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Abstract

When performing the numerical integration of multibody systems (MBS) dynamics, it is
possible to choose from a wide variety of methods and implementations. Selecting the most
appropriate option for a particular application is not a straightforward task; as a conse-
quence, several benchmark examples have been formulated by the MBS research commu-
nity with the intent to assess the accuracy and performance of different solution methods
when applied to certain kinds of mechanical problems. This paper introduces a variation of
the slider-crank mechanism, already employed as a benchmark problem in the MBS litera-
ture, intended to evaluate the performance of formulations that feature kinematic constraints.
Three cases, featuring singular configurations and external actions, were defined. The exam-
ple is used to illustrate some necessary elements in the definition of a benchmark problem
and in the process of comparing different solution methods, as well as difficulties that can
arise during this task. The use of the proposed example was demonstrated in the evaluation
of the behaviour of different solution methods, which employed both fixed- and variable-
step integration formulas.

Keywords Benchmark problems - Numerical integration - Efficient methods -
Singular configurations

1 Introduction

A considerable number of methods and algorithms for the simulation and analysis of multi-
body system (MBS) dynamics have been proposed since the early developments in this
area were first published [1, 16, 21, 22]. The performance of each approach depends on the
characteristics of the problems to which it is applied, and so methods that are effective in
the simulation of a certain type of mechanical system may be inefficient when applied to
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mechanisms with a different topology or subjected to other kinds of physical phenomena.
Fully recursive methods [9], for instance, may become ineffective in the solution of heavily
constrained multibody systems; mechanisms that feature redundant constraints or singular
configurations pose a problem for solution algorithms that expect the Jacobian matrix of the
constraints to have a full row rank throughout the motion [11, 17]. Moreover, implementa-
tion techniques, third-party software libraries, e.g. for the linear algebra routines required
by most MBS codes, and the hardware platform used to execute the code, as well as the in-
teraction between them, have a critical impact on the time elapsed in computations [13, 24].
For these reasons, selecting an appropriate MBS formalism for its application to a particular
problem may prove challenging in some cases, particularly when efficiency constraints are
imposed as a requirement.

Benchmark problems represent a useful tool to evaluate the accuracy and efficiency of
MBS codes, as well as their ability to handle particular kinds of problems. Ideally, bench-
marks should be simple enough to enable their exact reproduction by any researcher or team
interested in using them. At the same time, they must be nontrivial problems that provide
interesting information about some aspect of the behaviour of the solution method [14].
In recent years, several initiatives have been put forward by MBS researchers to propose
meaningful test problems that can be generally accepted as benchmarks by the community.
The IFToMM Library of Computational Benchmark Problems [15] is a well-known collec-
tion of such examples, which includes test problems for forward- and inverse-dynamics, as
well as linearization. These examples illustrate the performance of MBS formulations and
implementations when dealing with complex issues such as redundant constraints, singular
configurations, stiff problems, and contacts, to mention just a few. Another instance of col-
lection of benchmark problems can be found in [2], which puts forward a series of cases
for the validation of flexible multibody dynamics algorithms. Benchmark problems for con-
tact dynamics were introduced in [19]. In the case of MBS dynamics, benchmarking is not
limited to the algorithms for the integration of the equations of motion, but has also been
extended to applications in which the multibody part is a necessary component, like estima-
tors based on Kalman filters [20]. Benchmark problems for particular applications of MBS
dynamics can be found in the areas of railway vehicles [5] and co-simulation [25].

The benchmark problem discussed in this paper, a variation of the well-known slider-
crank linkage, is geared towards the evaluation of the ability of MBS methods to successfully
perform the forward-dynamics simulation of mechanical systems with singular configura-
tions and dead centres. This can be challenging, in particular, when the system dynamics is
expressed in terms of a set of nonminimal generalised coordinates, thus requiring the use of
kinematic constraints to formulate the equations of motion [11]. Two versions of the link-
age were defined, with and without singular configurations, and both were subjected to the
action of a force that varied over time to prevent a periodic system motion.

The paper puts forward a systematic approach for the formulation of benchmark prob-
lems, including the definition of relevant metrics and criteria for the comparison of differ-
ent solution approaches. These are presented in Sect. 2, together with the description of
the mechanical model of the slider crank used here. The use of the benchmark problem is
demonstrated in Sect. 3 in the evaluation of different simulation codes in which the system is
defined using kinematic constraints. These were solved using both fixed- and variable-step
integration algorithms. Results showed that the combination of singular configurations and
externally applied forces with constant frequency made the proposed example a challenging
problem for most solution methods. Section 4 summarises the conclusions of the study.
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2 Methods

There exist three components that should always be present in the definition of a benchmark
problem for MBS dynamics algorithms:

— A definition of the problem to be solved. This must include the specification of the proper-
ties and initial state of the mechanical system, as well as information about the manoeuvre
to be simulated, such as duration in time and input forces and torques.

— A reference solution which, for the purposes of benchmarking, can be considered correct.
This reference solution may be obtained from experimental results, an analytical solution
of the problem at hand, or upon the convergence of several simulation processes.

— Appropriate error metrics and comparison criteria. These enable the assessment of the
solutions obtained with different simulation methods [12].

Moreover, other optional components can be added too, such as reference implementations
of the simulation code or data structures, to enable the efficient collection and processing of
simulation results.

In order to be useful, benchmark examples should be clearly defined problems that are
easy to replicate. They should also represent nontrivial scenarios that are meaningful or
challenging in at least one respect. Ideally, they should also be representative of a wider class
of systems. For instance, a slider-crank that undergoes singular configurations can be defined
in a straightforward way with a reduced set of kinematic and kinetic parameters. In spite of
being a relatively simple mechanical system, it poses a problem for simulation algorithms
that cannot deal with rank-deficient Jacobian matrices; even some solution methods that can
handle them need to be carefully adjusted to deliver correct results [11], as is the case of
augmented Lagrangian algorithms. Results obtained with this linkage can then be used to
assess the general ability of solution methods to carry out the simulation of systems with
singularities.

In some cases, it is possible to find an analytical solution for the motion of simple me-
chanical systems. Generally, this is not the case. In benchmark problems that do not repre-
sent a physical system, for which experimental results are not available, physical magnitudes
can be used as indicators instead. For instance, the variation of the mechanical energy can be
used to quantify the accuracy of a given simulation method if the benchmark problem rep-
resents a conservative system. These indicators should be used with precaution as a precise
energy conservation does not necessarily guarantee the correctness of the obtained results.
Arriving at a reference solution through the convergence of several simulation methods is
advisable when analytical and experimental solutions are not available.

Error metrics and criteria are also an important component of a benchmark problem.
First, it is necessary to select the variables that will be selected to evaluate the accuracy of
a solution. These may include kinematic variables, such as positions, velocities, and accel-
erations, or kinetic magnitudes like forces or energies. Usually n variables of interest can
be selected and will suffice to measure the precision of the results. It is also necessary to
specify at what points in time these variables will be evaluated. When using fixed-step in-
tegrators this is relatively simple, as data can be gathered regularly during the simulation.
With variable-step simulators, usually interpolation methods have to be used. Second, a met-
ric to quantify the deviation of the results obtained with a particular method with respect to
the reference solution is necessary. The local error at time point #; for variable y; can be
evaluated as

ei(t)=y;) _y;’ef(ti)a (1)

@ Springer



184 M. Ruggiu, F. Gonzélez

Fig.1 Slider-crank mechanism
used as a benchmark problem

where y;ef denotes the value that corresponds to the reference solution. Relative definitions
of the error can be used too [12]. Absolute errors, however, show a better behaviour when
the variables of interest approach zero. The total error of a simulation can be calculated as

&t = Z Z £j (z) 2
j=1 i=1

where m is the total number of time points collected during the simulation and w; is a
weight factor that represents the contribution of variable j to the total error. Factor w; can
also be used to make errors dimensionless so that variables with different units can be added
together in a single error indicator. Besides the total error in Eq. (2), it is also possible to
select other indicators, such as the maximum or minimum absolute error for a single variable
or group of variables.

The existence of a metric like the one in Eq. (2) makes it possible to establish a validity
criterion that determines whether a simulation is accurate enough or not. A criterion like this
is particularly important if the benchmark problem is to be used to compare several solution
approaches in terms of efficiency, because that comparison should be carried out requesting
the same accuracy level from every method.

Finally, comparison criteria can be defined to quantify the differences between the differ-
ent solution methods. The elapsed time in computations is a commonly used criterion to rank
algorithms and implementations, but other metrics, such as energy balances and satisfaction
of kinematic constraints, can be used too [18].

2.1 Problem description

The benchmark problem used in this paper is a variation of the well-known slider-crank
linkage, already included in the IFToMM benchmark library [15] and shown in Fig. 1. This
planar mechanical system is composed of two rods, links 1 and 2, with uniformly distributed
mass m; and m, and length L, and L,, respectively. The slider, link 3, has mass m3 and
moves without friction along the x axis. The mechanism moves under gravity effects with
g =9.81 m/s? acting along the negative y axis. The system has one degree of freedom; at
time ¢ = 0, rod 1 is at an angle 6, ( with respect to the x axis and the velocity of point Q is
Xaq,0- A horizontal external force f acts on point Q during motion.

In spite of its simplicity, the slider-crank linkage is a challenging problem for MBS dy-
namics algorithms due to the existence of singularities in the system motion under cer-
tain conditions. A slider-crank with L; = L, will feature a singular configuration when
0, = £m/2, i.e. when both rods are aligned on the y axis. This configuration represents a
bifurcation point, from which the linkage can continue its motion either as a slider-crank
mechanism or as a pendulum with point Q motionless at the location of point O, as shown
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Fig.2 From a singular
configuration (a), a slider-crank
linkage with L1 = L can either
keep its slider-crank motion (b)
or continue as a single pendulum

(©)

a) '0) b) c)

f
f
a) :
A —=

Fig.3 The application of a horizontal force f in configuration (a) should not cause the motion of the linkage.
A misalignment of the links in the predicted system position will move the mechanism towards configura-
tions (b) or (c)

in Fig. 2. In theory, switching between these two branches of motion is only possible when
the velocity of the slider is zero. However, some MBS dynamics formulations with ex-
plicit modelling of the kinematic constraints may predict a change of branch also with a
nonzero velocity. From a mathematical point of view, the Jacobian matrix of the kinematic
constraints suddenly loses rank at these points. Dynamics formulations unable to deal with
rank-deficient Jacobian matrices cannot carry out the simulation of such systems; moreover,
some methods which can handle this situation experience numerical difficulties in the prox-
imity of these points as well. This is usually caused by poor conditioning of the algorithm
leading matrices and by the accumulation of constraint violations. The resulting changes
of branch introduce large impact forces in the simulation and instantaneous drops in the
mechanical energy of the system [3, 11].

A different kind of numerical difficulty is present when both links, 1 and 2, regardless
of their relative lengths, are aligned on the horizontal x axis, i.e. ; =0 or 8; = 7. In this
situation, a horizontal force exerted on point Q of the slider should not have any effect
on the system motion and will only increase the reaction force at point O. Poor matrix
conditioning and the accumulation of position errors in the proximity of this point may
result into the motion of the mechanism towards a position with either a positive or a negative
angle 6, (Fig. 3). It must be noted that, here, a change of branch does not occur as the system
continues moving as a slider-crank linkage regardless of the sign of 9;.

To illustrate these difficulties, we consider now a model of the slider-crank linkage in
which the generalised coordinates q = [xp, yp, Xq] T are the x and y coordinates of point P
and the distance x from point Q to origin O. Because links 1 and 2 are rigid, two kinematic
constraints enforcing a constant distance between points O and P and P and Q have to be
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introduced to describe the motion correctly:

x2+y2—L2
o= A =0. 3)
(xp —xa)* +yp — L]

The velocity- and acceleration-level expressions of Eq. (3) are
®=0,=0 and &=d,4+P,q=0, )

where ® is the Jacobian matrix of the constraints,

. ZXP 2yp 0
@ = |:2 (xp —xa) 2yp 2(xq-— XP)] )

whose expression does not explicitly depend on the lengths of links 1 and 2.
For a slider-crank mechanism with L, = L, = L, when the system reaches a singular
configuration, e.g. #; = /2, the Jacobian matrix becomes

0 2L 0
Qq:[o 2L 0]' ©

The Jacobian matrix loses rank instantaneously, and the constraints are compatible with both
a slider-crank and a simple-pendulum motion simultaneously. This gives rise to the failure
of multibody formulations that are unable to handle rank-deficient Jacobian matrices and
may also cause numerical problems to others that can negotiate this situation.

The extreme-point configuration shown in Fig. 3 takes place when 6, =0, and so yp = 0.
In this case the Jacobian matrix becomes

T 2 0 0
<I>q—[2(xp_x0) 0 Z(XO_XP)]. @

Together with the system dynamics equations, the acceleration-level constraint equation in
(4) shows that, if the mechanism is at rest at 8; = 0 and the only applied force is a hori-
zontal action f acting on point Q, then the system accelerations are zero. However, small
perturbations in the system position will give rise to finite acceleration values. During a
forward-dynamics simulation, a lack of accuracy in the solution methods might result in the
prediction of an incorrect system motion at these extreme points.

The simulation cases selected for the present benchmark problem intend to test the ability
of MBS formulations to correctly handle problems with these difficulties.

2.1.1 Simulation cases

Three simulation cases are considered as shown in Table 1, which details the values of the
physical parameters of the system, its initial state and the externally applied actions.

Case 1 corresponds to the slider-crank benchmark problem in [15]. In this case, rods 1
and 2 have the same length (L, = L), and this causes the linkage to pass through a singular
configuration when 6; = £ /2. The slider is massless and the externally applied force f in
this case is zero during motion.

In case 2, rods 1 and 2 have different lengths, and so the linkage motion is not affected by
singular configurations. The externally applied force follows now a sinusoidal expression,
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Table 1 Simulation cases

Case Ly Ly mi mo m3 1,1 Ig,2 01,0 XQ,0 S
m (m) (ke (kg (kg (kegm?) (kgm?) (ad) (ms) (N

1 1 1 1 0 1/12 1/12 /4 -4 0
2 3 6 1.5 3 0.25 9/8 9 0 0 100sin (rrt)
3 1 1 1 1 0 1712 1/12 /4 0 100sin (7rt)

f = 100sin (7r¢). The introduction of this force gives rise to numerical difficulties in the
solution of the problem. The system ceases to be conservative, and its motion is no longer
periodic. Moreover, the extreme positions of the motion, reached when both rods are aligned
on the x axis and, thus, with the external force f, become challenging from the point of view
of numerical simulation. There, depending on the value of the force f and the accuracy of
the integration process, the motion can continue following one of two possible branches,
namely those that correspond to é] > (0 and to é] < 0.

Case 3 uses the same physical parameters as case 1, but the externally applied force f
follows the sinusoidal expression from case 2. The resulting problem is subjected to both
singular configurations and numerical difficulties at the extreme points of the motion.

2.1.2 Variables of interest and metrics

The mechanical system under study has one degree of freedom and a single variable should
be enough to keep track of its motion. However, in cases 1 and 3 singular configurations
exist, and these give rise to the existence of two branches of motion. For this reason, two
variables will be monitored and used to evaluate the error in Eq. (2): angle 6; between link
1 and the x axis, and the x coordinate of point Q on the slider.

The sampling interval for error evaluation was set to 10 ms; a total simulation length
of 10 s was used in all cases. The total errors associated with variables 6; and xq were
aggregated into a single error indicator using Eq. (2) with weights wy = 1 rad ™ and w,, =
1 m~2, intended to make the final metric dimensionless. Case 1 is a conservative system,
and so the total mechanical energy was used there as additional metric.

When using variable step-size integrators, the variables of interest are usually not eval-
uated exactly at the sampling points. This also happens when constant integration steps are
used, but they are not exact dividers of the sampling interval. In these cases, data need to be
interpolated; a linear polynomial interpolation has been used here to determine the necessary
values.

Two levels of accuracy have been established for the defined cases. In case 1, a high-
precision simulation corresponds to a maximum admissible total error er =2 - 107, This
is roughly equivalent to the energy criterion set in the [IFToMM benchmark, which accepted
simulations with maximum energy errors below 0.001 J. The admissibility threshold for
low-precision simulation in this case was increased up to &r =2 - 1073, The same values
were used for case 2. Case 3 is more challenging from a computational point of view, and
its thresholds were relaxed. The selected thresholds are shown in Table 2.

In general, the selection of the threshold depends on factors like the time scale of the
dynamics and the difficulty of the problem.
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Table2 Maximum admissible

errors for each simulation case Case High-precision eT Low-precision eT
1 2-107% 21073
2 2-107% 21073
3 21073 1-1072

Table 3 Summary of the methods employed to solve the slider-crank benchmark problem

Method Coordinates Constraints Integrator ~ Step-size ~ Accuracy  Nature

AL 12 natural, 3D 12 redundant TR fixed 0(2) implicit
ALi3p 12 natural, 3D 12 redundant TR fixed 0(2) implicit
ALi3pvs 12 natural, 3D 12 redundant TR variable 0(Q2) implicit
mAL 12 Cartesian, 2D 11 independent  ode45 variable 04) explicit
mNS 12 Cartesian, 2D 11 independent  ode45 variable 04) explicit
mAL-ode4 12 Cartesian, 2D 11 independent  ode4 fixed 04) explicit
mNS-ode4 12 Cartesian, 2D 11 independent  ode4 fixed 04) explicit
mAL-odelSs 12 Cartesian, 2D 11 independent  odelSs variable variable implicit

2.2 Solution methods

Several solution methods were used to carry out the forward-dynamics simulation of the
benchmark example. Their main characteristics are summarised on Table 3. Unless other-
wise specified, MATLAB implementations were used to perform the simulation.

The first method (AL) uses the index-1 augmented Lagrangian algorithm with position
and velocity projections presented in [4], integrated with the trapezoidal rule (TR) in fixed-
point iteration form. Method ALi3p stands for the index-3 augmented Lagrangian algorithm
with projections of velocities and accelerations [6, 7]. Algorithm ALi3pvs is the variable-
step version of ALi3p introduced in [8]. Different sets of coordinates could be selected to
model the mechanism with these formulations; here we use three-dimensional natural coor-
dinates [16], consisting in the x, y and z coordinates of points P and Q and two unit vectors
perpendicular to links 1 and 2 respectively. The computational model was built using a 3D
multibody software library developed by the authors; kinematic constraints describing the
rigid-body nature of the links and the joints that connect them were subsequently added.
The resulting model consists of 12 variables and 12 redundant kinematic constraints. Be-
sides, methods mAL (MATLAB augmented Lagrange) and mNS (MATLAB null-space)
were also assessed, in which MATLAB ode45 integration formula is used. The first one
uses a stabilised augmented Lagrangian algorithm, while the second adopts a null-space
formulation similar to the one in [23]. These methods describe the system with reference
point (Cartesian) coordinates, namely the x and y coordinates of the centre of mass of each
body (the ground is treated as another body in the assembly) and its orientation angle with
respect to the x axis, and impose on them 11 independent constraint equations. In cases 1
and 3, the Jacobian matrix of these constraints loses rank and, as expected, the mNS method
was unable to successfully complete the simulation. For the purpose of comparing fixed- and
variable-step integrators, methods mAL and mNS were also combined with a fourth order,
fixed-step Runge—Kutta integration formula in its classical form, denoted in the text as ode4.
The odel5s integration formula, designed for stiff systems, was also used in the evaluation
in combination with the mAL formulation.
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Fig.4 Reference solution: 3
displacement xq of the slider in
case 1

xqQ [m]

Time (s)

Fig.5 Reference solution:

=

displacement xq of the slider in 9
case 2 3
_ 7
£
g
5
4
3
2 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
Time (s)
Fig.6 Reference solution: 3

displacement xq of the slider in
case 3

xq m]

Time (s)

2.3 Reference solutions

Reference solutions for each case were obtained by convergence of the different methods
summarised in Sect. 2.2. Figures 4, 5, and 6 show the slider displacement xq that corre-
sponds to the reference solutions of cases 1-3. The way to refine the results depended on
the numerical integrator used by each method. For those that used constant integration step-
sizes, the step was reduced to increase the precision. In the case of methods with variable-
step integration, the tolerances were made more stringent. The convergence towards a ref-
erence solution in all cases was additionally verified integrating the system dynamics ex-
pressed as a single unconstrained degree-of-freedom equation of motion with MATLAB’s
odel5i method. This solution, upon convergence, was used to provide the values of y;ef(zi)
required by Eq. (1).

Upon convergence, the differences in the monitored variables across the solutions deliv-
ered by the methods remained below 3 - 10~ m for xq and 2.5 - 107> rad for 6; in case 1,
7-10~* m for xq and 8 - 10~ rad for 6, in case 2, and 4 - 10~ m for xq and 6 - 1073 rad for
0; in case 3, at every sampling point. Additionally, for case 1, the error in the mechanical
energy of the reference solution was lower than 107° J.
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Fig.7 Case 1: effect on 4 : :
displacement xq of the slider of 3 Ref.- - - AL AL pen.-—-- AL np |
the parameter selection of )

augmented Lagrangian
formulations

xq [m]

Time (s)

3 Results

The benchmark scenarios defined in Sect. 2 were used to evaluate and compare the perfor-
mance of the simulation solutions in Table 3. The computations were performed on an Intel
Core i7-7700HQ at 2.80 GHz with 16 GB of RAM, running Windows 64-bit and MATLAB
R2020b. For the purposes of this study, and considering the particular characteristics of the
simulation environment, besides the precision thresholds in Table 2, a maximum admissible
elapsed time in computations of 2000 s was established for all simulations.

In the case of the constant-step AL, ALi3p, mAL-ode4 and mNS-ode4 methods, the
integration step-size & was found to be the parameter that had the greatest impact on the
efficiency and accuracy of the simulation.

For the trapezoidal rule in ALi3pvs, this role corresponded to the maximum admissi-
ble increment of the variables between iterations in each step ¢m,x selected as a stopping
criterion for the convergence of the integration formula. In the case of the mAL and mNS
methods, integrated with ode45, the most critical factors were the absolute and relative tol-
erances of the integrator ¢,,s and ¢.;. This was also the case with odel5s.

It is worth mentioning that tuning the ALi3pvs method to each particular problem intro-
duced an additional complexity as its performance depended as well on parameters like the
maximum number of iterations y allowed during the Newton—Raphson iteration and the up-
per and lower limits /1, and Ay, for the integration step-size. Tuning these parameters was
not a straightforward process, because the impact of a given selection on the simulation per-
formance is highly nonlinear. Moreover, because the algorithm adjusts the step-size based on
its previously used value, the initially used step-size /&y must also be considered a parameter
of the simulation. It is difficult to provide general recommendations on the selection of the
these parameters. In general, it seems advisable to decrease the limit of admissible iterations
per step y and regulate the error of the simulation by tuning the convergence criterion @nx.-
When using ode45-methods, ¢, and ¢ can be selected independently from each other
introducing, also in this case, an additional complexity in the tuning process. Regarding the
mAL-odel5s method, adjusting its parameters and tolerances was even more complicated
as its convergence trends were not as clear as with ode45.

All the augmented Lagrangian formulations are, in principle, able to deal with singular
configurations, which is required by cases 1 and 3. Figure 7, however, confirms that the
parameters of the augmented Lagrangian formulations also need to be tuned appropriately
to arrive at correct results. The penalty factor « required by these methods has an admissible
range of validity. For a constant step-size & = 1 ms, 10’ <« < 10" for the ALi3p method
and 1 < & < 10° for the AL formulation. Within this range, both methods correctly predict
the system motion, delivering plot ‘AL’ in Fig. 7. An incorrect tuning of « leads to an
invalid simulation, as is the case of the ‘AL pen.’ plot, in which the penalty of the AL
method was set to « = 107. Moreover, it is noteworthy that, even though these formulations
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Table 4 Best results in the solution of case 1 (low precision)

Method Elapsed (s) et Parameters

AL 2.70 1.60-1073  h=25ms,a=10°

ALi3p 3.13 1.67-1073 h=3.5ms,a=10!2

ALi3pvs 2.07 1.51-1073  hpip =0.5ms, Amax =4.5ms, & = 10!2, y =1, pax = 107
mAL 2.90 1.95-1073 =100, gy =5-10"2, pups = 107!

mNS Failed

mAL-oded  2.66 1.69-1073 h=2ms, a =100

mNS-oded4 Failed

mAL-odel5s  9.96 1.06-1073  a =107, grej = 1- 1077, gps = 1011

Table 5 Best results in the solution of case 1 (high precision)

Method Elapsed (s) eT Parameters

AL 6.99 138-107% h=1ms, a=10°

ALi3p 6.39 1.81-107% h=1ms,a=10!2

ALi3pvs 4.69 120-107%  hpin =0.5ms, Aypax =3 ms, @ = 1012, y = 1, gmax =5 - 1077
mAL 3.45 135-107% =101, gy =5-1073, s =2- 1072

mNS Failed

mAL-oded  3.20 1.02-107% h=1.75ms,a =100

mNS-oded4 Failed

mAL-odel5s 20.17 1.05-107% =107, gy =1-1078, gps = 1071

are able to handle rank-deficient Jacobian matrices, branch changes can affect the predicted
motion in some cases, even when the system velocity is not zero. Plot ‘AL np’ in Fig. 7
corresponds to the case in which position and velocity projections have been disabled in the
AL formulation; the resulting method is theoretically able to perform the simulation of the
system motion as a slider-crank, but it switches to a pendulum motion around ¢t = 0.45 s.

The benchmarking results obtained in the simulation of case 1 are shown in Tables 4
and 5 for the low and high precision thresholds specified in Table 2, respectively. Numerical
experiments confirmed that methods mNS and mNS-ode4 were unable to deal with the sin-
gular configurations of the mechanism, which resulted in the failure of the simulation. The
augmented Lagrangian methods, on the other hand, completed the simulation successfully.
The elapsed times reported correspond to the average of five different simulation runs. For
the low-precision case, all the successful methods delivered comparable results in terms of
efficiency. As expected, times increased in the high-precision scenario, particularly for the
methods that modelled the system with natural coordinates and used the trapezoidal rule as
an integration routine. The use of a variable step-size in ALi3pvs resulted in an improvement
of the efficiency with respect to its fixed-step counterpart, especially in the high-precision
case.

Case 2 is not subjected to singular configurations, but its simulation is challenging for
a different reason. Some methods, like the AL and ALi3p used in this study, introduce
numerical dissipation in the solution of the dynamics equations [10]. This dissipation may
slow down slightly the predicted motion of the system. The external, time-dependent force
f that acts on the slider is then applied to the mechanism at a configuration that differs
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Fig.8 Case 2: effect on
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Table 6 Best results in the solution of case 2 (low precision)
Method Elapsed (s) er Parameters
AL 1345.03 1.79-1073  h=0.004 ms, « = 10°
ALi3p 12.18 1.19-1073  h=0.5ms, o =102
ALi3pvs 7.85 1771073 hyy =0.1ms, hmax =2 ms, & = 1012,y = 1, gmax = 107
mAL 3.44 1.93-1073 & =107, g1 = 1073, gaps =5 - 1072
mNS 0.24 1691073 o1 = 1075, g = 1072
mAL-oded 3.65 1.61-1073  h=15ms,a=10"
mNS-oded 0.58 1.64-1073 h=75ms
mAL-odel5s  26.77 1281073 =107, g = 10719, ups = 1077
Table 7 Best results in the solution of case 2 (high precision)
Method Elapsed (s) er Parameters
AL Failed
ALi3p 53.28 6.61-107> h=0.1ms,a=10!2
ALi3pvs 15.87 1.09-107%  hpin =0.1ms, Amax = 1 ms, & = 1012, y = 1, grpax = 1078
mAL 5.98 1.18-107% o =107, g = 1074, gaps = 107
mNS 0.31 1971074 @ = 1077, gaps = 1076
mAL-oded 7.07 1.07-107%  h=0.5ms, a =10’
mNS-oded 0.97 1.64-107%  h=45ms
mAL-odel5s  34.32 2.00-107% =107, ey = 10711, ps = 1077

from that of the reference solution at each particular time. In some cases, this eventually
leads to the departure of the system motion from theoretically correct values, as shown
in Fig. 8. The augmented Lagrangian formulations deliver results that match the reference
solution provided that small enough integration step-sizes are used (‘AL’), but might follow
a different path otherwise, as can be seen for plot ‘AL dt’, which corresponds to the AL
formulation integrated with a step-size 7 = 5 ms. This issue imposes an important limitation
on the efficiency of these formulations.

Tables 6 and 7 summarise the results obtained with the different methods in the solution
of case 2 for low and high precision, respectively. All the methods were able to meet the
low-precision threshold in the simulation of this case, although augmented Lagrangian al-
gorithms with projections required more time to complete the integration, as a consequence
of the energy dissipation mentioned in the previous paragraph. This effect was particularly
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Table 8 Best results in the solution of case 3 (low precision)
Method Elapsed (s) et Parameters
AL Failed
ALi3p 92.74 936-1073 h=0.1ms,a=10"
ALi3pvs 48.84 1751072 hpin =0.05 ms, hmax = 0.1 ms, @ = 1013,y =1, pmax = 1078
mAL 5.83 6.33-1073 o =109, g =103, gyps = 1073
mNS Failed
mAL-oded  6.76 526-1073 h=0.8 ms,a =100
mNS-ode4 Failed
mAL-odel5s 11.04 4821073 o =107, g1 = 1077, gps = 1078

noticeable for the AL algorithm, which required a step size of 7 = 0.004 s to achieve correct
results. The issue was still more critical in the high-precision run, which the AL method was
unable to complete below the 2000 s limit.

Two interesting facts can be remarked. The first is that the null-space formulations deliv-
ered the most efficient simulation execution. Case 2 does not feature singular configurations,
and so these methods can be used to effectively solve the system dynamics. The second is
that the use of variable-step integrators resulted in significant time savings with respect to
their fixed-step counterparts. The computational improvement became more relevant as the
precision required from the execution increased. This was clear in the case of the ALi3p and
ALi3pvs methods, but could also be observed for mAL and mNS formulations. Figure 9
shows the times elapsed by these methods in the solution of Case 2 for different precision
levels and confirms the computational advantage of variable-step integration for higher pre-
cision requirements.

Finally, the simulation results that correspond to case 3 are summarised in Tables 8 and 9.
The mNS formulations failed again in this case due to the existence of singular configura-
tions. The AL algorithm was unable to meet the precision thresholds in less than 2000 s.
Regarding the ALi3p method, it required an increased value of the penalty factor (o = 10')
to deliver correct results in the low-precision run. The ALi3pvs delivered again a signifi-
cant reduction of the elapsed time in computations by means of time-step adjustments even
though its step-size was set to be always smaller than that of the fixed-step ALi3p. This is
explained by a reduction in the number of iterations required by the method to attain con-
vergence at each integration step. Decreasing the step size with ALi3p, conversely, did not
result in performance improvements. The mAL and mAL-ode4 delivered the most efficient
results. Regarding the high-precision threshold, we did not find any parameter combina-
tion by which ALi3p and ALi3pvs were able to meet the simulation requirements. It must
be pointed out that these formulations are known to suffer from numerical issues for very
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Table 9 Best results in the solution of case 3 (high precision)

Method Elapsed (s) eT Parameters

AL Failed

ALi3p Failed

ALi3pvs Failed

mAL 12.88 1.42.1073 =101 g1 =5-1070, g = 1077
mNS Failed

mAL-oded 11.23 9.78 - 10~% h=0.5ms,a =100

mNS-ode4 Failed

mAL-odel5s 26.30 1.53-1073 =107, o] = 1078, gups =5-107°

small integration steps [6]. Moreover, tuning the parameters of these methods, especially
the variable-step ALi3pvs, is not straightforward, and it was not possible to determine a
standardised protocol to adjust them.

The presented simulation results confirm the ability of the proposed benchmark problem
to help discriminate between several solution methods for MBS dynamics under different
precision requirements and execution conditions. This can be useful to assess the capabilities
of newly proposed formalisms and software implementations in the simulation of mechani-
cal systems with singular configurations and time-dependent inputs.

4 Conclusions

In this work, a benchmark example for the evaluation of multibody dynamics formulations
with kinematic constraints has been introduced. The selected example consists of three vari-
ations of a planar slider-crank linkage with different physical parameters and applied ex-
ternal forces. The combination of these forces with the existence of singular configurations
in the mechanism resulted in a challenging problem for the majority of the tested solution
methods. Indeed, the simulation software needs to be able to accurately describe the system
motion both in the proximity of the singularities and at the extreme points of the motion,
which becomes more complicated when an external force is acting on the mechanism.

The slider-crank linkage example also served to highlight relevant aspects of the defi-
nition of benchmark problems, such as the necessity of an available reference solution and
suitable metrics to compare the performance of different solution methods.

The three proposed cases of this benchmark problem were used to assess the ability
of different formulations in combination with fixed- and variable-step integration methods
for multibody system dynamics. Results showed that the performance of each approach
depends on the precision requirements and the characteristics of the problem being solved
and confirmed the usefulness of the proposed example for benchmarking MBS dynamics
solution methods.
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