∧2 (

R
4
))

, representing the intersecting line.

Furthermore, suppose another plane p3 is given, and any two of the three planes are not
parallel.

p3 = a3e1 + b3e2 + c3e3 + d3e0. (7)

The outer product of them is

p1 ∧ p2 ∧ p3 = − (b1c2d3 − b1c3d2 + b2c3d1

− b2c1d3 + b3c1d2 − b3c2d1)e032

+ (a1c2d3 − a1c3d2 + a2c3d1

− a2c1d3 + a3c1d2 − a3c2d1)e013

− (a1b2d3 − a1b3d2 + a2b3d1

− a2b1d3 + a3b1d2 − a3b2d1)e021

+ (a1b2c3 − a1b3c2 + a2b3c1

− a2b1c3 + a3b1c2 − a3b2c1)e123

=[e032 e013 e021 e123]P.

(8)

P ∈ R
4 is the coordinate with respect to the basis. With Cramer’s rule, it turns out that P is

the homogeneous coordinate of the intersecting point, up to a scalar factor. In the projective

space P
(∧3 (

R
4
))

, P and λP (λ �= 0) represent the same point.

If any two of the planes are parallel, the coefficient of e123 is zero and it produces an

infinite point in the projective space P
(∧3 (

R
4
))

. If all the three planes are parallel, the

outer product is 0. It means that the intersection of the three planes is not a point.
In summary, planes, lines, and points can be represented by vectors, 2-vectors, and 3-

vectors in the corresponding projective space, respectively. It is summarized in Table 1.
Meet of geometric elements can be implemented by the outer product. More details about
the projectivized exterior algebra can be found in Chap. 2 of [26].

2.3 The metric in RP 3

With a symmetric bilinear form defined in R
4, the element in RP 3 can be represented by one

specific vector in R
4. The symmetric bilinear form is called the inner product. According to

Sylvester signature theorem, a symmetric bilinear form of dimension n is completely char-
acterized by three integers (p,m, z) satisfying p + m + z = n [30]. The integers (p,m, z)
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are the signature of the bilinear form, implying p bases’ self inner product is 1, m bases’
is −1, and z bases’ is 0, in n orthogonal bases. The signature (3,0,1) is chosen for doing
Euclidean geometry. For a basis {ei} of R4, the signature means

ei · ej = 0(i �= j), (9a)

ei · ei = 1(i = 1,2,3), e0 · e0 = 0. (9b)

The inner product with signature (3,0,1) naturally induces a norm in R
4. For a vector

p = ae1 + be2 + ce3 + de0, its norm is defined as

‖p‖ = √
p · p =

√
a2 + b2 + c2. (10)

Applying the norm to RP 3, it measures the length of the plane’s normal vector, which is
defined as the weight of p in RP 3. The weight of a vector in the projective space is used to
model the mass of a point in the dynamics of a rigid body.

Vectors with nonzero norm in R
4 can be normalized as p̂ = p/‖p‖. Then a normalized

vector corresponds to an oriented plane in the Euclidean space with a unit normal vector,
and an oriented plane corresponds to a normalized vector. With normalization, a plane in
RP 3 can be represented by at most two vectors that differ in a coefficient −1.

The metric in RP 3 is also induced from the inner product. It measures the “distance”
between two planes. Based on the theory of Cayley–Klein metric, the metric between two
planes p1 and p2 in RP 3 is defined as

d(p1,p2) = cos−1
(
p̂1 · p̂2

)
. (11)

It turns out that the “distance” between two planes is actually the angle between their normal
vectors.

Remark If the signature (1,0,3) is chosen and points in an Euclidean space are modeled as
elements in RP 3, the Euclidean metric can be induced via limiting process [26]. A normal-
ized vector is in the form P = xe1 + ye2 + ze3 + e0, which is the same as the representation
of points in projective geometry.

In summary, the inner product defined in R
4 naturally induces the norm and the metric in

RP 3. The “distance” between two geometric elements is then well defined. For more details
about metric in projective geometry, readers are referred to Chap. 3 of [26].

2.4 The geometric product and P(R(3,0,1))

Clifford summarized the property of the outer product and the inner product and introduced
a new bilinear associative operator, the geometric product [26]. It is defined as

ab = a · b + a ∧ b, ∀a,b ∈R
n. (12)

The geometric product is a more general operator. It contains a property of both the inner
product and the outer product, like a coin contains two sides. Both operators can be induced
from the geometric product.

a · b = ab + ba

2
, (13)
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a ∧ b = ab − ba

2
. (14)

The geometric product maps two vectors from R
n to R ⊕ ∧2

(Rn). Successively, it ex-
tends a vector space R

n to the direct sum of vector spaces with grade from 0 to n. The
resultant vector space is denoted as R(p,m,z), where (p,m, z) is the signature of the inner
product.

R(p,m,z) := ⊕n
i=0

i∧
(Rn) . (15)

Vectors in this space are called multivectors. The projectivized space based on R(p,m,z) is
denoted as P

(
R(p,m,z)

)
. The space P

(
R(p,m,z)

)
contains the same elements as P

(∧
R

n
)

but
with the geometric product. The resultant algebra is called projective geometric algebra
(PGA).

For the PGA P
(
R(3,0,1)

)
, vectors representing geometric elements introduced in Sect. 2.2

are all contained. A k-vector v represents the same geometric element as λv(λ �= 0). Never-
theless, because of the inner product, P

(
R(3,0,1)

)
possesses the metric in RP 3 introduced in

Sect. 2.3. According to the property of the geometric product, the metric in P(
∧2

R
4) and

P(
∧3

R
4) is then induced. It turns out that the metric in P(

∧3
R

4), the subspace composed
of points, is the Euclidean metric [26]. Therefore, the PGA P

(
R(3,0,1)

)
is suitable to model

the 3-dimensional Euclidean space E3.
The PGA can solve geometry problems in a more compact and concise way. In rigid body

dynamics, the most important transform is the screw motion of a rigid body’s geometric
object. In the PGA, the screw motion is composed of two reflections, which is implemented
by the operation called “sandwich”.

From the perspective of algebra, reflection is such a transform that the effect of dou-
ble transforms is the same as an identity transform. In projective geometry, a reflection is
realized by a harmonic homology [26]. A plane b reflecting about another plane a is imple-
mented by the following equation:

R(b) = − < a⊥,a > b + 2 < a⊥,b > a. (16)

In the equation, both a and b are normalized. a⊥ is the polar of a relative to the quadratic
form induced from the inner product, and it is a dual vector. The operator <,> is the bilinear
function that defines the duality: <,>: V ∗ × V → R, where V ∗ is the dual linear space of
the linear space V .

According to the property of the outer product, the k-vector space is dual to the (n-k)-
vector space. We first define an operator as

� :
n∧

(Rn) → R, such that �(λI) = λ. (17)

I is the basis e012...n. Then, suppose that x ∈ ∧k
(Rn) and u ∈ ∧n−k

(Rn). A nondegenerate
bilinear function can be defined as

< u,x >= �(u ∧ x). (18)
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The duality is then generated according to <,>: V ∗ × V → R. It is called the Poincaré
duality [26]. An explicit form of the Poincaré duality is defined as a linear operator:

J :
k∧

(Rn) −→
n−k∧

(Rn)

such that J (ek
i ) = en−k

i ⇐⇒ ek
i ∧ en−k

i = ±I .

(19)

In the equation, ek
i is the ith basis k-vector. In P

(
R(3,0,1)

)
, the duality implies that a plane is

dual to a point and a line is dual to another line.
Furthermore, denote the bilinear function defining the inner product as B(·, ·) : Rn ×

R
n → R. A linear transform is then naturally induced as LB : Rn → R

n∗, LB(a) := B(a, ·),
where a ∈R

n. The inner product can also be implemented in another way:

a · b =< LB(a),b >, ∀a,b ∈R
n. (20)

According to the property of the geometric product and the duality defined in equation
(18), it turns out that in P

(
R(3,0,1)

)
,

a · b = �[(−aI ) ∧ b], ∀a,b ∈ R
4, (21)

LB(a) = −aI , ∀a ∈ R
4. (22)

In projective geometry, the polar of a ∈R
n is defined as a set:

a⊥ = {x ∈ R
n | B(a,x) = 0}. (23)

In P
(
R(3,0,1)

)
, it is represented as

a⊥ = {x ∈R
4 | �[(−aI ) ∧ x] = 0}. (24)

It implies that all vectors in a⊥ are contained in a linear subspace defined by −aI . Therefore,
the polar of a is defined as a⊥ = −aI in P

(
R(3,0,1)

)
.

Now review the harmonic homology defining the reflection in PGA. It obtains a much
more concise form and is indeed a reflection.

Ra(b) = −(a · a)b + 2(a · b)a

= −a2b + (ab + ba)a

= −b + aba + b

= aba,

(25)

Ra(Ra(b)) = a(aba)a

= a2ba2

= b.

(26)

From equation (25) and equation (26), it turns out that the result of a reflection is nothing
to do with the form of b. Even if b is a general multivector, the equation Ra(Ra(b)) =
b remains. It means that a reflector Ra only depends on a normalized vector a. Besides,
R−a = Ra , which implies that a reflection is irrelevant to a’s sign. In RP 3, a reflector only
depends on a plane. The plane is called the axis of reflection. Readers are referred to Chap. 6
and Chap. 7 of [26] for more details about this section.
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2.5 The rigid body motion modeled in P
(
R(3,0,1)

)

Based on the reflection defined in (25), the rigid body motion can be defined as twice reflec-
tions. Suppose two different planes a and b are given, and define the rigid body motion of a
multivector X in P

(
R(3,0,1)

)
as

Mab(X) = baXab. (27)

Define a motor as M = ab, and its reverse M̃ = ba. It turns out that

M̃M = MM̃ = 1. (28)

The rigid body motion of a multivector x in P
(
R(3,0,1)

)
is then represented as

Mab(X) = M̃XM. (29)

We first suppose that the plane a is not parallel to b. According to equation (5) and
equations (9a), (9b), the motor M is

M = ab = a · b + a ∧ b = cos θ + sin θL. (30)

θ is the angle between two planes. L is a normalized 2-vector, normalized by L2 = −1.
A motor in this form acts as a rotor that rotates an object along the line represented as L by
angle 2θ .

Remark For θ1 and θ2 such that Mθ1 = −Mθ2 , there is M̃θ1XMθ1 = M̃θ2XMθ2 , ∀X ∈
P

(
R(3,0,1)

)
. The sign of the motor M has no impact on the result of the rigid body motion.

If a is parallel to b, then the motor M is formulated according to equation (6):

M = ab = 1 + dL∞. (31)

d is the distance between two planes. L∞ is an infinite line defined in equation (6). It is
normalized by J (L∞)2 = −1, where J (·) is the Poincaré duality defined in equation (19).
The motor of this kind acts as a translator moving the object in the direction from a to b by
the distance 2d .

Define the exponential mapping by the multinomial series:

eL =
∞∑

k=0

Lk

k! . (32)

Multiplications in the equation are implemented by the geometric product.
Both the rotor and the translator mentioned above can be calculated by the exponential

mapping in a uniform way:

M = e
w
2 L, (33)

M̃ = e− w
2 L. (34)

w is the intensity of motion, i.e., the angle of the rotation and the distance of the translation.
L is a normalized 2-vector that represents a line or an infinite line and implies the axis of the
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rotation or the direction of the translation. It is summarized that a rotation or a translation
can be uniquely identified by a 2-vector that represents a weighted line.

To be more general, the screw motion should be implemented. A screw motion is such a
motion that rotates about an axis and translates along the same axis simultaneously with a
pitch. Suppose that an object rotates about a line L by the angle θ and translates along the
direction L∞ by the distance d . It is proved that L∞ = L̃I = IL̃ if L∞’s direction is the
same as L’s, i.e., the resulting motion is a screw motion. Besides, the order of the rotation
and the translation has no impact on the effect of the motion. Then the general screw motion
of a rigid body is modeled as follows:

M(X) = e− θ
2 L

(
e− d

2 L̃IXe
d
2 L̃I

)
e

θ
2 L

= e− d
2 L̃I

(
e− θ

2 LXe
θ
2 L

)
e

d
2 L̃I

= M̃XM.

(35)

Because (L̃I )k = 0, ∀k ≥ 2, the nth power of αL+βL̃I (∀α,β ∈R) satisfies the follow-
ing equation when n > 0:

(αL + βL̃I )n

n! = αnLn

n! + αn−1Ln−1

(n − 1)! (βL̃I )

= αnLn

n! + (βL̃I )
αn−1Ln−1

(n − 1)! .

(36)

Then the exponential of αL + βL̃I is

eαL+βL̃I = 1 +
∞∑

n=1

[
αnLn

n! + αn−1Ln−1

(n − 1)! (βL̃I )

]

= (1 + βL̃I ) +
( ∞∑

n=1

αnLn

n!

)

(1 + βL̃I )

=
( ∞∑

n=0

αnLn

n!

)

(1 + βL̃I )

= eαLeβL̃I = eβL̃I eαL.

(37)

For a motor representing a screw motion, it is

M = e
d
2 L̃I e

θ
2 L = e

θ
2 Le

d
2 L̃I = e

θ
2 L+ d

2 L̃I = e
d
2 L̃I+ θ

2 L. (38)

Therefore, if a screw motion is along the axis L, and it rotates by θ and translates by d ,
then it is uniquely identified by a 2-vector in the form θ

2 L + d
2 L̃I . The motor is derived by

the exponential map M = exp( θ
2 L + d

2 L̃I ).

Remark The 2-vector θ
2 L + d

2 L̃I is not the outer product of any two vectors and does not
correspond to a line. The 2-vectors with this property are called nonsimple 2-vectors. The
ones which are the outer product of two vectors are called simple 2-vectors. Without a proof,
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Table 2 The rigid motion
modeled in P

(
R(3,0,1)

) Motion type 2-vector l Motor M = el

Rotation θ
2 L cos θ

2 + sin θ
2 L

Translation d
2 L̃I 1 + d

2 L̃I

Screw motion θ
2 L + d

2 L̃I (cos θ
2 + sin θ

2 L)(1 + d
2 L̃I )

it is pointed out that any nonsimple 2-vectors l can be decomposed as the sum of two simple
2-vectors in the form θ

2 L + d
2 L̃I .

In summary, any rigid body motions can be identified uniquely by a 2-vector l. Specifi-
cally, the pure rotation and the pure translation are identified by a simple 2-vector, while the
general screw motion with both the rotation and the translation is identified by a nonsim-
ple 2-vector. The motor M is the exponential of such a 2-vector l, i.e., M = el , where the
exponential map is defined by the multinomial series. The results are summarized in Table 2.

3 Model of serial robots

3.1 Geometry model of serial robots based on the PGA

As shown above, the rigid body motion in the Euclidean space E
3 can be implemented by

the operator M in P
(
R(3,0,1)

)
, M = el , and M is the exponential of a 2-vector. The results

are then applied in the model of serial robots.
Generally, joints of serial robots are low-pairs, i.e., either prismatic joints or revolute

joints. Relative to the link i−1, the motion of the link i is the rotation about or the translation
along the axis of the joint connecting both links. Denote the joint as the joint i. From the
perspective of geometry, the axis of a joint is a line. In P

(
R(3,0,1)

)
, the line can be represented

by a 2-vector Li and normalized as L2
i = −1. Then the motion of any geometric objects

attached to the link i, modeled as a multivector X in P
(
R(3,0,1)

)
, can be formulated as

follows:

X(t) = M̃
J

i (t)X0MJ
i (t), (39)

MJ
i (t) =

{
e

θ(t)
2 Li , the revolute joint,

e
d(t)

2 L̃iI , the prismatic joint.
(40)

The superscript J and the subscript i together indicate that the motor is generated by the
joint i. X0 is the initial configuration of the geometric object X at t = 0. θ(t) and d(t) are
the angle and the distance of the motion, respectively. Minor values mean moving in the
inverse direction of Li . For simplicity, we denote L̃iI also as Li and denote d also as θ in
the following part. Besides, all the expression “(t)” is omitted.

For a serial robot, suppose that the initial position of all joint axis is known. The line
representing the axis of the joint i is denoted as L0

i . When the serial robot moves to another
configuration, any geometry objects X attached to the link i first move about L0

i , then about
L0

i−1, and so on. The process is formulated as follows:

X = M̃ iX
0M i (41)

M i = MJ
i MJ

i−1...M
J
1 =

1∏

k=i

e
θk
2 L0

k . (42)
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An important fact is that the axis of the joint i is a line attached to the link i − 1. It
demonstrates tremendous power in simplifying the analysis of the differential kinematics of
the serial robot, especially the calculation of higher-order Jacobian. We first formulate the
motion of the axis i here,

Li = M̃ i−1L
0
i M i−1. (43)

3.2 Differential kinematics

In the PGA, the derivative of a multivector is implemented by taking the derivative of every
basis vector’s coefficient function. Distribution of geometric product over addition is estab-
lished. Therefore, the product rule for derivatives is also established in the PGA. Take the
derivative on both sides of equation (41), where X0 is a constant. The “velocity” of X is

Ẋ = ˙̃MX0M + M̃X0Ṁ. (44)

Here and in what follows, M stands for M i .
According to the property of M shown in equation (28), the derivative of M satisfies

˙̃MM + M̃Ṁ = 0 ⇒ ˙̃MM = −M̃Ṁ. (45)

Considering equation (41), equation (28), and equation (45), equation (44) is simplified:

Ẋ = ˙̃MMX + XM̃Ṁ

= XM̃Ṁ − M̃ṀX

= 1

2
(XV − V X) := [X,V ].

(46)

Here, define the velocity of the rigid body as

V := 2M̃Ṁ. (47)

The velocity is independent of the geometric object X. It is only identified by the motor M

describing the rigid body motion and its derivative Ṁ .
Besides, a commutator [·, ·] induced from the geometric product is introduced.

[X,V ] := 1

2
(XV − V X) . (48)

Remark It can be proved that when X is a 2-vector, the commutator is a Lie bracket. It
implies that

∧2
(R4) induces a Lie algebra, which is closely related to the rigid body motion.

With the commutator, the velocity of the geometric object attached to the rigid body is
expressed just like the velocity of a point on a rotating top (v = ω × r). X serves as the
position r and V serves as the angular velocity ω. The commutator serves as the cross
product. Actually, the cross product is a special case of the commutator defined above when
the geometric algebra is R(3,0,0).

If X0 in equation (41) is a function of time t , equation (46) is generalized as follows. The
general form of X’s derivative is applied in dynamics widely.

Ẋ = M̃ iẊ
0
M i + [X,V ], (49)
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Ẋ
0 = M iẊM̃ i − [X0,M iV M̃ i]. (50)

For a serial robot, the rigid body motion of the link i is identified by M i , so the velocity
of link i is formulated as follows. We first take the derivative of MJ

i .

Ṁ
J

i = de
θ(t)

2 L0
i

dt

= d

dt

∞∑

n=0

(
θ(t)

2 L0
i

)n

n!

=
( ∞∑

n=0

(
θ(t)

2 L0
i

)n

n!

)(
θ̇ (t)

2
L0

i

)

= MJ
i

(
θ̇ (t)

2
L0

i

)

.

(51)

According to equation (47), the velocity caused by the motion of joint i is then

V J
i = 2M̃

J

i Ṁ
J

i = θ̇iL
0
i . (52)

Then the velocity of link i is derived by

Ṁ i =
i∑

k=1

MJ
i MJ

i−1...Ṁ
J

k ...MJ
1

=
i∑

k=1

MJ
i MJ

i−1...Ṁ
J

k Mk−1

(53)

M̃ i = M̃k−1M̃
J

k ...M̃
J

i−1M̃
J

i (54)

V i = 2M̃ iṀ i

= 2
i∑

k=1

(
M̃k−1M̃

J

k ...M̃
J

i−1M̃
J

i

)(
MJ

i MJ
i−1...Ṁ

J

k Mk−1

)

=
i∑

k=1

θ̇kM̃k−1L
0
kMk−1.

(55)

According to equation (43), equation (55) is simplified to

V i =
i∑

k=1

θ̇kLk. (56)

Lk is the position of the line representing the axis of the joint k at time t . θ̇k is the rotation
velocity for a revolute joint, or the translation velocity for a prismatic joint. This equation
shows that the velocity of the link i only relates to the joints between itself and the base. It is
a linear combination of the i lines in the sense of the PGA. The interpretation in the PGA is
intuitive and much easier to understand than that with the screw theory or the POE method.
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Besides, a recursion form to calculate the velocity is naturally induced.

V i = V i−1 + θ̇iLi . (57)

Furthermore, continue taking the derivative on both sides of equation (57), the accelera-
tion of the link i is also calculated in a recursion form:

V̇ i = V̇ i−1 + θ̈iLi + θ̇iL̇i . (58)

According to equation (43) and equation (46), the velocity of Li is

L̇i = [Li ,V i−1]. (59)

Then continue taking the derivative on both sides of equation (58), the high-order deriva-
tive of the link i’s motion is formulated as follows:

L̈i = [L̇i ,V i−1] + [Li , V̇ i−1], (60)

V̈ i = V̈ i−1 + ...
θ iLi + 2θ̈iL̇i + θ̇iL̈i , (61)

...
Li = [L̈i ,V i−1] + 2[L̇i , V̇ i−1] + [Li , V̈ i−1], (62)
...
V i = ...

V i−1 + ¨̈θiLi + 3
...
θ iL̇i + 3θ̈iL̈i + θ̇i

...
Li . (63)

In the equations, �̈i ,
...
�i , and ¨̈�i are the 2nd, 3rd, and 4th derivative of �i , respectively. �

can be L, V , or θ .
The high-order recursive forward kinematics of serial robots algorithm is then summa-

rized in Algorithm 1. The motor MN
i indicates the motion from the reference frame to the

body-fixed frame where the inertia of the rigid body is measured. The motor is used in the
dynamics algorithm.

Algorithm 1 The high-order recursive forward kinematics

Require: qi, q̇i , q̈i ,
...
q i, ¨̈qi, L0

i , M0
i , i = 1,2, . . . , n

1: Forward propagation:
2: for i = 1, . . . n do
3: M i = e

qi
2 L0

i M i−1

4: MN
i = M0

i M i

5: Li = M̃ i−1L
0
i M i−1

6: V i = V i−1 + q̇iLi

7: L̇i = [Li ,V i−1]
8: V̇ i = V̇ i−1 + q̈iLi + q̇iL̇i

9: L̈i = [L̇i ,V i−1] + [Li , V̇ i−1]
10: V̈ i = V̈ i−1 + ...

q iLi + 2q̈iL̇i + q̇iL̈i

11:
...
Li = [L̈i ,V i−1] + 2[L̇i , V̇ i−1] + [Li , V̈ i−1]

12:
...
V i = ...

V i−1 + ¨̈qiLi + 3
...
q iL̇i + 3q̈iL̈i + q̇i

...
Li

13: end for
Ensure: MN

i , V i , V̇ i , V̈ i ,
...
V i , i = 1,2, . . . , n
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3.3 Robot dynamics model

According to Newton’s second law, force equals the first-order derivative of momentum.
The momentum of a rigid body describes the intensity of motion considering its inertia.
It includes the linear momentum and the angular momentum in classical mechanics. Corre-
spondingly, “force” includes the force and the moment. In the screw theory, a screw describ-
ing both the force and the moment acting on a rigid body is called a wrench. This concept is
applied in this article for the same purpose.

In the PGA, a mass particle is modeled as a Euclidean point P with a weight m, i.e.,
X = mP . P is represented as shown in Table 1. When the particle is attached to a rigid
body, the velocity of X is Ṗ , which equals [P ,V ]. In view of projective geometry, the
velocity is an infinite point weighted by the 2-norm of the velocity vector. The momentum
of the mass particle is then modeled as the joining line of X and Ṗ . It is modeled in the
PGA as

P := J [J (mP ) ∧ J (Ṗ )]
:= mP ∨ Ṗ .

(64)

The operator J is defined in equation (19), and ∨ is the operator defined as a∨b = J (J (a)∧
J (b)), ∀a,b ∈ P(R(3,0,1)). The operator implements “join” in contrast to “∧” implementing
“meet”.

For a rigid body, the momentum of the rigid body is defined as the integral of all mass
particles contained in it:

P =
∫

�

(ρP ∨ [P ,V ])dP . (65)

� is the set containing all mass particles in the rigid body and ρ is mass density, a function
about P .

It is obvious that P is linear about V . Therefore, a linear function N [·] can be defined as

N [·] :=
∫

�

(ρP ∨ [P , ·])dP . (66)

This linear function is named the general inertia because it serves the same as the 6 × 6
general inertia matrix in the POE. Actually, represent V and P with their coordinate vectors
V, P :

V = [e23 e31 e12 e01 e02 e03] V,

P = [e23 e31 e12 e01 e02 e03] P.
(67)

The general inertia is then represented as a 6 × 6 matrix

N =
∫

�

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 z −y 1 0 0
−z 0 x 0 1 0
y −x 0 0 0 1

y2 + z2 −xy −xz 0 −z y

−xy x2 + z2 −yz z 0 −x

−xz −yz x2 + y2 −y x 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

ρ dP

:=
[

m[c]T mI 3

J m[c]
]

.

(68)
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m is the mass of the rigid body and I 3 is a 3×3 identity matrix. c is the position of the center
of mass with respect to the reference coordinate system, and [c] is the screw symmetric
matrix generated from it. J is the inertia matrix with respect to the reference coordinates
system. These concepts are consistent with those in classical mechanics.

Remark If the coordinates of J (P) instead of P’s are calculated, the matrix corresponding
to J (N [·]) is the same 6 × 6 inertia matrix as that in the POE.

J (N) :=
[

J m[c]
m[c]T mI 3

]

. (69)

It implies the relation between the POE-based method and the PGA-based method.
The momentum of the rigid body is then formulated as

P = N [V ]. (70)

Suppose that the general inertia of the rigid body at the initial configuration is Nb[·] and
its corresponding matrix Nb is known. Then the momentum of the rigid body after a rigid
motion M with the velocity V is

P =
∫

�

[
ρ(M̃P 0M) ∨ [(M̃P 0M),V ]

]
d(M̃P 0M)

= M̃

[∫

�

(
ρP 0 ∨ [P 0,MV M̃]

)
dP 0

]

M

= M̃Nb[MV M̃]M.

(71)

P 0 is the initial position of P . Denote MV M̃ as V b and Nb[V b] as Pb , i.e., the rigid
body velocity and the momentum expressed in the body-fixed coordinate frame, respec-
tively. Then equation (71) is simplified as

P = M̃PbM, (72)

Pb = Nb[V b], (73)

V b = MV M̃. (74)

With these results, the derivative of the momentum is formulated. First, take the deriva-
tive on both sides of equation (74) according to equation (50), and the following equations
are derived:

V̇
b = MV̇ M̃ − [

V b,V b
] = MV̇ M̃, (75)

V̈
b = MV̈ M̃ −

[
V̇

b
,V b

]
, (76)

...
V

b = M
...
V M̃ −

[
MV̈ M̃ + V̈

b
,V b

]
. (77)

Then, take the derivative on both sides of equation (73):

Ṗb = Nb[V̇ b], (78)
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P̈b = Nb[V̈ b], (79)

...
P

b = Nb[
...
V

b]. (80)

Because Nb[·] is the inertia at the initial configuration, it remains constant in the calculation.
Finally, take the derivative on both sides of equation (72):

Ṗ = M̃Ṗb
M + [P,V ] , (81)

P̈ = M̃P̈b
M +

[
M̃Ṗb

M + Ṗ,V
]
+ [

P, V̇
]
, (82)

...
P =M̃

...
P

b
M +

[
2M̃P̈b

M + P̈ +
[
M̃Ṗb

M,V
]
,V

]

+
[
M̃Ṗb

M + 2Ṗ, V̇
]
+ [

P, V̈
]
.

(83)

For a force f acting on a mass particle mP , the position it acts on, the direction, and
the intensity all matter. In classical mechanics, f is modeled as a free vector, while in the
PGA, the force’s direction f is modeled as a 3-vector, like the velocity of a mass particle,
i.e., a weighted infinite point. The force is then modeled as P ∨f , a 2-vector representing a
weighted line. From the perspective of force’s geometry, translating the force along the line
determined by its direction and its acting point has no effect on its action, so it is rational to
model it in this way.

As for a rigid body, the integral of all forces acting on it is calculated, and a 2-vector that
may be nonsimple is derived. Define the 2-vector as a wrench acting on the rigid body.

w =
∫

�

(P ∨ f )dP . (84)

Because any nonsimple 2-vector can be decomposed as the sum of two simple vectors,
the wrench is decomposed as

w = αL + βL̃I (α,β ∈R). (85)

L is a normalized line and L̃I is an infinite line pointing in the same direction as L. Define
the weighted line αL as the force acting on the rigid body and the weighted infinite line
βL̃I as the moment acting on it,

w = F + M. (86)

It implies that forces and moments acting on a rigid body are simplified to a total force and
a total moment that point to the same direction. The result is consistent with that in classical
mechanics.

According to the Newton’s second law, the force acting on a particle equals the first-order
derivative of the particle’s momentum. In the PGA, the law is formulated as

∑

k

wk = Ṗ. (87)

wk is a wrench acting on the rigid body, and it has the form

wk =
⎧
⎨

⎩

αL, a pure force,
βL̃I , a pure moment,
αL + βL̃I an ordinary wrench.

(88)
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For a serial robot, wrenches act on a link i is composed of the wrench from the joint i, the
wrench from the joint i + 1 (0 if the joint i + 1 does not exist), and other wrenches from the
environment. Denote the wrench from the joint i acting on the link i as wi and the wrench
from the environment acting on the link i as wa

i . Then the dynamic equation of the link i is

wi − wi+1 + wa
i = Ṗ i . (89)

In nonconstrained dynamics problem, wa
i = 0. Then the wrench wi is calculated recursively:

wi = Ṗ i + wi+1. (90)

Take the derivative on both sides of equation (90), and the derivative of the wrench wi is
derived:

ẇi = P̈ i + ẇi+1, (91)

ẅi = ...
P i + ẅi+1. (92)

In mechanics, power is defined by a bilinear function which maps force and velocity into
a real number: p :=< f,v >. In the PGA, force is modeled as a 2-vector named wrench,
and the velocity of a rigid body is also modeled as a 2-vector but named twist. The bilinear
function defined in equation (18) is used to define the power caused by the wrench,

p :=< w,V >= �(w ∧ V ). (93)

Denote the torque driving a revolute joint i as τi and the force driving a prismatic joint i

as fi . Then the power generated in the joint i can be formulated as follows:

pi = τi q̇i = �(wi ∧ q̇iLi ), (94a)

pi = fi q̇i = �(wi ∧ q̇iL̃iI ). (94b)

Thus the actuation in joint i is formulated as

τi = �(wi ∧ Li ), (95a)

fi = �(wi ∧ L̃iI ). (95b)

Summarize both equations as

τi = Li ∗ wi. (96)

Then, take the derivative on both sides of equation (96)

τ̇i = L̇i ∗ wi + Li ∗ ẇi , (97)

τ̈i = L̈i ∗ wi + 2L̇i ∗ ẇi + Li ∗ ẅi . (98)

The first derivatives of the joint torques or forces are calculated. The algorithm is then
summarized in Algorithm 2.
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Algorithm 2 The second-order recursive inverse dynamics

Require: MN
i , V i , V̇ i , V̈ i ,

...
V i , Nb

i , i = 1,2, . . . , n

1: Backward propagation
2: for i = n, . . . ,1 do
3: V b

i = MN
i V iM̃

N

i

4: V̇
b

i = MN
i V̇ iM̃

N

i

5: V̈
b

i = MN
i V̈ iM̃

N

i −
[
V̇

b

i ,V
b
i

]

6:
...
V

b

i = MN
i

...
V iM̃

N

i −
[
MN

i V̈ iM̃
N

i + V̈
b

i ,V
b
i

]

7:

8: Pb
i = Nbi[V b] = Nb

i V
b
i

9: Ṗb

i = Nbi[V̇ b] = Nb
i V̇

b

i

10: P̈b

i = Nbi[V̈ b] = Nb
i V̈

b

i

11:
...
P

b

i = Nbi[
...
V

b] = Nb
i

...
V

b

i

12:

13: P i = M̃
N

i Pb
i M

N
i

14: Ṗ i = M̃
N

i Ṗ
b

i M
N
i + [P i ,V i]

15: P̈ i = M̃
N

i P̈
b

i M
N
i +

[
M̃

N

i Ṗ
b

i M
N
i + Ṗ i ,V i

]
+ [

P i , V̇ i

]

16:
...
P i = M̃

N

i

...
P

b

i M
N
i +

[
M̃

N

i Ṗ
b

i M
N
i + 2Ṗ i , V̇ i

]
+ [

P i , V̈ i

]

17: +
[
2M̃

N

i P̈
b

i M
N
i + P̈ i +

[
M̃

N

i Ṗ
b

i M
N
i ,V i

]
,V i

]

18:

19: wi = Ṗ i + wi+1

20: ẇi = P̈ i + ẇi+1

21: ẅi = ...
P i + ẅi+1

22:

23: τi = Li ∗ wi

24: τ̇i = L̇i ∗ wi + Li ∗ ẇi

25: τ̈i = L̈i ∗ wi + 2L̇i ∗ ẇi + Li ∗ ẅi

26: end for
Ensure: τi, τ̇i , τ̈i , i = 1,2, . . . , n

4 Validation and comparison

4.1 Validation: Franka Emika Panda

The Franka Emika Panda, a redundant 7-DOF robotic arm, is used to demonstrate the al-
gorithm proposed in this paper. Its zero reference configuration and the modified Denavit–
Hartenberg parameters are shown in Fig. 1(a) and Fig. 1(b), respectively. The axis of a joint,
the z axis of the body-fixed frame, is modeled as a line in the PGA. The lines at their initial
configuration, i.e., z1, z2, . . . , z7, are shown in Fig. 1(a). The lines at the initial positions are
represented as follows:

L0
1 = e12,

L0
2 = e31 − 0.333 e01,
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Fig. 1 (a) The zero reference
configuration of the Franka
Emika Panda and
Denavit–Hartenberg frames of
each link [31]. (b). The modified
Denavit–Hartenberg parameters
[31]. d1 = 0.333 m,
d3 = 0.316 m, d5 = 0.384 m,
df = 0.107 m, a4 = 0.0825 m,
a5 = −0.0825 m, a7 = 0.088 m

L0
3 = e12,

L0
4 = −e31 + 0.649 e01 − 0.0825 e03,

L0
5 = e12,

L0
6 = −e31 + 1.033 e01,

L0
7 = −e12 + 0.088 e02.

The body-fixed reference frames are then defined, as indicated in Fig. 1(a). The dynamic
parameters are measured according to these frames. The motors representing the motion
from the spatial reference frame to the initial body-fixed reference frame are then calculated
according to the D-H parameters {α,a, θ, d}. In the initial configuration, θi = 0. Then the
equation to calculate the motor is

M0
i = e

αi
2 e23+ ai

2 e01e
di
2 e03 . (99)

The initial motors of the Franka Emika Panda are as follows:

M0
1 = 1 + 0.1665 e03,

M0
2 = 0.7071 − 0.7071 e23 − 0.1177 e02 + 0.1177 e03,

M0
3 = 1 + 0.3245 e03,

M0
4 = 0.7071 + 0.7071 e23 + 0.0292 e01

+ 0.2295 e02 + 0.2295 e03 + 0.0292 I ,

M0
5 = 1 + 0.5165 e03,

M0
6 = 0.7071 + 0.7071 e23 + 0.3652 e02 + 0.3652 e03,

M0
7 = e23 + 0.5165 e02 + 0.044 I .



High-order inverse dynamics of serial robots based on PGA 357

Fig. 2 The trajectory in the joint space used for the validation [2]

The lines and the motors are represented as arrays with six elements and eight ele-
ments in Matlab, respectively. For example, L0

1 = [1;0;0;0;0;0] and M0
1 = [1;0;0;0;0;0;

0.1665;0]. The operations involved in the algorithm include the reverse of a motor M̃ , the
exponential map of a 2-vector eL, the Lie bracket of two 2-vectors [X,V ], the rigid body
motion motor of a 2-vector M̃XM , and the geometric product of two motors M1M2. All
the operations are implemented in Matlab as m-functions and the calculations are simplified
by omitting irrelevant and repetitive operations with the help of the Symbolic Math Toolbox.

The motion data used for validation is provided in [2] and can be downloaded online.1

The robot’s trajectory in the joint space is shown in Fig. 2. The POE-based algorithm pro-
posed by Müller in [2] is used to calculate joint torques and the first-order and the second-
order derivatives of torques. The results obtained by the PGA-based algorithm are compared
with the results obtained by this POE-based algorithm.

The joint torques and their first-order and second-order derivatives obtained by the two
algorithms are indicated in Fig. 3, Fig. 4, Fig. 5, respectively. 31 points are calculated by the
PGA-based algorithm, and they are all identical to the results calculated by the POE-based
method. Only the results of three joints are presented for brief figures. The results of other
joints have also been demonstrated.

4.2 Efficiency comparison

For a preliminary comparison of the computational efficiency, the Matlab R2022a code is
called for 10 000 evaluation. On a PC (i5-12500H, 2.50 GHz) running Windows 11, the
PGA-based algorithm needed 2.415 s and the POE-based algorithm proposed in [2] 2.871 s,
i.e., the PGA-based algorithm is 15.8% faster.

Furthermore, the computational time of the exponential map, the Lie brackets, and the
rigid body motion operations are measured. Each of the three operations is called for 10 000

1The data file can be downloaded from https://ieeexplore.ieee.org/ielx7/7083369/9285111/9290369/lra-
3044028-mm.zip?arnumber=9290369.

https://ieeexplore.ieee.org/ielx7/7083369/9285111/9290369/lra-3044028-mm.zip?arnumber=9290369
https://ieeexplore.ieee.org/ielx7/7083369/9285111/9290369/lra-3044028-mm.zip?arnumber=9290369
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Fig. 3 The joint torques τ in the
joint-1, joint-2, and joint-3

Fig. 4 The first derivatives of the
joint torques τ̇ in the joint-1,
joint-2, and joint-3

Fig. 5 The second derivatives of
the joint torques τ̈ in the joint-1,
joint-2, and joint-3

evaluations using the PGA-based method and the POE-based method. In the POE method,
the exponential map of a twist s = [ωT ,vT ]T is calculated by

R = I 3 + sin θ ω̂ + (1 − sin θ)ω̂
2
, (100a)

p = (I 3 − R)ω̂v + (ωT vθ)ω, (100b)

T =
[

R p

01×3 1

]

. (100c)
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Fig. 6 The computational time of
the exponential map (EXP), the
Lie brackets (LB), and the rigid
body motion operations (RBM)

Then the rigid body motion of the twist is

s = AdT s0. (101)

The Lie bracket is calculated by

[s,V ] = adV s. (102)

The rigid body motion operations are composed of equations (100a)–(100c) and equation
(101) in the POE method, and the corresponding operations in the PGA method are used for
comparison. Both are simplified by omitting irrelevant and repetitive operations with the
help of the Symbolic Math Toolbox. The results are shown in Fig. 6. It turns out that PGA
does improve the computational efficiency of the three operations.

Furthermore, as shown in Algorithm 1 and Algorithm 2, the PGA-based algorithm is
implemented by n forward iterations and n backward iterations, where n is the DOF of
the serial robot. It implies that the time complexity of the proposed algorithm is O(n), the
same as the POE-based algorithm proposed in [2]. However, for the two algorithms, the
coefficients of n are different, causing the running time different.

For a more detailed comparison, referring to the analysis method proposed on pages
294–306 of [32], the number of additions and multiplications in both algorithms for serial
robots with revolute joints are counted. Firstly, key algebraic operations in both algorithms
are listed in Table 3 with the number of multiplications and additions counted. Secondly, the
number of operations in each algorithm is counted line by line according to the pseudo-code.
Finally, the total number of multiplications and additions is calculated and listed in Table 4.
It turns out that the exponential map and the Lie bracket in the PGA method saves plenty of
multiplications and additions, while the rigid body motion operation costs more. However,
the tedious memory operations in the POE method hold the efficiency back, causing more
computational time than those in the PGA method. As for the algorithm, it turns out that
the PGA method saves 69.82% multiplications and 73.58% additions in each kinematics
propagation. However, the multiplications and additions cost in the dynamics propagation
are at the same level as that in the POE method. By further analysis, we find that the implicit
representations of the general inertia defined in equation (66) is the main obstacle to further
computational improvement. The matrix representations of general inertia are used in this
paper, and a complicated backward recursive algorithm is thus derived. The simplification
of the representations of general inertia will be considered in future work.
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Table 3 The computation cost of key operations in the algorithms (M for multiplications, and A for ad-
ditions). Key operations include the exponential map (EXP), the Lie bracket (LB), the rigid body motion
operation (RBM), the geometric product (GP), the 6th order matrix multiplication (6MM), the 4th order ma-
trix multiplication (4MM), the product of a 6 by 6 matrix and a 6-dimensional vector (6MV). The symbol
“—” means that the operation is not used in the algorithm

Operation M (PGA) M (POE) A (PGA) A (POE)

EXP 6 70 0 63

LB 18 36 12 30

RBM 186 106 138 93

GP 48 — 40 —

6MM — 216 — 180

4MM — 64 — 48

6MV 36 36 30 30

Table 4 The computation cost of the algorithms for an n-DOF serial robot with revolute joints (M for multi-
plications and A for additions)

Process M (PGA) M (POE) A (PGA) A (POE)

Kinematics propagation 459 n 1521 n 368 n 1393 n

Dynamics propagation 2700 n 2706 n 2166 n 2443 n

Total 3159 n 4227 n 2534 n 3836 n

5 Conclusion

In this article, the model of serial robots based on the projective geometric algebra
P

(
R(3,0,1)

)
is proposed and an efficient algorithm for high-order inverse dynamics is con-

structed. We provide a brief introduction to the basic concepts in PGA. Then we propose a
method to construct the geometric model, the kinematics model, and the dynamics model
of a serial robot totally based on the PGA. It turns out that the method based on the PGA
possesses several advantages. It is computationally efficient, uniform, intuitive, and coor-
dinate invariant. In the PGA, the exponential map and Lie brackets are both implemented
without matrices. The homogeneous matrix and its adjoint matrix are replaced by a multi-
vector. As a result, some repetitive operations and zero elements are saved and the efficiency
is improved. All vectors and algebraic operations correspond to some geometric elements
and geometric operations, which is helpful to understand the operations in an intuitive way.
Besides, the velocity of any geometric objects attached to a rigid body is calculated in a
uniform form by Lie brackets.

Actually, the PGA proposed in this paper is closely related to other concepts popular in
robotics. The projective space RP 3 is actually a Grassmann manifold. The geometric alge-
bra P

(
R(3,0,1)

)
induces a Lie algebra where the Lie brackets are defined by the commutator

based on the geometric product. The even-grade space is actually a subalgebra, and it is iso-
morphic to dual quaternions. The multivector M with odd grades and satisfying M̃M = 1
generates a Lie group. The exponential map maps a 2-vector to an element in this Lie group.
It is consistent with the results obtained in the screw theory. If all vectors and linear trans-
forms in the PGA-based method are written as coordinates and matrices relative to the basis,
the formulations in the POE method are then obtained.
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The application of the PGA is limited to serial robots, where the elasticity of links is
omitted. The inertia of a rigid body is still in an implicit form in the presented formulation
and repetitive elements and operations remain. The power of PGA requires to be explored
in the future work.
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