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Abstract
In motorcycle dynamics, great importance is attributed to the study of the weave and wobble
vibration modes and, in particular, to the effects of the flexibility of structural components
on their stability. Therefore, appropriate motorcycle models for studying weave and wobble
should include flexible elements for describing the flexural behavior of components such as
the main frame, front assembly, and rear swingarm. Different approaches are possible for
modeling flexibilities: the most common among them are the lumped stiffness and the flex-
ible multibody approaches. While the latter certainly provides higher accuracy, the former
has advantages in terms of computational load, but, above all, it makes it easier to under-
stand in the design phase how technical parameters, such as torsional and bending stiffness
of a given structural component, can influence the stability of weave and wobble. The accu-
racy of lumped stiffness models strongly depends on parameter identification. In this study,
a general method is proposed to determine appropriate lumped stiffness parameters for any
given motorcycle component. The proposed method is tested and validated by comparing
the weave and wobble modal behavior with the results of flexible multibody analysis. The
lumped stiffness model is then adopted to carry out a sensitivity analysis aimed at identify-
ing the effects on the weave and wobble stability of the torsional and bending stiffness of
specific structural components of the motorcycle to optimize their design.

Keywords Parameter identification · Lumped stiffness · Weave · Wobble · Motorcycle
dynamics · Stability analysis

1 Introduction

Weave and wobble are well-known eigenmodes of motorcycles, both involving lateral dy-
namics. The weave eigenvector is dominated by roll, yaw, and steering head rotation [1]
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with an eigenfrequency in the range 1-4 Hz [2]. Wobble is characterized mainly by steer-
ing head rotation, and its eigenfrequency varies from 6 to 10 Hz [3]. The stability of these
eigenmodes is a safety critical problem because the motion caused by an unstable weave or
wobble is not controllable by the rider and would likely lead to an accident. For this reason,
weave and wobble have been extensively studied in the literature, with the first works dating
back to the 1970s [4]. A deciding step in modeling weave and wobble was made when the
flexibility of the structural components was included in the models. In fact, particularly for
wobble, this step allowed the correct prediction of the change of mode damping with speed
[5–8].

For modeling the stiffness of structural components, different approaches are possible:
the most used and simple is the lumped stiffness approach. It consists of representing the
flexibility of a component with a single parameter, i.e., a concentrated stiffness, see Sect. 2.
The second approach is the Elastic Multibody Simulation (EMBS) [9], where the classical
formulation of multibody simulation is extended to include flexible bodies. In this case,
the flexibility is represented as a distributed property so that the real deformation is better
approximated. The lumped stiffness approach is attractive for its limited modeling effort,
short computational time, and, above all, because it makes it easier to understand in the
design phase how technical parameters, such as the torsional and bending stiffness of a
given structural component, can influence stability. However, the strong approximation of
the actual flexural behavior, which is intrinsic in this method, may negatively affect the
accuracy when modeling weave and wobble.

The crucial part of the lumped stiffness approach is the identification of the parameters
[10]. In the literature, most models using the lumped stiffness approach make assumptions
about the position of the joints for modeling flexibility. However, as shown in [11], these
assumptions may lead to inaccurate results when studying weave and wobble.

This paper presents a method for parameterizing a lumped stiffness model of any struc-
tural component. It is based on the identification of the deformation axis of each component
and can be applied to real components or using a simulation environment, as in the present
paper. The method is applied to each structural component of a motorcycle, and the ob-
tained lumped stiffness model is compared to a flexible multibody model in the simulation
of weave and wobble. The decision to use the lumped stiffness approach for studying the
effect of structural flexibilities on weave and wobble is justified by the necessity of obtaining
stiffness values with a physical meaning that can be easily interpreted and adapted. In fact,
the developed lumped stiffness model lends itself to carrying out a sensitivity analysis to
understand, for every component, if its torsional or bending stiffness is more important for
the stability of weave and wobble. The results of the sensitivity analysis can help to optimize
the stiffness in the early design phase of structural components so that the overall weight can
be minimized while ensuring the stability of weave and wobble.

2 State of the art

As mentioned in the introduction, structural flexibility is important to the stability of weave
and wobble. The first works modeling the flexibility of structural components for the study
of weave and wobble are [5, 6]. They use two different approaches to model the flexibility
at the front of the motorcycle. The authors of [5] model the frame torsional flexibility with
a revolute joint and a coaxial rotational spring/damper at the steering head joint with its
rotation axis perpendicular to the fork axis. In [6], the bending flexibility of the front fork
is modeled with a revolute joint and a coaxial rotational spring/damper along the fork with
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its rotation axis perpendicular to the fork axis. The aim is mainly to investigate the effect of
this stiffness on weave and wobble and not to exactly reproduce the fork deformation. For
this reason, the position of the revolute joint and the stiffness value are not based on real
measurement but are varied to draw information about a possible optimized design. Based
on this first experience, other works followed in its stead, by adopting the lumped stiffness
approach for modeling the flexibility of structural components. In [12], the approaches in
[5, 6] are combined, and the stiffness values are derived from real measurements, still main-
taining the assumptions on the position and orientation of the revolute joints. The author of
[13] proposes an analysis where the position of the deformation axis of the frame is varied
and the effect on weave and wobble investigated. These modeling approaches, where the
position of the joint and the value of the lumped stiffnesses is assumed or estimated, can be
found in several other works, e.g., the works based on the model developed in [5], see, e.g.,
[14–19], or in independent works from other authors [7, 20].

The first attempt to parameterize a lumped stiffness model with a consistent procedure
is found in [21, 22] for the front fork and in [23] for the swingarm. In [21], a procedure is
developed where, using the mass properties and the bending eigenfrequency measured with
experimental test, a lumped stiffness model is developed for the front fork bending flexi-
bility. However, the orientation of the revolute joint axis is assumed to be perpendicular to
the fork axis. The authors of [22, 23] identify the deformation axis of the structural com-
ponent with either static or dynamic excitation. Dynamic excitation with a frequency equal
to the first bending and torsional eigenfrequencies allows the identification of the bending
and torsion axis, while the static test identifies the so-called twist axis, and the resulting de-
formation is generally a combination of bending and torsion. The authors provide different
lumped stiffness models for the fork and swingarm, using the parameters identified through
static or dynamic tests or a combination of the two. The weave and wobble eigenmodes are
simulated with these models and compared to the rigid body case. However, the question re-
mains about which combination provides the most realistic results. A similar approach was
proposed in [24] for identifying the twist, bending, and torsion axes of a frame. However,
no lumped stiffness model was parameterized with the resulting data.

The present paper answers the remaining open questions. In particular, the most suitable
test for parameterizing a lumped stiffness model to study the influence of flexibilities on
weave and wobble is identified. For that, a comparison with flexible multibody models is
presented, which are considered the “ground truth”. This way, it is demonstrated that the
common assumptions on the location of the revolute joints to model the different flexibilities
do not always lead to correct results.

Moreover, a sensitivity analysis will be carried out to separate the effect of bending and
torsional flexibility of each component in the study of weave and wobble. Other works have
already used this method to identify the most relevant parameters for motorcycle stability
[25–27]. The common procedure is to calculate the analysis of variance (ANOVA) with a
full factorial design of experiments. The results provide information on whether the varied
factors interact with each other or only the main effects may be considered. In the latter case,
a statistical model without interactions can be adopted [25]; in particular, a linear correlation
technique (Pearson correlation coefficients) is used. More information about the sensitivity
analysis is provided in Sect. 4.3.

3 Aim of the paper

The present paper is focused on two contributions. The first is the development of a unified
procedure for parameterizing lumped stiffness models of the main structural components of
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motorcycles. Attention is devoted to correctly reproducing the effect of structural flexibili-
ties on weave and wobble with the lumped stiffness model. In particular, a test procedure is
identified that allows the best approximation of a flexible multibody model with the lumped
stiffness approach. The decision to use the lumped stiffness approach instead of leveraging
on more advanced techniques for model condensation (e.g., dynamic condensation) is mo-
tivated by the necessity of identifying technical parameters that define the stiffness of each
structural component. Then, in contrast to lumped stiffness models, condensation methods
do not provide any physical parameters, which the engineer can directly interpret to derive
an optimized design. Moreover, when applying condensation methods to the mechanisms of
the front assembly and swingarm, it has to be determined at which level to apply the con-
densation. If it is applied to the whole assembly, composed of different bodies, the problem
is preserving the kinematics of the mechanism itself. If condensation is applied to the single
bodies of each assembly, further analysis will provide indications about the effects of the
stiffness of single bodies, thus failing to analyze the effect of the stiffness of the whole as-
sembly, which makes it difficult to derive information for an optimized design. The obtained
lumped stiffness models are particularly useful for the second main contribution of this pa-
per, i.e., a sensitivity analysis with the lumped stiffness model to study the separated effect
on weave and wobble of bending and torsional flexibility for each structural component.

4 Methods

In this section, the methods used in this paper are presented. Section 4.1 briefly describes
the motorcycle model used to generate the results. Section 4.2 provides details on the meth-
ods for the parameterization of lumped stiffness models. Section 4.3 summarizes the steps
needed to conduct a sensitivity analysis with the motorcycle model and to calculate the
stability index and correlation coefficients.

4.1 Motorcycle model

The motorcycle model is based on [11]. The motorcycle weighs 250 kg and is loaded with a
rider (88 kg), two side bags and one top bag (40 kg in total). The front suspension is multilink
with one longitudinal arm, while the rear suspension is of the four-bar link type swingarm.
The Pacejka Magic Formula (MF) is used to model the tire forces [28]. A single contact
point is assumed, and the tire thickness is accounted for. The kinematics of the contact point
is based on the approach described in [8], where the relative orientation between the wheel
carrier and ground is used to determine the reference system of the contact point.

In this work, two different versions of the motorcycle model are presented: one ver-
sion uses EMBS with flexible bodies and is identical to that in [11]. The structural com-
ponents modeled as flexible bodies are the frame, connected to a rigid engine, the front
assembly, composed of the fork bridge, two stanchions, longitudinal arm and lower fork,
and the swingarm, composed of lower link, upper link and wheel carrier. In the present
work, this version is compared to a model of the same motorcycle that uses only rigid bod-
ies and the lumped stiffness approach for representing the flexibilities. The parameters for
the lumped stiffness models are identified with the method presented in Sect. 4.2. The the-
ory of EMBS for modeling flexible bodies is explained in [11]. More information about the
flexible multibody models is provided in the appendix.

With reference to Fig. 1, first, the model without flexibilities is described. It is composed
of the following subsystems, bodies, and degrees of freedom (DOFs):
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Fig. 1 Schematic representation
of the motorcycle and its
sub-assemblies. The image of the
real motorcycle has been taken
with permission from [29]

• Main frame of the motorcycle (including engine, fuel tank, and part of the driveline); it is
constituted by a single rigid body, with 6 DOFs in 3D space (3 translations and 3 rotations
about the inertial axes of the body).

• Driver, modeled as an additional rigid body split into two parts (not shown in Fig. 1):
lower body fixed with respect to the main frame and upper body with one DOF of relative
rotation with respect to the lower body, describing the rider’s passive lean motion.

• Front assembly, composed of 3 rigid bodies: upper fork, including handlebars, lower fork,
including wheel carrier, and longitudinal arm. Kinematically, the front assembly has 2
DOFs of relative motion with respect to the main frame; the first DOF is a rotation about
the steering axis; the second one, for a fixed steering angle, is represented by a planar
motion of the 3 members of the subsystem, yielding the front suspension travel. This can
be inferred from Fig. 1, where the front assembly can be visualized as a spatial mechanism
with 3 moving members with respect to the main frame, connected by one revolute joint,
one prismatic joint, and two spherical joints (one placed at the steering head, the other
one placed at the connection between longitudinal arm and lower steering assembly; the
centers of these two spherical joints identify the position of the steering axis).

• Front wheel, including all rotating elements with the front wheel, modeled as a single
rigid body with single contact point tire, and one DOF of relative motion with respect to
the lower front assembly (rotation).
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• Swingarm, composed of 3 rigid bodies (upper link, lower link, including transmission
shaft, and wheel carrier). Kinematically, the swingarm represents a four-bar linkage, with
one DOF of relative planar motion with respect to the main frame, describing the rear
suspension travel. This can be inferred from Fig. 1, where the swingarm can be seen
as a planar four-bar linkage, with 3 moving members with respect to the main frame,
connected by 4 revolute joints.

• Rear wheel, including all rotating elements with the rear wheel, modeled as a single rigid
body with single contact point tire, and one DOF of relative motion with respect to the
rear wheel carrier (rotation).

At this stage, the flexibility of the 3 subsystems (main frame, front assembly, and swingarm)
is introduced into the model by means of lumped stiffness elements. First, the front assembly
and the swingarm are assumed to be “frozen” in a configuration of interest for the analy-
sis. Then, each of the 3 subsystems is split into two rigid bodies connected by a fictitious
revolute joint with a spring/damper element. This way, a (small) deformation of a flexible
body is approximated by the relative (small) rotation between two rigid bodies about a de-
formation axis. Clearly, this requires the addition of 3 internal DOFs to the model, one for
each flexible subsystem. Regarding the two bodies which compose the frame: one has the
steering head joint, and the other provides the attachment point for the swingarm and lon-
gitudinal arm of the front assembly. For the front assembly and swingarm, the flexibility of
the lumped stiffness model is obtained by introducing a massless body attached to the wheel
carrier through the revolute joint associated with the lumped stiffness model. The wheel is
then attached with the rotational DOF to the massless body itself. This way, the effect of
flexibility on the wheel movement is reproduced.

For simulations, the open-source multibody simulation software MBSim [30] is used.
The model order reduction needed for EMBS is carried out in Python with a code based on
[31]; see [11] for further details.

4.2 Identification method

In this section, an identification method for lumped stiffness models is proposed aimed at
representing with sufficient accuracy the effect of structural flexibility on weave and wobble.
The basic procedure to create a lumped stiffness model starting from a single elastic body
consists of splitting the body into two rigid bodies connected by a revolute joint. A rotational
spring/damper is then associated with that joint. This way, a continuous (small) deformation
of the elastic body is approximated by the relative rotation of two rigid bodies about a
deformation axis. This approximation procedure needs to identify several parameters: the
location and orientation of the revolute joint, the rotational stiffness and damping, and the
inertia associated with each of the two bodies.

The adopted identification procedure, similar to that presented in [22–24], is described
here referring to the simple case of a beam, as presented in Fig. 2. At one end of the un-
deformed beam, a reference system O;x, y, z is fixed so that the axis of the beam lays in
the plane (x, z). At the opposite end of the beam, another reference system O ′;x ′, y ′, z′ is
fixed so that x ′ and z′ are parallel to x and z, respectively. It is now assumed that the beam
is clamped at point O and free at point O ′. An external load Fy is applied at point O ′ in y

direction, causing a small displacement, which moves the point from position q0 to position
q . In general, this also produces a small rotation of the reference system fixed at point O ′.
Therefore, under the effect of the external load, the planes defined by (x, z) and (x ′, z′) are
no longer parallel. Their intersection identifies the deformation axis, which can be adopted
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Fig. 2 Deformation axis of a beam cantilevered at the origin O (light blue dot) and having the load F applied
to the free end (orange dot). (Color figure online)

for approximating the small deflection of the beam by means of the relative rotation of two
rigid bodies.

Three types of tests are used: quasi-static test, harmonic test, and eigenvalue analysis. In
the quasi-static test, a force is applied slowly so that the dynamics of the component is not
excited. For the harmonic test, the load is applied with a sinusoidal wave oscillation, where
the excitation frequency is constant throughout the test. In the eigenvalue analysis, the first
bending and torsional eigenmodes and the related eigenvalues are identified. The amplitude
of the forces applied to the components has been determined considering the loads that
the components will experience during typical driving conditions, where the deformations
remain in the linear range.

Based on these concepts, the procedure for identification of the lumped stiffness param-
eters shown in Fig. 2 can be defined. The explanation is divided into two parts: the identi-
fication of the geometric parameters l, β, b and the identification of stiffness k, damping c

and vibrating inertia J .
The tests are carried out with simulations where the frame, front assembly, and swingarm

are modeled with the same flexible bodies used for the motorcycle model in [11]. The mea-
surements needed for the tests are provided by the simulation software itself.

4.2.1 Identification of l,β,b

The geometric parameters can be calculated either with static or harmonic tests. Define
q = [xq, yq, zq] the position of the free end and R its orientation matrix with respect to the
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fixed inertial frame. With the static test, these values are measured after the quasi-static load
has reached its maximum, while, during the harmonic test, the values from peak displace-
ment are used.

The deformed plane is represented by a1x + a2y + a3z + a4 = 0. n = [a1, a2, a3] is the
vector perpendicular to the displaced plane of symmetry. As in Fig. 2, the plane of symmetry
of the component is the x-z plane, and the vector is equal to the second column of matrix
R: n = Ry . Knowing the vectors n and q , the coefficient a4 of the plane equation can be
determined:

a4 = −(a1xq + a2yq + a3zq). (1)

With the assumption that the plane of symmetry of the component under the test is the x-z
plane, the position of the revolute joint can be found, see orange rectangle in Fig. 2. It could
lay at any point along the deformation axis in Fig. 2. In this work, the revolute joint is placed
at the intersection between the deformation axis and the line joining the origin of the inertial
frame and the position q0 = [xq0 , yq0 , zq0 ] of the loaded end in its unloaded configuration.
This line has the equation z = zq0

xq0
x. Substituting y = 0 in the equation of the plane gives

the equation of the deformation axis:

z = −a1

a3
x − a4

a3
. (2)

The x coordinate xj of the revolute joint can be calculated by substituting z = zq0
xq0

x in

Equation (2):

xj = − a4

a1 + a3
zq0
xq0

. (3)

The coordinate zj is then automatically determined:

zj = zq0

xq0

xj. (4)

With these coordinates, the parameter l can be calculated:

l = cos

(
atan

(
zj

xj

)
− atan

(
zq0

xq0

))√
x2

j + z2
j . (5)

The cosine term is needed to determine if the revolute joint is at the positive or negative side
of the x axis.

The angle β is calculated as difference between two angles:

β = atan

(
−a1

a3

)
− atan

(
zq0

xq0

)
= θj − θ0. (6)

The angle β is wrapped between 0 and π , since the orientation of the revolute joint is
insensitive to rotations of π . In fact, a rotational spring/damper element is assigned to the
revolute joint, which acts equally in both directions of rotation.

Finally, the calculation of the moment arm b is given as:

b = (L − l) sinβ, (7)
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where L =
√

x2
q0

+ z2
q0

is the distance between loaded end and the origin in the unloaded

configuration.
The harmonic test provides one set of parameter l, β, b for every peak. The lumped stiff-

ness model is then parameterized by the mean over these sets. In particular, the excitation is
applied until the mean settles within a specified tolerance band.

4.2.2 Identification of k, c,J

The rotational stiffness k can be calculated by dividing the moment of the force F about the
deformation axis by the rotation of the free end about the axis itself:

k = Fst · b
asin

( yqst
b

) , (8)

where Fst and yqst are the values of force amplitude and related displacement from a static
test. b is the moment arm resulting either from the static or harmonic test, depending on the
test chosen for identifying the geometric parameters in Sect. 4.2.1.

For the identification of c and J a different approach based on the eigenvalue analysis
of each flexible body model is used. After identifying the first bending and torsional eigen-
modes and under the assumption that they are sufficiently decoupled, the related eigenvalues
are calculated. For underdamped systems, as it is the case for structural components, these
can be expressed in the form:

λ1,2 = −ζnωn ± jωn

√
1 − ζ 2

n , (9)

where ωn is the modal natural frequency, and ζn is the modal damping ratio. Note that Equa-
tion (9) is valid under the assumption of proportional viscous damping, which is acceptable
in the case under analysis due to small amounts of structural damping. The imaginary part of
Equation (9) provides the damped modal eigenfrequency ωd. The modal natural frequency
ωn can be obtained from numerical simulation without damping or as the modulus of the
eigenvalues λ1,2 in Equation (9). Knowing ωn and ωd, the modal damping ratio ζn can be
calculated. At this point, the modal inertia J and the damping c result from:

J = k

ω2
n

, (10)

c = 2ζnJωn. (11)

This yields J and c for each of the two eigenmodes. Under the assumption of viscous damp-
ing, c can be directly used in the rotational spring damper element associated with the revo-
lute joint.

4.2.3 Stiffness decomposition

For the sensitivity analysis in Sect. 4.3, two separated parameters for the bending and tor-
sional stiffnesses are needed. However, the static test identifies only one stiffness value. The
authors of [24] propose a method to split the stiffness identified with a static test between
the deformation axes corresponding to the bending and torsion axes. Instead of only one
revolute joint, the resulting lumped stiffness model has two revolute joints with rotation
axes having the same directions of the bending and torsion axes. This concept is shown in
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Fig. 3 Schematic representation
of the stiffness decomposition:
the stiffness about the static
deformation axis is split into two
stiffnesses about the bending and
torsion axes

Fig. 3. This way, two stiffness parameters are available, but the overall flexural behavior of
the lumped stiffness model is the same as that parameterized with just one revolute joint.

In the following, the procedure described in [24] is briefly summarized. Three tests with
the component are needed: static test to identify the stiffness k, orientation β , and arm b; a
harmonic test with the first bending eigenfrequency to identify the orientation βb and arm bb;
and a harmonic test with the first torsional eigenfrequency to identify the orientation βt and
arm bt. The unknowns are the stiffnesses about the bending axis kb and torsion axis kt. For
the following two equations, two assumptions are made [24]: the displacement of the loaded
end due to rotation about the static deformation axis is equal to the sum of the displacements
due to rotations about bending and torsion axes, and the rotation about the static deformation
axis of the loaded end is equal to the sum of the rotations about the bending and torsion axes.
Additionally, as explained in [24], the assumption of small rotations is made. This makes it
possible to consider the resultant rotation as the vector sum of components, where the order
in which the rotations are performed is irrelevant. The adopted computational procedure is
taken from [24]. The two unknowns kb, kt can be found by solving the system of equations:

b2

k
= b2

b

kb
+ b2

t

kt
, (12a)

tanβ =
bb
kb

sinβb + bt
kt

sinβt

bb
kb

cosβb + bt
kt

cosβt

. (12b)

4.3 Sensitivity analysis

As explained in Sect. 3, the aim of the sensitivity analysis is to investigate the separated influ-
ence on weave and wobble of bending and torsional flexibility of each structural component
on weave and wobble. The framework to carry out this analysis is provided by [25–27].
Basically, the influence of varying the stiffness parameters (main factors) on the damping of
weave and wobble is analyzed. The procedure can be divided into three steps:

1. Definition of a stability index for weave and wobble.
2. Calculation of analysis of variance (ANOVA) to understand if there are interactions be-

tween the main factors.
3. If the interactions between the main factors are negligible, a linear correlation coefficient

can be used (Pearson correlation coefficient) to show if an increase in the main factors,
i.e., the stiffness parameters, leads to an increase or decrease in the stability index.

Starting from a plot of the real part of the eigenvalue of weave and wobble over longitudinal
speed, the following two situations shown in Fig. 4 can be distinguished:

• The stability boundary is never crossed in the considered speed range, i.e. the real part
of the eigenmode is negative at each speed. In this case, the stability index is defined as
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minimum distance between the curve of the real part and the stability boundary:

s1 = max(Re(λ)). (13)

• The stability boundary is crossed at least once, i.e. its real part becomes positive. In this
case, the stability index is defined as the ratio between the velocity range where the mode
is stable and the whole velocity range considered:

s2 = ‖vstable‖
vmax − vmin

, (14)

where vstable represents the interval of velocities where the mode is stable, see the thick
segments in Fig. 4. In the case shown in Fig. 4, ‖vstable‖ = (v1 − vmin) + (vmax − v2),
where v1 and v2 are the points of the first and second roots, respectively. Depending on
the shape of the curve, another calculation may be necessary, but the meaning of the index
s2 does not change. If there is only one root, only one interval for ‖vstable‖ is identified.
No more than two crossings are expected when studying weave and wobble as a function
of the speed.

With reference to Fig. 4, it can be seen that the stability index s2 is defined relatively to
the whole interval of velocities achievable by the motorcycle. If the motorcycle is unstable
in the whole velocity range, then s2 = 0 (minimum stability, given by the fact that one
or more eigenvalues have always positive real part in the whole velocity range). If the
motorcycle is stable in the whole velocity range, then s2 = 1 (maximum stability, given
by the fact that one eigenvalue is at the stability threshold, with zero real part).

Equations (13) and (14) can be combined into a single stability index s:

s = ‖min(0, s1)‖ + s2. (15)

When the real part of the eigenvalue is always negative, s2 = 1 and s > 1. If the stability
boundary is reached, the first part of Equation (15) is zero, as s1 is positive, and the index
s varies between 0, which means that the eigenmode is unstable in the whole speed range,
and 1, which indicates that the curve of the real part touches the stability boundary but never
crosses it.

In the present work, the stability index is defined separately for low (40-100 km h−1) and
high (100-210 km h−1) speeds. This covers all the relevant speeds up to the maximal speed of
the motorcycle considered; speeds lower than 40 km h−1 are not relevant for studying weave
and wobble in motorcycles. The distinction of the speed ranges is necessary, particularly for
wobble, because parameters, such as the fork bending stiffness, act oppositely at a low and
high speed [5–8]. The use of a single index for the whole speed range would fail to capture
this distinction, thus falsifying the sensitivity analysis.

Similarly to [25–27], a full factorial design with two levels is chosen for an ANOVA with
the stability index as response variable. The nominal values identified with the procedure in
4.2.3 are varied by ±10%. There are two stiffness values for each of the three considered
structural components; this way, 26 = 64 combinations are tested. After this analysis, it can
be recognized if the variability of the six main factors is dominant, or if the interactions be-
tween them have a nonnegligible importance. The ANOVA is carried out with the anovan
function of MATLAB.

Finally, if the interactions between the main factors are negligible, Doria [25] proposes
to use the Pearson correlation coefficient to determine the effect of each factor, evaluated at
the two levels, on the stability index. Using the same nomenclature as in [25], the Pearson
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Fig. 4 Representation of stability
indexes. Left: no crossing of the
stability boundary, the index in
Equation (13) is used. Right: two
crossings of the stability
boundary, the index in
Equation (14) is used

correlation coefficient is ρIF , where F is the factor (stiffness), and I is the index (weave or
wobble stability index), and it is defined as follows:

ρIF = σIF

σIσF

. (16)

σI , σF , σIF are, respectively, the variance of the index, the variance of each factor, and the
covariance between index and factor:

σ 2
I = 1

n

n∑
i=1

(Ii − I)2,

σ 2
F = 1

n

n∑
i=1

(Fi − F)2,

σ 2
IF = 1

n

n∑
i=1

(Ii − I)(Fi − F),

(17)

where n is the number of combinations of the factors, 64 in this case.
A value of ρIF close to 1 or −1 indicates either positive or negative strong correlation of

the index I to the factor F [32].

5 Results

This section is divided into three subsections. Section 5.1 shows the results of the identifi-
cation method presented in Sect. 4.2. In particular, the deformation axes of every structural
component identified with static and harmonic tests are visualized. In Sect. 5.2, the accuracy
in the simulation of weave and wobble of the lumped stiffness models with identified param-
eters is evaluated by comparing the results with the flexible multibody motorcycle model.
Section 5.3 presents the results of the sensitivity analysis.

5.1 Results of parameter identification

The deciding point when identifying the lumped stiffness parameters is to pick the right load
combination. In fact, as presented in [22, 23], static and harmonic loads identify different
parameters. Figures 5, 6, and 7 show the deformation axes for every structural component
with the static and harmonic test. The x axis represents the longitudinal axis of the motorcy-
cle, and the z axis points upwards. The blue line is the deformation axis identified with the
static test. The two green lines are the deformation axes resulting from harmonic tests hav-
ing the frequency of the first bending and torsional eigenmodes, named bending and torsion
axes. Table 1 shows the first torsional and bending eigenfrequencies for each component.
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Fig. 5 Visualization of
deformation axes of the frame
with different loads. The
component is fixed at the engine
mounts and the load is applied to
the steering head joint. (Color
figure online)

Fig. 6 Visualization of
deformation axes of the front
assembly with different loads.
The component is clamped at the
steering head joint and at the
revolute joint of the longitudinal
arm. The load is applied to the
wheel axis. (Color figure online)

Fig. 7 Visualization of
deformation axes of the
swingarm with different loads.
The component is fixed at the
swingarm joint and the load is
applied to the wheel axis. (Color
figure online)

Table 1 First torsional and
bending eigenfrequency of frame,
front assembly, and swingarm

Component Eigenfrequency Mode shape

Frame 74 Hz Torsion

93 Hz Bending

Front assembly 28 Hz Torsion

79 Hz Bending

Swingarm 112 Hz Bending

321 Hz Torsion

The black thin lines show the deformation axes when the excitation frequency of the har-
monic test is varied from 1 Hz to a frequency of 5 Hz below the first eigenfrequency of the
component. Similarly to Fig. 2, the light blue dots are the points where the component is
fixed to the inertial frame, and the orange dots are the points where the load is applied.
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In Fig. 5, the frame is fixed at the engine mounts, and the load is applied to the steering
head joint. The choice of fixing the engine mounts allows the consideration of the contribu-
tion of the engine to the overall stiffness. In fact, in the motorcycle, the frame is mounted on
the engine itself, which is assumed rigid in this paper. The eigenfrequencies in Table 1 are
obtained with the tank and saddle mounted on the frame and modeled as rigid bodies with
mass and inertia. The torsion axis is nearly parallel to the line joining the swingarm joint and
the steering head joint, where the load is applied. The bending axis is nearly perpendicular to
the torsion axis and lays behind the swingarm joint, signalizing that, when oscillating with
the first bending eigenmode, the steering head joint mainly translates along the y axis, i.e. in
the direction orthogonal to the symmetry plane of the frame. The static deformation axis is
a combination of torsion and bending; this is due to the fact that the frequencies of the first
torsion and bending eigenfrequencies are close in value. As expected, by sweeping the fre-
quency of the harmonic excitation, the deformation axis moves from the static deformation
axis to the deformation axis of the first eigenmode, i.e., the torsion axis.

The front assembly is clamped at the steering head joint and at the joint between the
longitudinal arm and the frame to avoid the movement of the suspension (Fig. 6). The load
is applied at the wheel axis. The longitudinal arm of the multilink suspension is also shown.
The torsion axis is, as expected, nearly parallel to the fork axis, while the bending axis is
almost perpendicular to it. Also, in this case, the static deformation axis is a combination
of torsion and bending. However, torsion dominates the deformation of the assembly for a
static excitation because the eigenmode with the lowest eigenfrequency is torsional, and the
frequency of the first bending eigenmode is significantly higher (Table 1). This is different
from conventional forks that generally have lower bending stiffness than torsional stiffness
[22]. The high bending stiffness in the present case can be attributed to the presence of
the longitudinal arm. The harmonic test with increasing frequency (black lines in Fig. 6)
identifies a deformation axis that progressively moves from the static axis to the axis of the
eigenmode.

The swingarm, Fig. 7, is fixed at the joint with the frame, and the force is applied to
the wheel axis. As mentioned in Sect. 4.1, it is a four-bar link composed of a lower link,
upper link, and wheel carrier. Unlike frame and front assembly, the first eigenmode is a
bending one, see Table 1. The bending axis is, as expected, almost perpendicular to the
main arm and link, and the torsion axis is nearly perpendicular to the bending axis. The
static deformation axis is dominated by bending because it is the first eigenmode, and the
first torsional eigenmode has a significantly higher eigenfrequency. Also, in this case, when
increasing the frequency of the harmonic test, the deformation axis moves from the static
axis to the axis of the first eigenmode.

When building the lumped stiffness model of a structural component, the single body
must be split into two bodies. Regarding the frame, the inertia of the body to which the
handlebar is attached is the one identified through the test in Sect. 4.2.2. The mass of the
frame, engine, tank, and saddle is concentrated into the other body to which the swingarm
and the longitudinal arm of the front assembly are connected; the inertia of this body is
calculated such that the overall inertia of the motorcycle remains the same. For the front
assembly and swingarm, the identified inertia is assigned to the massless body used for the
lumped stiffness model, see Sect. 4.1. Inertia must then be removed to ensure that the overall
inertia remains constant. In the case of the front assembly, this inertia is removed from the
lower fork, while for the swingarm, the inertia is removed from the wheel carrier.
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Fig. 8 Root mean square error in
percentage of lumped stiffness
models compared to the flexible
multibody models

5.2 Accuracy of identified lumped stiffness models

At this point, the accuracy of lumped stiffness models in simulating the influence of flexibil-
ities on weave and wobble is investigated. For that, the models are compared to the flexible
multibody motorcycle model presented in [11], which is considered the “ground truth”. In
particular, the eigenfrequency f and real part Re of weave and wobble are determined be-
tween 40 and 210 km h−1, and the root mean square error in percentage between the lumped
stiffness models and the flexible body models is calculated:

eRMS% =
√

1
N

∑N

i=1(xlu − xfl)2

x̄fl
· 100. (18)

N is the number of speed values for which weave and wobble are simulated. xlu, xfl are either
the frequency or the real part of weave or wobble calculated with the lumped stiffness and
flexible body model, respectively. x̄fl is the mean over the speed range of either frequency
or real part calculated with the flexible body model.

The results are shown with the bar diagram in Fig. 8. In the first three plots, the frame,
front assembly, and swingarm are studied separately: for each case, only the flexibility of
that component is included in the motorcycle model, with either lumped stiffness or flexible
multibody approach. The last plot represents the case where the flexibility of all structural
components is modeled simultaneously. Different lumped stiffness models are shown in
Fig. 8. The one marked with “State of the art” uses the common assumptions found in the
literature for the orientation of the revolute joints; moreover, the stiffness values are mea-
sured with static tests on the flexible multibody model of each structural component. The
case marked with “Static” uses the identification procedure of Sect. 4.2 with the quasi-static
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Fig. 9 Effect of the flexibility of
the front assembly on weave and
wobble (only the flexibility of the
front assembly is modeled):
comparison between flexible
body, state-of-the-art lumped
stiffness, and lumped stiffness
models parameterized with the
procedure in Sect. 4.2

application of the load. The bars marked with “Torsion” and “Bending” also use the identi-
fication procedure but with harmonic tests at the frequency of the first torsional and bending
eigenmodes of the flexible body, respectively. “State of the art” and “Static” lumped stiff-
ness models are obtained with a static test because they approximate the response of the
component to static loads; for this reason, they both do not use the identified inertia. In
contrast, “Torsion” and “Bending” lumped stiffness models approximate the frequency re-
sponse of the component at the first torsional and bending eigenfrequencies. For this reason,
Equation (10) is applied to the first torsional and bending eigenfrequencies, thus obtaining
the modal inertia about the torsional and bending axes, respectively. The distribution of the
inertia is done as explained at the end of Sect. 5.1.

Figure 8 does not show the error of lumped stiffness models parameterized with harmonic
tests with a frequency below the first eigenfrequency of the flexible component because their
results are similar to the lumped stiffness models parameterized either with the static test
or harmonic test at the first eigenfrequency. In particular, for frequencies up to 10-20 Hz
lower than the first eigenfrequency, the static test and the harmonic test identify very similar
parameters (see Figs. 5, 6, and 7), and, therefore, the resulting lumped stiffness models are
equivalent. In the rest of this section, the accuracy of the lumped stiffness models of the
structural components is analyzed separately.

5.2.1 Frame

The “State of the art” lumped stiffness model of the frame represents the frame torsion with
a revolute joint at the steering head joint with a rotation axis perpendicular to the fork axis
[5]; the front assembly is then attached to that joint. In the present paper, the related stiffness
is measured with a static moment applied to the steering head joint and perpendicular to the
fork axis. As the frame of the present motorcycle is very stiff, all lumped stiffness models
show low error in almost all cases. However, the “State of the art” model presents a relatively
high error in the real part of the wobble eigenvalue, whereas the lumped stiffness models
with parameters identified by the procedure in the present work perform significantly better.
In particular, it has been verified that the “State of the art” model shows an eigenvalue with
smaller real part (in modulus) at high speed than the “ground truth”, which signifies the
stiffness is too high, see, e.g., [5–7].

5.2.2 Front assembly

The state-of-the-art approach for modeling the bending flexibility of the front assembly is to
put a revolute joint with a rotation axis perpendicular to the fork axis. The related stiffness is
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measured with a static lateral force applied to the wheel axis, see [11]. The revolute joint is
located at the position of the spherical joint of the longitudinal arm, see [11] for more details
on this decision. For the “State of the art” and “Static” lumped stiffness models, it has been
verified that it is important that the inertia of the lower fork is activated during the motion
of the wheel due to flexibility. For this reason, the inertia of the lower fork is moved to the
massless body used for the definition of the lumped stiffness model while ensuring that the
position of the center of gravity is not changed. In the “Torsion” and “Bending” lumped
stiffness models, instead, the identified modal inertia is assigned to the massless body to
correctly represent the frequency response of the component at the first bending and torsion
eigenfrequencies. The front assembly is the component where the lumped stiffness models
have the highest error, in particular in the real part of wobble. For this reason, it is worth
looking in more detail at the evolution of weave and wobble with speed, shown in Fig. 9. The
plots clarify that the “Static” lumped stiffness model provides the best approximation of the
“ground truth”, i.e., the flexible multibody model. Interestingly, the “State of the art” lumped
stiffness model and the “Bending” lumped stiffness model provide very similar results. This
is due to the fact that the bending axis is almost perpendicular to the fork axis, see Fig. 6,
and the resulting lumped stiffness model is therefore very similar to the “State of the art”
model. This configuration, however, does not accurately represents the deformation of the
front assembly when simulating weave and wobble.

5.2.3 Swingarm

For the swingarm, there is no general trend in the state-of-the-art. For this reason, the “State
of the art” model here represents a possible simplified modeling approach for simulating
the swingarm torsion: a revolute joint with a rotation axis parallel to the vehicle x axis
(longitudinal axis) is put between the wheel center and the wheel carrier, see for example
[33]. The related stiffness derives from a static test where a moment parallel to the vehicle
x axis is applied to the wheel axis. The swingarm of the present motorcycle model has high
stiffness, and, therefore, the differences between the models are small. The “Static” lumped
stiffness model has the lowest error. In contrast, the “Torsion” lumped stiffness model shows
a high error.

5.2.4 All components

The same considerations made above apply to the case where the flexibility of all structural
components is modeled simultaneously: the largest error is in the real part of the wobble
eigenmode, whereby the lumped stiffness models parameterized with the static test only
show an error of at most 10%, thus overperforming the other lumped stiffness models.

In summary, the “Static” lumped stiffness models show the smallest error for every struc-
tural component and they offer a relevant improvement in accuracy compared to the state-
of-the-art. The “Torsion” and “Bending” lumped stiffness models have higher errors than
the “Static” lumped stiffness model so that the static test seems the best approach for pa-
rameterizing lumped stiffness models having the aim of modeling weave and wobble.

It is worth pointing out that the damping and inertia parameters identified through Equa-
tion (10) and (11) have a minor influence on weave and wobble. The main parameters influ-
encing the stability of the two eigenmodes are the stiffness and location of the revolute joint.
This is the reason why, for the lumped stiffness model identified with the static test, a very
small value of damping is used. It can be calculated by multiplying the identified rotational
stiffness by the proportionality constant γ = 0.001 s, thus obtaining c = γ k.
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Table 2 Nominal values of
stiffness about the static
deformation axis k and stiffness
about the torsion kt and bending
kb axis after decomposition with
the method in Sect. 4.2.3

k in N m rad−1 kt in N m rad−1 kb in N m rad−1

Frame 1.03·106 3.75·105 3.59·106

Front assembly 1.06·104 5.95·103 1.71·105

Swingarm 1.33·105 1.04·106 1.39·105

5.3 Sensitivity analysis

In this section, a sensitivity analysis is carried out to answer the question of which stiffness
within each component has the highest impact on the stability of weave and wobble. The sta-
bility index defined in Sect. 4.3 is used. Two separated analyses are done for the low speeds
(40-100 km h−1) and high speeds (100-210 km h−1). This allows for the identification of the
stiffness parameters that have opposite effects according to the speed range considered.

Once the parameters for the static deformation axis of each structural component are
identified in Sect. 5.1, the stiffness about that axis is split along the torsion and bending
axes with the procedure in Sect. 4.2.3. Table 2 presents these values for every structural
component. The obtained stiffness values about torsion and bending axes are then varied in
the range ±10%, and the stability indexes for each of the 64 combinations are calculated.

First of all, the ANOVA is carried out to check which percentage of the variability of
the stability index is due to main effects and how much depends on interactions between
factors. For each stability index, approximately 99% of the variability is due to main factors.
Therefore, the evaluation with the Pearson correlation coefficient is possible.

It has been verified that, for the motorcycle considered and for any combination of the
lumped stiffness parameters, weave and wobble never cross the stability boundary, so only
the stability index in Equation (13) is used.

Fig. 10 shows the Pearson correlation coefficients for every stiffness and distinguishes
between weave and wobble. The subscript used must be interpreted as follows: the first letter
indicates the type of flexibility (t for torsion and b for bending), and the second letter indi-
cates the structural component (f is the frame, a is the front assembly, and s is the swingarm).
A positive correlation coefficient means that an increase in the considered stiffness leads to
increased damping of the mode.

The bar plot of wobble makes it clear why this analysis was conducted separately for the
low- and high-speed ranges. There are stiffness parameters, such as torsional and bending
stiffness of the frame and bending stiffness of the front assembly, that oppositely contribute
to the two speed ranges.

At this point, some considerations about a stability-optimized design of structural com-
ponents can be made. The following is valid for the present structural components and the
shown nominal stiffness values; the extension to components with other designs can be a
further research topic. High-frame torsional and bending stiffnesses have positive effects on
the high-speed weave and low-speed wobble but a slightly negative effect on the high-speed
wobble, which overlaps with experimental tests carried out in [34]. The front assembly is
the part whose stiffness has the strongest effect on both eigenmodes. Too high torsional
stiffness should be avoided because it destabilizes wobble at every speed and has only a
small stabilizing effect on weave. Finding the optimal value of bending stiffness is a tricky
task: on the one hand, the high bending stiffness of front assembly stabilizes the high-speed
weave and the low-speed wobble; on the other hand, it strongly destabilizes the high-speed
wobble. This stiffness should be therefore designed considering the characteristics of the
whole motorcycle, such as its overall geometry and weight distribution, tire properties and
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Fig. 10 Pearson correlation
coefficients of weave and wobble
for every structural stiffness

the presence of a steering damper. Please note that the torsion axis of the frame and the
bending axis of the front assembly have similar orientation, see Fig. 5 and 6. In fact, they
produce qualitatively similar results. The smaller sensitivity of the frame torsion is due to
two effects: its nominal value is very high, so even with a variation of 10%, the stiffness al-
ways remains high; the front assembly bending flexibility directly affects the motion of the
front wheel, while the frame torsional flexibility does that indirectly through the motion of
the front assembly, which in the present case is also affected by the presence of the longitu-
dinal arm. The swingarm stiffness hardly affects wobble, which is mainly influenced by the
parameters of the motorcycle’s front. Reducing swingarm bending stiffness brings positive
effects to the high-speed weave but negative effects to the low-speed weave. However, weave
is never critical at low speed, so an optimized design for the investigated configuration of
the swingarm would involve relatively low bending stiffness but high torsional stiffness.

Of course, when reducing the stiffness of structural components with the aim of saving
weight, the effects on driving dynamics as a whole and strength requirements must also be
taken into account.

6 Conclusions

This paper proposes a method for parameterizing lumped stiffness models of motorcycle
structural components. For that, static and harmonic tests are carried out in simulations with
the components modeled as flexible bodies.

The main objective is to evaluate whether the lumped stiffness models parameterized
with this method are accurate enough to simulate the influence of flexibilities on weave and
wobble. The motorcycle model with lumped stiffnesses is therefore compared to the flexible
multibody motorcycle model, which is considered “ground truth” because it has the most
realistic modeling of flexibilities. The error of lumped stiffness models can be evaluated
by simulating the frequency and real part of weave and wobble with these two models.
Results show that the most suitable test for parameterizing lumped stiffness models with the
aim of simulating weave and wobble is the static test. Moreover, the presented method for
parameterization allows a significant improvement in accuracy compared to the state-of-the-
art lumped stiffness models, which are generally based on assumptions for the position of
the revolute joints used to model the flexibility.

It can be concluded that thanks to the presented method, lumped stiffness models reach
enough accuracy to simulate the effect of flexibilities on weave and wobble. For modeling
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phenomena with higher frequency, such as comfort tests, lumped stiffness model parameter-
ized with harmonic tests at higher frequency could provide better results. However, there is
also the possibility that, in these situations, only flexible multibody models provide sufficient
accuracy thanks to their ability to reproduce frequency contents in a broad range.

The second main contribution of this work is the sensitivity analysis of component stiff-
nesses to point out which stiffness within each component has the highest impact on the
stability and to make suggestions for an optimized design of structural components of the
motorcycle model considered in this paper. The results stress the big influence of the flex-
ibilities of the front assembly on both weave and wobble. Its torsional stiffness should not
be too high to avoid the destabilization of wobble, while its bending stiffness should be
optimized considering that a high value is advantageous for the high-speed weave damping
and low-speed wobble damping but detrimental for the high-speed wobble damping. Finally,
the flexibilities of swingarm only influence weave, and a stability-optimized design could
involve relatively low bending stiffness but high torsional stiffness.

These considerations about possible optimal design are valid for the present components
with the characteristics of the deformation axes provided. Literature shows that components
with alternative constructions present different deformation characteristics, so the extension
to other designs for the structural components could be a further research topic. The method
presented in this paper is suitable for all types of structural components so that this extension
can be easily carried out.

Appendix A

In this appendix, a summary of the information in [11] about the flexible multibody motor-
cycle model is reported.

As mentioned in Sect. 4.1, the following structural components of the motorcycle are
modeled as flexible bodies:

• Frame, which is fixed to a rigid engine.
• Front assembly, which is composed of fork bridge, two stanchions, longitudinal arm, and

lower fork.
• Swingarm, which is composed of lower link, upper link, and wheel carrier.

These bodies are initially modeled with FEM. However, they contain up to 106 degrees
of freedom, so it would be impossible to directly include them in a multibody simulation
environment because this would lead to unacceptable computation time. Therefore, model
order reduction (MOR) is applied. In [11], the Craig-Bampton method is used, which has
the peculiarity of distinguishing between the boundary and internal degrees of freedom. The
boundary degrees of freedom serve as an attachment point for other bodies in an assembly or
to apply external forces and are preserved by the reduction with the Craig-Bampton method.
The internal degrees of freedom are reduced by applying modal truncation. In particular,
the first 20 fixed-interface modes have been kept for each body. This way, the frequency
content up to 600 Hz is included in the reduced order bodies. Table A.1 shows the degrees
of freedom for each flexible body before and after MOR with Craig-Bampton. The degrees
of freedom of the reduced order models are expressed as a sum to distinguish the number of
boundary degrees of freedom (second number) from the number of selected modes.

For embedding the reduced order models of the structural components in the multibody
simulation environment of the motorcycle, the Floating Frame of Reference Formulation is
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Table A.1 Degrees of freedom of
the flexible bodies before and
after the model order reduction

DOFs FEM DOFs after MOR

Frame 3,8·106 20+54

Front assembly Fork bridge 8,0·105 20+9

Stanchions (each) 2,1·105 20+9

Lower fork 1,7·106 20+18

Longitudinal arm 4,7·105 20+12

Swingarm Lower link 2,7·106 20+15

Upper link 4,1·105 20+6

Wheel carrier 2,1·106 20+12

used, which is suitable for describing the deformation of bodies that undergo small linear
elastic displacement combined with big nonlinear rigid body motions.

The flexible multibody model of the frame and front assembly has been validated by
comparing the stiffness resulting from static tests on the real components. In particular, the
frame has been tested by clamping it at the swingarm axis and applying a lateral force at
the steering head joint. The stiffness resulting from the flexible body deviates 6.4% from the
experimental data. The front assembly is clamped at the steering head joint, and the lateral
force is applied to the wheel axis. In this case, the error between experiment and simulation
is 0.5%. The validation for the swingarm was not possible because no measurements were
available.
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