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Abstract
In this paper, we discuss time-optimal control problems for dynamic systems. Such prob-
lems usually arise in robotics when a manipulation should be carried out in minimal oper-
ation time. In particular, for time-optimal control problems with a high number of control
parameters, the adjoint method is probably the most efficient way to calculate the gradients
of an optimization problem concerning computational efficiency. In this paper, we present
an adjoint gradient approach for solving time-optimal control problems with a special focus
on a discrete control parameterization. On the one hand, we provide an efficient approach for
computing the direction of the steepest descent of a cost functional in which the costs and
the error in the final constraints reduce within one combined iteration. On the other hand,
we investigate this approach to provide an exact gradient for other optimization strategies
and to evaluate necessary optimality conditions regarding the Hamiltonian function. Two
examples of the time-optimal trajectory planning of a robot demonstrate an easy access to
the adjoint gradients and their interpretation in the context of the optimality conditions of
optimal control solutions, e.g., as computed by a direct optimization method.
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1 Introduction

Improving the performance of mechanical systems requires sophisticated optimization
strategies to fulfill the high demands of current and future product requirements. In general,
two problem formulations can be considered to describe various optimization applications:
structural optimization of mechanical components and/or finding an optimal control for non-
linear dynamical systems [37]. The focus of this paper is on the latter problem and relates
particularly with time-optimal controls.

Bobrow et al. [4] solved the time-optimal control problem for the case where the path
is specified and the actuator torque limitations for the robot control are known. They com-
puted the optimal control torques using a conventional linear feedback control system. Shin
and McKay [35] used dynamic programming considering parametric functions to reduce
the state space. Regarding the application to industrial robots, smooth trajectory planning
is essential and has been presented, e.g., by Constantinescu and Craft [8] by using cubic
splines to parameterize the state-space trajectory. Reiter et al. [31] proposed a time-optimal
path tracking problem formulated as a nonlinear programming (NLP) problem solved by a
multiple shooting method to account for the continuity required to respect the technological
limits of real robots. Moreover, methods for the fast computation of optimal solutions to
planning problems with changing parameters based on B-spline parameterization are pre-
sented in [30].

An alternative to the methods mentioned above is the use of indirect optimization meth-
ods avoiding the solution of a boundary value problem suffering from poor initial controls.
The fundamental work by Bryson and Ho [6] shows how the gradient in an indirect opti-
mization approach can be computed in a straightforward manner using adjoint variables.
Optimal control problems can be solved iteratively with adjoint gradients using nonlinear
optimization routines, as described in the sense of optimal control or parameter identifica-
tion in multibody systems, e.g., in [23].

The adjoint method has been used by various authors [2, 14, 17] in different research ar-
eas. In the last few decades, the sensitivity analysis based on the adjoint method has become
increasingly important [7, 26]. An extensive literature review in a more recent work [15]
presents various gradient-based optimization methods, especially in design optimization of
flexible multibody systems.

Moreover, since the adjoint method is computationally efficient, real-time applications
and neural network applications can be addressed with the adjoint approach. For instance,
physics-informed neural networks use partial differential equations in the cost functions to
incorporate prior scientific knowledge. Previous research has shown that the discrete adjoint
approach is efficient in application of neural networks [29]. Solvers capable of building
efficient gradients are beneficial for training machine learning embedded cost functionals.
Moreover, Gholami et al. [12] proposed an adjoint-based neural ordinary differential equa-
tion framework that provides unconditionally accurate gradients. Johnston and Patel [18]
stated that adjoint methods are used in both control theory and machine learning to effi-
ciently compute gradients of functionals.

In this paper, we concentrate on the efficient computation of gradients in optimal control
problems and the role of adjoint variables in the optimization strategy. The proposed ideas
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can also be used in neural network approaches for the interpretation and evaluation of opti-
mal solutions. In particular, we discuss a particular class of time-optimal control problems
for dynamic systems involving final constraints. For such problems, Eichmeir et al. [10] re-
cently presented an indirect gradient method to relate the control variations to the error of
the given final constraints. In this paper, we extend the method to provide an exact gradi-
ent for discrete control parameterizations for direct or indirect optimization methods. For
both methods, the Hamiltonian of the system can be determined and can then be considered
for classical statements about optimality. To be more precise, we investigate the role of the
adjoint variables in the verification of the optimality conditions of a solution derived by an
arbitrary optimization approach, e.g., computed by a direct optimization method.

To this end, we discuss the time-optimal control problem of a two-arm robot. In a first ex-
ample, the robot is formulated with rigid bodies. The advantage of the proposed approach,
in particular, concerning computational effort, will be exploited in a second example of a
flexible robotic system using the absolute nodal coordinate formulation (ANCF) for de-
scribing large deformations. Both examples are solved by a direct optimization method, and
the evaluation of the optimality criteria regarding a Hamiltonian leads to an interpretation
of the adjoint gradients. In addition, we performed a comparison of the number of function
evaluations in a local minimum considering either numerical or analytical gradients, which
shows the clear advantage of using adjoint gradients.

2 Time-optimal control problem

The aim of an optimal control problem is to find a control of a dynamical system to minimize
certain performance measures. Let us consider the nonlinear dynamical system

ẋ(t) = f(x(t),u(t)) with x(0) = x0, (1)

where x(t) ∈ R
n and u(t) ∈ R

m are the vectors of state and control variables, respectively.
A performance measure might be the energy consumption or the operation time from initial
to final state. The focus in this work will be on the latter.

We briefly discuss the time-optimal control problem [3, 6, 21]. The goal is to determine
a final time tf = t∗f and a control u(t) = u∗ such that the scalar cost functional

J (x(t),u(t), tf ) =
∫ tf

t0

[
1 + P (x(t),u(t))

]
dt (2)

is minimized while satisfying the final constraints

φ(x(tf ), tf ) = 0 ∈ R
q . (3)

Note that the state variables x(t) and control u(t) are functions over the time interval
t ∈ [t0, tf ] in the cost functional and that inequality constraints for the state variables and
control are accounted for using the penalty function P (x,u). This means that a penalty term
will be added to the final time tf in case of violating inequality constraints; see Eq. (2).
The optimal control problem is defined by Eqs. (1)–(3) and can be solved by two different
approaches. Direct methods transform the original infinite-dimensional optimization prob-
lem into a finite-dimensional one. The resulting NLP problem can be treated by well-known
methods, e.g., the sequential quadratic programming (SQP) approach [24]. An optimal point
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is in accordance with the Karush–Kuhn–Tucker (KKT) conditions [19, 22], which are nec-
essary optimality conditions for direct optimization methods. Contrary, indirect methods are
based on the calculus of variations and the derived necessary optimality conditions. These
explicit expressions result from Pontryagin’s minimum principle and are in the form of a
two-point boundary value problem, which is usually hard to solve. Shooting methods, collo-
cation methods, or gradient-based approaches can be used to solve the underlying two-point
boundary value problem.

2.1 Direct optimization method

Direct methods transform the original infinite-dimensional optimization problem into a
finite-dimensional one by a parameterization of the control u(t). In this paper, the control is
discretized by a set of grid nodes ū. Hence the set of optimization variables in time-optimal
control problems is defined by zT = (

tf , ūT
) ∈ R

z. The discretization of the control leads to
an NLP problem of the form

min
z

J (z)

s.t. φ(z) = 0.

(4)

Note that the NLP problem is defined by the optimization variables z. To evaluate the cost
functional and final constraints, the state variables x have to be computed with respect to
the optimization variables z. For solving the state equations in this step, a classical ordinary
differential equation (ODE) solver can be used, e.g., an explicit Runge–Kutta solver. The
NLP problem in Eq. (4) can be solved by classical direct optimization methods. The local
optimality of direct methods is investigated by introducing the Lagrangian function

L(z, ξ) = J (z) − ξTφ(z), (5)

where ξ ∈R
q is the Lagrange multiplier. The necessary first-order or KKT conditions of the

optimization problem in Eq. (4) are formulated as

(∇zL(z∗, ξ ∗)
∇ξL(z∗, ξ ∗)

)
= 0. (6)

One of the most powerful methods for finding a KKT point
(
z∗, ξ ∗) of the NLP problem is

an SQP approach [16, 25, 28]. The basic idea of this approach is to replace the original NLP
problem with a quadratic subproblem. The solution of this subproblem is then used in an
iterative method to determine a KKT point satisfying Eq. (6). The quadratic approximation
of the cost function and the linear approximation of the constraints lead to

min
dk

J (dk) ≈ J (zk) + ∇zJ (zk)
Tdk + 1

2
dT

k∇2
zzJ (zk)dk

s.t. φ(dk) ≈ φ(zk) + ∇zφ(zk)
Tdk,

(7)

where dk = z − zk is the minimizer of the quadratic subproblem. In analogy to Eq. (6), the
KKT conditions regarding the quadratic-linear model result in the linear system

( ∇2
zzL −∇zφ(zk)

∇zφ(zk)
T 0

)(
dk

ξ k

)
=

(−∇zJ (zk)

−φ(zk)

)
, (8)
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which is called the KKT system. The solution of this system is used to update the optimiza-
tion variables

zk+1 = zk + αkdk (9)

for the (k + 1)th iteration. The method is made more robust by using a step length control
parameter αk . The factor is obtained by minimizing a proper merit function. For a detailed
description and different variants of the basic SQP approach, we refer to [3, 24], which is
quite standard and implemented in various codes in this way. One goal of the present paper
is to derive adjoint gradients providing analytically given gradients for an SQP approach.
Hence the following section is devoted to the derivation of analytically computed adjoint
gradients of the Jacobians in Eq. (8). This approach is especially efficient in the case of a
high number of optimization variables. Moreover, the indirect approach is used for the eval-
uation of the chosen parameterization of the control. The parameterization of the control is
correctly chosen with respect to the problem formulation if the necessary optimality condi-
tions based on indirect methods are sufficiently small; see Fig. 2 for a graphical validation
in the scope of an example.

2.2 Adjoint gradient approach

In this section, we exploit the adjoint gradient approach to evaluate the necessary first-order
conditions regarding the Hamiltonian function in an indirect optimization method. For this
purpose, we briefly summarize the key idea and theory for determining time-optimal con-
trols for dynamic systems regarding final constraints using an indirect method. Generally,
indirect methods are based on optimality conditions and lead to solving the underlying two-
point boundary value problem. Instead of solving the two-point boundary value problem, the
optimization problem can also be addressed by a gradient-based method, e.g., the Kelley–
Bryson method [5, 20]. The key idea is to find a variation of the control to produce the
maximum local decrease of the cost functional. To find a minimum of the cost functional,
we can simply walk a short distance along the negative gradient of the cost functional. We
pursue this method to fulfill the necessary optimality conditions derived by the calculus of
variations following the basic ideas in [3, 6, 21].

2.2.1 Combined adjoint gradient approach regarding final constraints

The adjoint gradient computation in the presence of final constraints has been presented in
a recent work [10], and here we briefly summarize the main steps. To derive the adjoint
and influence equations, the cost functional in Eq. (2) is extended by the state equations in
Eq. (1) leading to

J̄ =
∫ tf

t0

[
1 + P (x,u) + pT

(
f(x,u) − ẋ

)]
dt (10)

for any choice of the adjoint variables p ∈ R
n in the cases where the state equations are

satisfied. To compute the variation of the extended cost functional J̄ , we perform infinites-
imal variations of the final time δtf and of the control δu, which also cause a variation of
the states δx due to the state equations. The resulting variation of J̄ leads to a variation δẋ,
which can be eliminated by integration by parts. Finally, the cost functional can be reduced
to

δJ̄ =
∫ tf

t0

(
Pu + pTfu

)
δu dt + (1 + Pf )δtf (11)
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in the case where the adjoint variables fulfill the linear time-variant final value problem

ṗ = −P T
x − fT

xp with p(tf ) = 0, (12)

which is solved backward in time. Note that to compute the adjoint system, the state equa-
tions must first be solved forward in time. The subscripts u and x denote the partial deriva-
tives with respect to u and x, and the subscript f indicates the evaluation of quantities at
time t = tf .

The optimization problem in Eqs. (1)–(3) does not only consist of minimizing the cost
functional, but in addition, the final constraints must be fulfilled. The variations of the cost
functional and final constraints will lead to a combined gradient-based approach for updating
the final time and controls. As a first step, the final constraints are extended with the state
equations, leading to

φ̄ =
∫ tf

t0

RT
(
f(x,u) − ẋ

)
dt + φ(x(tf ), tf ). (13)

Proceeding exactly the same way as above, the variation for the extended final constraints is
defined by

δφ̄ =
∫ tf

t0

RTfuδu dt + φ̇f δtf , (14)

where φ̇f denotes the total time derivative of Eq. (3) evaluated at time t = tf . The influence
adjoint variables R ∈R

n×q have to fulfill the matrix differential equation

Ṙ = −fT
xR with R(tf ) = φT

x(x(tf ), tf ), (15)

in which one set of n ordinary differential equations for each component of the final con-
straints φ(x(tf ), tf ) = 0 is solved backward in time.

A linear combination of the scalar δJ̄ and vector δφ̄ needs the introduction of vector
multipliers ν ∈ R

q resulting in

δJ̄ + νTδφ̄ =
∫ tf

t0

[
Pu +

(
pT + νTRT

)
fu

]
︸ ︷︷ ︸

:=−δuT

δu dt +
(

1 + Pf + νTφ̇f

)
︸ ︷︷ ︸

:=−δtf

δtf , (16)

where ν is a vector of multipliers to combine both sets of adjoint variables and is computed
in such a way that the variations in the control and final time lead to a better approximation
of the final constraints. The largest possible decrease of the combined variation is obtained
if the variations δu and δtf are chosen in the appropriate descent directions in Eq. (16) for
the optimal updates unew = u + δu and tf,new = tf + δtf . These updates always reduce the
cost functional and final constraints within one iteration.

Moreover, the Hamiltonian for the time-optimal control problem in Eqs. (1)–(3) was
formulated by

H(x(t),u(t),λ(t)) := 1 + P (x(t),u(t)) + λ(t)Tf(x(t),u(t)), (17)

in which λ(t) = p(t) + R(t)ν exploits the decoupling of boundary conditions of the state
and adjoint equations by introducing a set of adjoint variables p and the so-called influence
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adjoint variables R for q final constraints. The decoupling within the multiplier λ enables
sequential integration of a new set of canonical equations forward and backward in time,
depending on a putative optimal control history. The solution of the canonical (adjoint and
influence) equations for p and R can be combined to determine the Hamiltonian in Eq. (17).
A more elaborate derivation can be found in [10], supplemented with examples and conver-
gence analysis.

2.2.2 Parameterization of control

The following adjoint gradient approach allows the consideration of final constraints and
enables the use of various control parameterizations. Hence the infinite-dimensional optimal
control problem is reduced to a finite-dimensional problem to reduce the complexity of the
optimization task. As proposed for instance in [10], the variation δu can be defined as an
explicit function in time by

δu := −P T
u − fT

u

(
p + Rν

)
, (18)

and only depends on the time discretization of the forward and backward solution. It has to
be emphasized that this update δu is not yet dependent on the type of parameterization. To
meet the restrictions of industrial applications, feasible control parameterizations have to be
specified. However, the control function u(t) can be parameterized by grid nodes ū (see the
Appendix for a cubic spline parameterization of the control) in the form

u(t) = C(t) ū, (19)

leading to the variation of the control

δu(t) = C(t) δū. (20)

It has to be emphasized that any parameterization according to Eq. (19) can be used for the
proposed gradient approach. Following the theory introduced in Section 2.2.1, the variation
in Eq. (20) is inserted into Eq. (16). Since the variation δū does not depend on time, we can
rewrite the combined variation in the following form:

δJ + νTδφ̄ =
∫ tf

t0

[(
Pu + λTfu

)
C

]
dt

︸ ︷︷ ︸
:=−δūT

δū +
(

1 + Pf + νTφ̇f

)
︸ ︷︷ ︸

:=−δtf

δtf . (21)

Similarly to the previous section, the variations of the grid nodes δū and final time δtf are
defined by

δū = −κ

∫ tf

t0

CT
(
P T

u + fT
uλ

)
dt, (22)

δtf = −κα
(

1 + Pf + φ̇
T

f ν
)
, (23)

so that the combined variation leads to the largest possible decrease. The scalar κ is a suf-
ficiently small step size, and the factor α can be used as a scaling factor if the magnitudes
of the two latter variations differ dramatically. The choice of the vector of multipliers ν is



320 D. Lichtenecker et al.

based on the reduction of the final constraints in every iteration with the updates δū and δtf ,
i.e.,

δφ̄ := −ε φf , (24)

choosing an appropriate update parameter ε > 0, as shown in detail in [10]. This approach
finally results in

ν = A−1
(
ε φf − b

)
, (25)

where we use the abbreviations

A := κ

∫ tf

t0

RTfuC dt

∫ tf

t0

CTfT
uR dt + καφ̇f φ̇

T

f , (26)

b := κ

∫ tf

t0

RTfuC dt

∫ tf

t0

CT
(
P T

u + fT
up

)
dt + καφ̇f (1 + Pf ). (27)

This combined gradient approach enables the use of various parameterizations of the control,
shown, e.g., in [10] for a bang-bang control. This paper investigates the combined gradient
approach to evaluate necessary optimality conditions regarding the Hamiltonian function.

In case of using a direct optimization method, the corresponding analytically adjoint gra-
dients can be used instead of numerically computed gradients because of the computational
burden. To derive these adjoint gradients, the discrete control parameterization from Eq. (20)
is inserted into the variation of the cost functional in Eq. (11) and into the variation of the
final constraints in Eq. (14). Hence the analytically adjoint gradients are given by

∇ū J T =
∫ tf

t0

(
Pu + pTfu

)
C dt, (28)

∇ū φT =
∫ tf

t0

RTfuC dt, (29)

and can be used instead of the numerical gradients in Eq. (8) in a direct optimization method.
Note that the analytical gradients of J and φ with respect to tf cannot be simply given in a
proper form and are therefore computed numerically in this case. It has to be emphasized that
the size of the adjoint system does not increase with a larger number of grid nodes, which
is not the case in the direct differentiation method or a numerical differentiation method. If
(forward or backward) numerical differentiation is used, then the equations of motion have
to be solved (1 + z) times to evaluate the numerical gradients, where z is the number of
optimization variables. Hence, the number of forward simulations grows linearly with the
number of optimization variables.

Note that the variables κ , α, and ε are introduced here in accordance to the prework paper
[10] but are not relevant in the discussion of the present paper, and therefore the variables
are set to κ = α = ε = 1. In this paper, the gradients in Eq. (28) and (29) are provided to a
direct optimization method without using any user-defined scaling factors. Furthermore, the
presented approach provides a new view of adjoint gradients in terms of the evaluation of
optimality criteria using the Hamiltonian function.
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3 Interpretation of the adjoint variables for optimality conditions

The decoupling of the gradients in Section 2.2 can lead to a new perspective on the adjoint
variables in the evaluation and interpretation of Pontryagin’s principle. Bryson and Ho [6]
derive the necessary optimality conditions using the calculus of variations. The minimization
of the Hamiltonian must be addressed for restricted optimal controls problems according to
Pontryagin’s minimal principle [21]. In this paper, we state the Hamiltonian as

H(x,u,λ) := 1 + P (x,u) + λTf(x,u), (30)

in which the multiplier λ is computed by a linear combination of the adjoint variables

λ = p + Rν. (31)

Using the introduced Hamiltonian, we can formulate the necessary optimality conditions for
time-optimal control problems. The derived variation in Eq. (22) can be rewritten in terms
of the Hamiltonian as

δū = −
∫ tf

t0

HT
ū dt, (32)

where the partial derivative of the Hamiltonian with respect to the grid nodes ū is given by

∂H
∂ū

= ∂H
∂u

∂u
∂ū

=
(
Pu + λTfu

)
C. (33)

In a similar manner, the variation in Eq. (23) can be reformulated as

δtf = −
(
H+ φT

t ν
)∣∣∣

t=tf

, (34)

where the total time derivative of the final constraints is given by

φ̇f =
(

∂φ

∂x
∂x
∂t

+ ∂φ

∂t

)∣∣∣∣
t=tf

=
(

RTf + φt

)∣∣∣
t=tf

. (35)

Note that the partial derivative of the constraints with respect to the states is expressed
in terms of the influence adjoint variables given in the final condition in Eq. (15). In this
paper, we use the adjoint gradients within the optimality conditions for other optimization
methods relating to a Hamiltonian function. An optimal control parameterized by u = C ū
must satisfy the necessary optimality conditions

ẋ∗ = HT
λ(x

∗,u∗,λ∗), t ∈ [t0, tf ], (36)

λ̇
∗ = −HT

x(x
∗,u∗,λ∗), t ∈ [t0, tf ], (37)

0 =
∫ tf

t0

HT
ū dt, t ∈ [t0, tf ], (38)

0 = H(x∗,u∗,λ∗) + φT
t ν

∗, t = tf , (39)



322 D. Lichtenecker et al.

fulfilling the boundary conditions

x(t0) = x0, (40)

x(tf ) = xf , (41)

λ(tf ) = λf . (42)

However, since the defined Hamiltonian is an autonomous system, d
dt
H (x∗,u∗,λ∗) = 0

only if an infinite number of grid nodes is used. In addition to the optimality conditions
in Eq. (36)–(39), the optimal control history u∗ can be evaluated in the particular case where
the control appears linearly in the underlying state equation by introducing the switching
function [27]

h∗
i (t) = f∗

ui

Tλ∗, i = 1, . . . , m. (43)

Following Pontryagin’s principle, three cases can be observed to express the optimal control

u∗
i (t) :=

⎧⎨
⎩

ui,max for h∗
i < 0,

ui,min for h∗
i > 0,

unspecified for h∗
i = 0,

(44)

where an infinite number of grid nodes ûi is assumed, and the dynamic behavior of the con-
trol is of the bang-bang type. Hence Eq. (43) and (44) can be used in a postprocessing step
to relate the optimal control u∗

i generated by a direct method with the switching functions hi

to evaluate the solution in terms of an indirect method. If an infinite number of grid nodes is
used, then the roots of the switching function exactly match the switching times of the con-
trol. Note that the optimization results of the direct approach may yield to so-called singular
intervals, where the switching function is zero for a finite time interval, and Pontryagin’s
principle does not provide any information on the optimal control. However, gradient-based
optimization methods are appropriate to identify the control history of singular intervals [9].

3.1 Procedure for the use of the adjoint gradients

1. Select an initial final time tf and initial grid nodes ū. In time-optimal control problems, it
is numerically advantageous to use a normalized time domain τ = t/tf ∈ [0, 1]. Deriva-
tives with respect to the original time coordinate are given by d(·)/dt = 1/tf (·)′, where
the variable (·) is a function of the normalized time domain τ .

2. Solve the state equations related to initial conditions

x′ = tf f(x,u) with x(0) = x0 (45)

using an ODE solver.
3. Compute the adjoint variables p(τ ) by solving the linear time-variant final value problem

backward in time

p′ = −tf

(
P T

x + fT
xp

)
with p(1) = 0. (46)

4. Compute the adjoint variables R(τ ) using the matrix differential equation

R′ = −tf fT
xR with R(1) = φT

x(x(1),1). (47)
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5. Compute the adjoint gradients of the cost functional and the final constraints

∇ū J T = tf

∫ 1

0

(
Pu + pTfu

)
C dτ, ∇ū φT = tf

∫ 1

0
RTfuC dτ. (48)

6. Use these analytical gradients for solving the constrained optimization problem by a
direct method, e.g., as shown in Section 2.1 by an SQP approach. Repeat steps (2)–(5)
until the KKT conditions are satisfied and hence until an optimal solution z∗T = (

t∗f , ū∗T)
is found.

7. The states x∗ according to the optimal control grid nodes ū∗ have to be computed for
evaluation of the Hamiltonian in Eq. (30). Moreover, the corresponding λ∗ is obtained
based on Eq. (31).

8. Finally, the optimality conditions in Eqs. (36)–(39) can be evaluated in terms of the
Hamiltonian function.

4 Numerical examples

To show the use of the adjoint gradient approach in a direct optimization method and to
evaluate the optimality conditions in a typical time-optimal control problem, we present two
examples of a Selective Compliance Assembly Robot Arm (SCARA) in a rest-to-rest mo-
tion. The serial robot consists of two bodies connected with revolute joints and an additional
mass is attached to the tool center point (TCP). Firstly, we only consider structural compo-
nents that are modeled as rigid bodies. Secondly, the rigid bodies are replaced with flexible
components. For both examples, the goal is to identify controls u∗

1 and u∗
2 (m = 2) with a

continuity requirement up to C2 such that the TCP moves from a prescribed initial state to a
final state in minimal time. Minimizing the cost functional

min
z

J = tf

∫ 1

0

[
1 + P (u1, u2)

]
dτ (49)

s.t. φ(x) = 0 (50)

leads to the shortest operation period t∗f with respect to physical bounds of the controls,
i.e., −ui,max ≤ ui ≤ ui,max. The physical bounds are considered with penalty approach
P (u1, u2) := μ1P1 + μ2P2, where the penalty function is given by

Pi(ui) :=
{

0 for |ui | < ui,max,
1
2 (|ui | − ui,max)

2 otherwise.
(51)

To ensure a continuity requirement up to C2 of the control u and to transform the original in-
finite optimization problem to a finite dimensional one, the interpolation scheme in Eq. (81)
in the Appendix is used to parameterize the control. Hence the vector of optimization vari-
ables z consists of the final time tf and discrete grid nodes ûi , i.e., zT = (

tf , ûT
1, ûT

2

)
. The

NLP problem is formulated as direct single shooting and solved by a standard SQP method
implemented in the MATLAB function fmincon, in which the gradients of the Lagrange
function in Eq. (28) and (29) are computed with the proposed adjoint method. In addition,
the Hessian of the Lagrange function is computed by a BFGS method.
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Fig. 1 Planar two-arm robot with
rigid bodies in a general
configuration

4.1 Rigid SCARA

4.1.1 Task description and optimization problem

In the following example, the robot depicted in Fig. 1 is considered in the time-optimal con-
trol problem. All structural components are modeled as rigid bodies. The robot is described
with a minimal set of generalized coordinates ϕ1 and ϕ2. The system dynamics are obtained
with a coupled first-order differential equation by introducing the state variables

x = (
ϕ1, ϕ2, ω1, ω2

)T
, (52)

where ϕ̇i = ωi . This model has been studied by several authors for time-optimal control
problems, e.g., in [10]. The mass of the first body and the mass of the TCP is given by
m1 = m3 = 1 kg, the mass of the second body is m2 = 0.5 kg, and the length of both links
is l1 = l2 = 1 m. The moment of inertia of both bodies around their centers of gravity is
defined as Ji = mil

2
i /12.

The cost functional of the optimization problem is given in Eq. (49), and the final con-
straints read

φ(ϕ1, ϕ2,ω1,ω2) :=

⎛
⎜⎜⎜⎝

l1 cos(ϕ1) + l2 cos(ϕ2) − xf

l1 sin(ϕ1) + l2 sin(ϕ2) − yf

ω1

ω2

⎞
⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣
t=tf

, (53)

where xf = 1 m and yf = 1 m denote the desired final configuration of the TCP in
the workspace W . Physical limitations of the controls are considered with the upper
bounds u1,max = 4 Nm and u2,max = 2 Nm. Moreover, the weights for the penalty ap-
proach are chosen as μ1 = μ2 = 10. The initial conditions of the states are defined by
x0 = (−π/4, 0, 0, 0)T. The control ui is discretized with k = 50 grid nodes and uniform
intervals in the normalized time domain τ , i.e., the number of optimization variables is
z = 101. As an initial guess, the final time is taken as tf = 3 s, and the grid nodes are set to
zero, ū = 0.
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Fig. 2 Initial controls, optimal controls, and switching functions for a time-optimal rest-to-rest motion of the
rigid SCARA model

Table 1 Comparison of two different approaches to provide gradients in the SQP routine for converged
solutions

Number of grid nodes k Type of gradient computation Number of function evaluations

5
forward finite differences 579

adjoint gradient method 107

50
forward finite difference 38584

adjoint gradient method 811

4.1.2 Results

Figure 2 shows the time-optimal control history for both controls in the normalized time
domain, where the optimized final time is given by t∗f = 1.8294 s. The results are in accor-
dance with the defined final constraints in Eq. (53), and the controls converge to bang-bang
solutions with respect to the control parameterization. Note that the switching function hi

in Eq. (43) is derived from an indirect method and evaluated in terms of the optimal SQP
solution. However, the resulting switching function agrees well with the defined control in
Eq. (44), and the Hamiltonian of the system is sufficiently small. The optimization result is
robust with respect to initial guesses, which implies that the proposed approach converges
even if the initial guess is far away from the optimal solution.

Table 1 compares the number of function evaluations when numerical or adjoint gra-
dients are used in the direct optimization method for converged solutions z∗. In the table,
the controls are discretized with k = 5 and k = 50 grid nodes each. We can see that the
number of function evaluations in the case of numerical gradients is in general higher when
compared to the case where analytical gradients are used. This becomes even more obvious
when the number of optimization variables is increased. In addition, the computational cost
is reduced for a large number of grid nodes by using adjoint gradients, since the adjoint
system does not depend on the number of optimization variables. Note that the number of it-
erations does not depend on the way the gradients are computed, i.e., both gradients point in
the same direction. To be more precise, the number of function evaluations counts the num-
ber of evaluations of the cost functional and the number of evaluations of the constraints.
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In the case of using finite differences, note that for each evaluation of the constraints, the
state equations must be solved. Hence we observe (in general) a high computational effort.
In comparison, the function evaluations for analytically derived adjoint gradients are much
fewer. Here, although the calculation of the gradient is complicated, the state equations have
to solved only once, and just one system of ordinary differential equations (the adjoint sys-
tem) needs to be solved, which is independent of the number of grid nodes k. The numbers
in the table are of course problem-dependent and also dependent on the solver settings, thus
also on the number of iterations.

4.2 Flexible SCARA

Modern robot design includes innovative lightweight techniques to reduce mass and energy
consumptions in production lines. Therefore optimal control problems have to be defined
for flexible multibody systems, in which the flexible components have to be able to de-
scribe large deformations during motion. Multibody systems with flexible components are
often underactuated systems, and the optimal control problem becomes more complicated
in comparison to fully actuated systems [32].

In this paper, we use the ANCF in the second example examining the effects due to elas-
ticity of the SCARA. The ANCF has been developed particularly for solving large defor-
mation problems in multibody dynamics [34]. Contrary to classical nonlinear finite element
approaches used in the literature, the ANCF does not use rotational degrees of freedom and
therefore does not necessarily suffer from singularities emerging from angular parameteriza-
tions. The most essential advantage of the ANCF is the fact that the mass matrix is constant
with respect to the generalized coordinates. The following example is intended to show the
applicability of the proposed method for solving time-optimal control problems of highly
flexible multibody systems. Therefore we use a standard ANCF element, which is available
and has been tested extensively in the literature; see, e.g., [1].

4.2.1 Equations of motion

Based on the proposed ANCF formulation of Berzeri and Shabana [1], a two-node element
is described in the global coordinate system with the generalized coordinates

qT =
(

r(1)T
, r(1)

χ

T
, r(2)T

, r(2)
χ

T
)

, (54)

where r(i) denotes the nodal position vector, and r(i)
χ represents the nodal slope vector of the

ith node. Figure 3 shows the used ANCF element in a deformed configuration including the
generalized coordinates.

An arbitrary point on the undeformed configuration is expressed as χ ∈ [0, l], where l is
the original length of the beam. The position vector of the beam model is defined as

r = Sq, (55)

where the shape function matrix S maps the generalized coordinates into the global position
vector in the reference frame of the workspace W .

The governing equations of a single beam element require the mass matrix and general-
ized forces. The mass matrix of an element is defined by using the kinetic energy

T = 1

2
m

∫ 1

0
ṙTṙ dξ = 1

2
q̇Tm

∫ 1

0
STS dξ q̇ = 1

2
q̇TMq̇ (56)
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Fig. 3 ANCF element in a
deformed configuration

and the normalized beam length in the undeformed configuration ξ = χ/l ∈ [0, 1]. Note
that the ANCF mass matrix is constant, which leads to numerical advantages. Additionally,
the elastic forces vector Qk , external applied torques Qu, and damping forces Qd have to be
defined. The elastic forces vector is defined as

Qk =
(

∂U

∂q

)T

, (57)

where the strain energy due to longitudinal and bending deformations

U = 1

2
l

∫ 1

0
E Aε2 dξ + 1

2
l

∫ 1

0
E Iκ2 dξ (58)

is used. Here E represents the Young modulus, A is the cross-sectional area, and I is the
second moment of area. The curvature κ is defined with the Serret–Frenet formulas [13]

κ = |r′ × r′′|
|r′|3 , (59)

and the longitudinal strain ε is formulated with the nonlinear Green–Lagrange strain mea-
sure

ε = 1

2

(
r′Tr′ − 1

)
, (60)

where

r′ = dr
dχ

= dr
dξ

dξ

dχ
= 1

l

dS
dξ

q. (61)

In addition to elastic forces, the principal of virtual work due to a torque Mi acting on the
angle of rotation of the cross-section θ

δWi = Miδθ = Mi

∂θ

∂q
δq = Q�

i δq, (62)



328 D. Lichtenecker et al.

leads to the generalized force Qi . Hence generalized forces associated with control u and
damping fd = −dθ̇ in the revolute joint are given by

Qu = u

(
∂θ

∂q

)�
, (63)

Qd = fd

(
∂θ

∂q

)�
, (64)

where d is the viscous damping coefficient. Finally, the equations of motion for a single
beam element can be obtained as

Mq̈ + Qk = Qu + Qd . (65)

Introducing the generalized velocities v = q̇ as additional variables transforms the second-
order differential equation for q into a first-order system

(
I 0
0 M

)(
q̇
v̇

)
=

(
v

Qu + Qd − Qk

)
. (66)

Instead of using the augmented formulation of Eq. (65) to obtain the equations of motion for
N connected elements, it is possible to define an independent set of generalized coordinates
to obtain the equations of motion for a constrained multibody system in the form of Eq. (66).
Remark that the system Jacobians are calculated with a symbolic toolbox, simplified and
factorized to reduce the complex expressions for efficient use. Note that in the two-arm
SCARA example, the revolute joint between the first arm and the ground and the revolute
joint between the two arms reduce the number of generalized coordinates. The following set
of parameters is used in the optimization procedure: the mass of beams m1 = m2 = 2 kg,
the beam length in undeformed configuration l1 = l2 = 1 m, the viscous damping coefficient
d1 = d2 = 0.1 Nm/rad, the axial stiffness E1 A1 = E2 A2 = 300 N, and the bending stiffness
E1 I1 = E2 I2 = 3 Nm2. Moreover, an additional mass attached to the TCP m3 = 0.5 kg
is considered, which has to be taken into account in Eq. (56) for the kinetic energy of the
second beam.

4.2.2 Optimization problem

Similarly to the example in Section 4.1, the cost functional is given in Eq. (49), and the final
constraints for the TCP read

φ(x) :=
(

r(2) − xf

ṙ(2)

)∣∣∣∣
t=tf

, (67)

where xf = (
xf , yf

)T
with xf = 1 m and yf = 1 m denotes the desired final configuration

of the TCP in the workspace W . The state variables of the remaining nodes are not specified
and therefore free. Physical limitations of the controls are considered with the upper bounds
u1,max = u2,max = 1 Nm. The weights for the penalty approach are chosen as μ1 = μ2 = 50.
The initial state of the flexible SCARA is defined in the undeformed configuration as in
the rigid example with ϕ1 = −π/4 rad and ϕ2 = 0 rad. In this example, the control ui is
discretized with k = 10 grid nodes and uniform intervals in the normalized time domain τ ,
i.e., the number of optimization variables is z = 21. As an initial guess, the assumption for
the final time is tf = 5 s, and the grid nodes are set to zero, ū = 0.
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Fig. 4 Initial and optimal controls for a time-optimal rest-to-rest motion of a flexible SCARA model

Fig. 5 Time-optimal control of a
flexible two-arm robot for a
rest-to-rest maneuver

4.2.3 Results

Figure 4 shows the time-optimal control history for both controls in the normalized time
domain τ , where the optimized final time is given by t∗f = 3.7289 s. The results are in
accordance with the defined final constraints in Eq. (67), and the optimality conditions in
Eqs. (36)–(39) are sufficiently small. Snapshots of the time-optimal motion are illustrated
in Fig. 5, where the nodal slope vector r(i)

χ is scaled for improved representation of the
structural flexibility.

5 Conclusion and outlook

In this paper, we presented a gradient-based technique to show a new perspective on the opti-
mality conditions in time-optimal control problems of dynamical systems considering final
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constraints. Conventional solutions based on a nonlinear programming approach/SQP ap-
proach utilize the adjoint variables to assess the optimality conditions regarding the Hamil-
tonian function. The use of adjoint gradients for a discrete control parameterization is pre-
sented in two examples. The gradients are used to replace numerical gradients in a direct
optimization method and to evaluate the optimality conditions in terms of a Hamiltonian.
The present work illustrates the computational advantage especially by application of the
adjoint gradients for discrete control parameterizations in time-optimal control problems of
flexible multibody systems including a high number of degrees of freedom. Moreover, the
comparison of function evaluations of numerical and adjoint gradients can provide a fu-
ture perspective for significantly reducing the computational burden when applied to highly
dimensional complex multibody system applications.

In a future work, the proposed approach can be extended to formulate the multibody sys-
tem by a set of redundant coordinates similarly to [23]. Considering differential-algebraic
equations requires consistent boundary conditions for the adjoint variables. A similar ap-
proach as proposed by Gear, Gupta, and Leimkuhler [11] can be used to overcome this
issue.

Appendix: Formulation of cubic spline parameterization

The original infinite-dimensional optimization problem in Eqs. (1)–(3) has to be transformed
into a finite-dimensional one to carry out a direct optimization method. This procedure is
usually denoted as a direct transcription method [3]. In general, the literature provides var-
ious formulations that can be pursued to perform such a transformation. All methods result
in a vector z to describe the control history. One common method is to carry out a time
discretization of the control and an interpolation between the resulting subintervals; e.g.,
Steiner and Reichl [36] used a linear dependency between the subintervals to minimize a
cost functional. A higher-order interpolation scheme is obtained using cubic splines, e.g.,
in [33]. In the present work, we use a cubic interpolation scheme of the control history u(t):

u(t) := si(t) = ûi + bi(t − ti ) + ci(t − ti )
2 + di(t − ti )

3 (68)

for t ∈ [ti , ti+1] with i = 0, 1, . . . , s − 1,

where si is the ith cubic spline segment for t ∈ [ti , ti+1], and s ∈ N represents the number of
piecewise defined spline functions. A given grid node is expressed with ûi , and {bi, ci, di}
are constant spline parameters associated with the ith segment si . To determine a spline with
C2 continuity, we require that

si(ti+1) = ûi+1

ṡi (ti+1) = ṡi+1(ti+1)

s̈i (ti+1) = s̈i+1(ti+1)

with i = 0, 1, . . . , s − 1,

with i = 0, 1, . . . , s − 2,

with i = 0, 1, . . . , s − 2.

(69)

This set of equations leads to a linear system with hi := ti+1 − ti :

ûi + bihi + cih
2
i + dih

3
i = ûi+1

bi + 2cihi + 3dih
2
i = bi+1

2ci + 6dihi = 2ci+1

with i = 0, 1, . . . , s − 1,

with i = 0, 1, . . . , s − 2,

with i = 0, 1, . . . , s − 2,

(70)
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for the unknown spline parameters collected in

pb,c,d = (
b0, . . . , bs−1, c0, . . . , cs−1, d0, . . . , ds−1

)T ∈R
3s . (71)

Since the number of linear equations x = 3s − 2 in Eq. (70) is lower than the number of un-
knowns y = 3s, the linear system is underdetermined. The first and second time derivatives
of the splines s0(t0) and ss−1(ts) are still undefined and can be used to determine a unique
solution of the spline parameters pb,c,d. One option is to prescribe the velocity of the first
and last spline segment s0(t0) = ss−1(ts) = 0:

b0 = 0, (72)

bs−1 = −2cs−1hs−1 − 3ds−1h
2
s−1. (73)

Now the number of linear equations is equal to the number of unknowns, and Eqs. (70)–(73)
can be written in the compact form

Kû + Apb,c,d = 0, (74)

where the vector û = (
û0, û1, . . . , ûs

)T ∈R
k collects all grid nodes with k = s + 1. The co-

efficient matrices K ∈ R
3s×k and A ∈ R

3s×3s can be simply determined with the underlying
Eqs. (70)–(73). However, it is also possible to transform the control history in Eq. (68) into

u(t) = τ̄ Ppb,c,d + δ̄û, (75)

where we use the abbreviations

τ̄ =
(
t − ti , (t − ti )

2, (t − ti )
3
)

∈R
3, P =

⎛
⎝δ 0 0

0 δ 0
0 0 δ

⎞
⎠ ∈R

3×3s , (76)

and

δ̄ = (δ, 0) ∈R
k. (77)

The Boolean vector δ ∈ R
s picks a certain quantity corresponding to the time interval t ∈

[ti , ti+1], and the components are defined by

δi :=
{

1 for t ∈ [ti , ti+1] with i = 0, 1, . . . , s − 1,

0 otherwise,
(78)

using the Kronecker delta, e.g., δ = (0, 1, 0, 0) for s = 4 spline segments in the second
time interval. In this sense, the Boolean matrix P maps all 3s spline parameters into those
active in the ith time interval t ∈ [ti , ti+1]. Now using Eq. (74), the control history can be
expressed as a simple vector multiplication

u(t) = c û ∈ R (79)

with the time-dependent vector

c(t) := −τ̄PA−1K + δ̄ ∈R
k. (80)
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Fig. 6 Effect of updating grid nodes ûi and ûi+1 on the continuous control function u(t)

Note that all the information of all spline segments is given in c. Instead of using a single
control u, generalizations of Eq. (79) for m controls are readily given by

u(t) = C ū ∈R
m, (81)

where ūT = (
ûT

1, . . . , ûT
m

) ∈ R
m·k collects all grid nodes k of the m control inputs, and the

sparse block diagonal matrix C reads

C(t) :=

⎛
⎜⎜⎜⎝

c 0 · · · 0
0 c · · · 0
...

...
. . .

...

0 0 · · · c

⎞
⎟⎟⎟⎠ ∈R

m×m·k. (82)

The interpolation scheme in Eq. (81) is used in Section 2.2.2 to describe a continuous control
history. The variation of grid nodes leads to

δu(t) = C δū, (83)

i.e., an update of the grid nodes δū in the optimization procedure leads to an update of the
control function u(t), shown in Fig. 6 for a single control. It must be emphasized that all
m controls have to be discretized with the same number of grid nodes k and time intervals
[ti , ti+1]. The discrete control parameterization can be applied for optimal control problems
in direct optimization methods, but also in the same manner in indirect optimization meth-
ods.
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