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Abstract
Detailed impact simulations in flexible multibody systems can be simulated based on re-
duced isogeometric analysis (IGA) models. However, a precise simulation of an impact
requires a high element resolution in the contact area. Usually in IGA, global refinement
methods are used, which are easy to implement. However, in the literature, also the use of
hierarchical local refinement is proposed. The local refinement generates fewer countable
degrees of freedom compared to an equivalent global refinement. Numerous application ar-
eas can be found in the literature, such as contact simulations, where the computational
effort is reduced by local refinement. In this work, we introduce the inclusion of hierar-
chically refined IGA models within the floating frame of reference formulation. Thereby,
the hierarchically refined IGA model is reduced and applied in impact simulations. In two
application examples, we simulate the impact of two- and three-dimensional spheres and
compare with an analytical solution. The focus here is on the comparison of calculation
times and accuracy of globally and locally refined reference models. The third application
example consists of two flexible double pendulums and is devoted to systems in which the
bodies undergo both arbitrary rigid body motions and small elastic deformations.

Keywords Impact simulation · Isogeometric analysis · Floating frame of reference
formulation · Hierarchical refinement

1 Introduction

In impact problems within flexible multibody systems, the rigid body motions before and
after impact are often large whereas only small elastic deformations occur during impact.
This is the case for relatively stiff materials. Flexible bodies made of steel or aluminum are
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Fig. 1 Example of a semicircle
representing an axisymmetric
sphere that should be refined in
the contact area

considered stiff, which allows the application of the floating frame of reference formula-
tion [15] in this work. The use of the floating frame of reference formulation requires global
shape functions Φ of the flexible bodies to model the body flexibility. The global shape
functions can be obtained by the finite element method [1] and a reduction method, such as
the Craig–Bampton method [3]. When simulating flexible multibody systems and impacts,
the bodies are usually meshed with isoparametric elements. A major drawback of isopara-
metric elements is the discretization of the geometry. Since the calculation of the contact
force is based on the geometry of the finite element model, errors can occur. An alternative
to isoparametric elements is the isogeometric analysis (IGA) [2], whose use is motivated by
two advantages. First, the use of nonuniform rational basis splines (NURBSs) as local shape
functions of the elements allows an exact representation of the body geometry. Second, high
modes of flexible bodies are represented more accurately compared to isoparametric ele-
ments [2]. The latter advantage is useful in impact simulations based on the floating frame
of reference formulation introduced in the later course of this work. These advantages are
bought by increased computational costs in the evaluation of the spline-based nonlinear local
shape functions compared to linear shape functions of isoparametric elements.

An accurate impact simulation, which captures the local deformation, requires a high
element resolution in the contact area, as this is where the largest elastic deformations and
stresses occur. However, the refinement methods usually used in IGA only allow global re-
finement. The refinement of a semicircle representing an axisymmetric sphere is exemplified
in Fig. 1. The left-hand side is refined globally, and the right-hand side uses hierarchical re-
finement. In addition to the physical space, the parameter space is also shown, which we will
introduce in a later chapter. When the number of elements is increased in the contact area,
additional elements and control points are created over the entire body. The control points
represent the degrees of freedom in the IGA, and thus the global refinement greatly increases
the number of equations in the finite element model. One method for local refinement is a
hierarchical approach, where subordinate levels are introduced, as displayed in Fig. 1. The
hierarchical refinement is widely used in the literature. It is applied in elementary fluid
and structural analysis [14], heat conduction problems [4], topology optimization [10], and
contact simulations [20]. The aforementioned literature summarizes that the computational
effort can be reduced due to the smaller number of degrees of freedom compared to global
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refinement. These examples are mostly from statics. In this work, we apply the hierarchical
refinement in a dynamic problem. The aim of this work is to include hierarchically refined
models within the floating frame of reference formulation, which involves model reduction,
e.g., using the Craig–Bampton method. In application examples, we evaluate whether the
computational effort of hierarchically refined models is reduced compared to globally re-
fined models. Therefore we evaluate two- and three-dimensional impact simulations. This
paper is partially based on [12].

The remainder of this paper is organized as follows: Initially, the concept of the floating
frame of reference formulation is briefly summarized in Sect. 2. Section 3 introduces the
concepts of the IGA, the hierarchical refinement, and the extraction of the global shape
functions. The contact algorithm is briefly explained in Sect. 4. Sections 5–7 cover detailed
discussions of three application examples, and the results are summarized in Sect. 8.

2 Floating frame of reference formulation

When simulating flexible multibody systems, the floating frame of reference formulation is
a well-established approach [15]. A large nonlinear rigid body motion of the body frame KR

can be described within the inertial frame KI. In this work, we use Buckens frames and
tangent frames [15] as floating frames. Provided that the body deformations remain small
and linear elastic, they can be described conveniently in the body frame KR. Using the
global shape functions Φ and the nq elastic coordinates qe, the elastic deformation can be
approximated. The equations of motion of a single flexible body are given by

⎡
⎣

mE mc̃ᵀ C
ᵀ
t

mc̃ I Cᵀ
r

C t Cr Me

⎤
⎦

︸ ︷︷ ︸
M

⎡
⎣

Rv̇IR
Rω̇IR

q̈e

⎤
⎦

︸ ︷︷ ︸
żII

= hp + hd + hb − hω − he︸ ︷︷ ︸
ha

, (1)

where RvIR is the velocity of the rigid body motion from the inertial frame to the reference
frame, and RωIR is the angular velocity. In Eq. (1) the mass of the body is denoted by m,
the center of mass relative to the body frame by c̃, the translational coupling matrix by C t,
the rotational coupling matrix by Cr, and the mass moment of inertia by I . The right-hand
side vector ha is composed of the vector of surface forces hp, the discrete forces hd, the
body forces hb, and the inertial forces hω . The mass matrix Me of a linear elastic body, as
well as the stiffness Ke and damping matrix De needed to compute the inner forces he, are
introduced in a later section. Contact forces are considered in the discrete forces hd. The
standard input data (SID), a well-known standard in providing elastic data in the context
of the floating frame of reference formulation [15], is used to assemble the equations of
motion (1). For the formulation of the equations of motion and the transient analysis, the
MATLAB toolbox DYNMANTO [5] is used. The resulting equations of motion are solved by
the ode15s MATLAB solver with numerical differentiation formulas (NDF).

3 Global shape functions from IGA

Determining the global shape functions Φ is a key issue in using the floating frame of
reference formulation. A general way to determine the global shape functions is to generate
a finite element model of the flexible body and then identify the global shape functions
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from the finite element model using model reduction techniques. In this section, we briefly
present the idea of the IGA and the procedure to obtain the global shape functions from an
IGA model. A more detailed introduction to the IGA can be found in [2]. Additionally, the
concept of hierarchical refinement and a methodology to locally refine isogeometric models
are introduced based on [14].

3.1 Basis splines

The IGA consists of three spaces: the physical space, the parameter space, and the in-
dex space. The first two spaces are essential for understanding the IGA. The shape func-
tions of isogeometric elements are defined in the parameter space, which can be seen
for a two-dimensional example on the lower part of Fig. 1. The parameter space is di-
vided into elements and spanned by the knot vectors Ξ = [

ξ1 ξ2 . . . ξn+p+1
]

and H =[
η1 η2 . . . ηm+q+1

]
. Thereby, p and q are the orders of the basis functions, and n and m

are the numbers of the basis functions Ni,p and Mj,q. The orders of the basis functions can
be subsequently increased with the algorithm in [7]. In IGA the local shape functions are
based on B-splines, which can be computed recursively with the Cox–de Boor algorithm [2].
In ξ -direction the B-splines are computed as

p = 0 : Ni,0(ξ) =
{

1 if ξi ≤ ξ < ξi+1,

0 otherwise; (2)

p > 1 : Ni,p(ξ) = ξ − ξi

ξi+p − ξi

Ni,p−1(ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ). (3)

The calculation rule given by Eqs. (2) and (3) is identical in the η-direction. In practice,
recursive functions are numerically inefficient. Therefore the nonrecursive algorithm sug-
gested in [7] is used.

3.2 Nonuniform rational basis splines

Besides the parameter space, there is the physical space, which can be seen on the upper part
of Fig. 1. In the physical space the control points P i,j are defined, which are arranged by
the control net. The task of the control points is to span the geometry in the physical space.
The dimension of the control points corresponds to the numbers of B-splines n and m in the
parameter space. In addition to the physical position, each control point has a weight wi,j .
The transformation from the parameter space into the physical space requires the NURBS
basis R

p,q
i,j given by

R
p,q
i,j (ξ, η) = Ni,p(ξ)Mj,q(η)wi,j∑n

î=1

∑m
ĵ=1 Nî,p(ξ)Mĵ,q(η)wî,ĵ

. (4)

The NURBS basis R
p,q
i,j and the control points P i,j then lead to the NURBS surface

S =
n∑

i=1

m∑
j=1

R
p,q
i,j (ξ, η)P i,j (5)

in the physical space. The degrees of freedom in the IGA correspond to the displacements
of the control points

ui,j = P i,j − P 0
i,j , (6)
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Fig. 2 Concept of the hierarchical refinement in the IGA

where P 0
i,j represents the position of the control points in the undeformed and P i,j in the

deformed configuration. The deformation d of the NURBS surface can be written in matrix–
vector notation as

d =
[
R

p,q
1,1 0 R

p,q
1,2 0 . . . 0

0 R
p,q
1,1 0 R

p,q
1,2 . . . R

p,q
p+1,q+1

]

︸ ︷︷ ︸
N

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u1,1,x

u1,1,y

u1,2,x

u1,2,y
...

up+1,q+1,y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
u

, (7)

where the basis functions of the corresponding element are summarized in matrix N .

3.3 Hierarchical refinement

The concept of the hierarchical refinement relies on the property of B-splines to be repre-
sented by a linear combination of finer B-splines defined on smaller knot intervals. With the
calculation rule

aj = 2−p

(
p + 1

j

)
= 2−p (p + 1)!

j ! (p + 1 − j)! , (8)

we can determine the linear coefficients to represent a B-spline in a higher level with B-
splines of lower level. Note that Eq. (8) is only valid for uniform knot vectors. As an exam-
ple, a quadratic B-spline with the high-level knot vector

Ξ 1 = [
0 1 2 3

]
(9)

should be represented by a number of lower-level B-splines with the corresponding low-
level knot vector

Ξ 2 = [
0 0.5 1 1.5 2 2.5 3

]
. (10)

The inserted knots in Eq. (10) are underlined. By applying Eq. (8) the concept of the hier-
archical refinement can be visualized in Fig. 2. The procedure, which is implemented and
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Fig. 3 Concept of the hierarchical refinement in the IGA

used in this work, is briefly summarized in the following. For a detailed introduction to the
hierarchical refinement, see [14].

Initially, the parameter space is divided into different hierarchy levels. Recapturing the
motivation example in Fig. 1, the corresponding parameter space is displayed on the right-
hand side. This division is made up by intervals in knot coordinates. The concept of hierar-
chical refinement is that a finer mesh resolution can be defined section by section. Therefore
the levels are initialized using the global knot insertion algorithm described in [2]. With this
algorithm, the position of the control points and their weights can be determined for the finer
mesh. The number of hierarchy levels is denoted as nlvl.

In hierarchical refinement, B-splines of higher level are based on B-splines of lower level.
For the construction of higher-level B-splines, the linear combination coefficient matrix A

is determined by solving

N�
i,p = A�

i,jN
�+1
j,p , � = 1, . . . , nlvl − 1, (11)

between all nlvl hierarchy levels. A detailed description of this procedure can be found in [8].
In the next step, we define the elements with the knot vectors of different levels and

intervals, which define the hierarchy level with respect to the knot coordinates. The previous
step allows certain B-splines to be identified as inactive. Thus the associated control points
of each element can be determined. Thereby, the control points can be located in different
hierarchy levels. The control points that are not part of an element are identified as inactive.

The hierarchical B-splines of the example introduced at the beginning in Fig. 1 are de-
picted in Fig. 3. We can see that B-splines of different hierarchy levels can be active, e.g.,
at the knot coordinate ξ = 0.2 in Fig. 1. This overlap becomes relevant when calculating the
NURBS basis from Eq. (4). The B-splines of different dimensions of the parameter space
need to be multiplied out. These intersections of the B-splines lead to the fact that for the
computation of the NURBS, any level can interact with any level of the other dimensions
in the parameter space. The more hierarchical levels are created, the more combinations of
possible intersections of the B-splines can occur. This may increase the calculation time of
the hierarchical NURBS basis compared to a globally refined model. In addition to the more
complex calculation of the NURBS, the B-splines from the different hierarchy levels must
be constructed, which takes additional computation time.



Hierarchical refinement in isogeometric analysis for flexible multibody. . . 349

3.4 Model order reduction

As with the floating frame of reference formulation, we assume that only small elastic defor-
mations occur in a relatively stiff material. Therefore we assume linear elasticity and apply
the weak Galerkin method as for isoparametric elements [1]. From this the equations of
motion of the complete finite element model are then given by

Meüe + Keue = f e. (12)

For the incorporation of the isogeometric model into the flexible multibody simulation, the
global shape functions Φ are required. The global shape functions Φ necessary for estab-
lishing Eq. (1) can be determined from the linear system equations (12) with a model order
reduction method. The straightforward approach for reducing the equations of motion (12)
is modal reduction. However, as shown in [17], modal reduction leads to inaccurate results
in case of impact problems, since the local deformation in the contact region is not included
in the reduced model. Alternatively, the Craig–Bampton method [3] is used, which has al-
ready been successfully applied to impact problems with isoparametric elements [17]. The
key idea of the Craig–Bampton method is combining fixed-interface normal modes and con-
straint modes. The normal modes represent the overall flexibility, and the constraint modes
allow a relatively accurate representation of the deformation in a specific area of the flexible
body, e.g., the contact area. For the constraint modes, predefined interface control points on
the exterior surface can be selected. The procedure results in the global shape functions Φ ,
which are orthogonalized and normalized to the mass matrix. The reduced mass and stiffness
matrix are then given by

Me = ΦᵀMeΦ = E and Ke = ΦᵀKeΦ = diag(ω2
i ), (13)

respectively, where E is the identity matrix, and ωi are the natural frequencies. Since the
normal modes tend to be low and the constrained modes of high frequency, the equations
of motion (1) become numerically stiff. Therefore the higher frequency modes are strongly
damped, whereas the lower modes remain undamped. In this work, we use modal damping
to increase the numerical performance. This method is already applied in impact simulations
with isoparametric elements [17–19].

4 Contact handling in IGA

There are several methods for discretizing the contact of two isogeometric bodies. Two
frequently used types of methods are the integral description of the contact and the node-
to-segment methods. In the integral description of the contact, Gauss points of preselected
elements are checked [13]. The number of evaluation points depends on the number of
elements in the contact area and on the order of the B-splines due to the Gauss integral.
For node-to-segment methods, the number of evaluation points depends only on the number
of elements in the contact area. Since node-to-segment methods require fewer points to be
checked for contact and the accuracy is still comparable to that of an integral description [9],
a node-to-segment method is chosen for this work.

For node-to-segment methods, different collocation methods, e.g., Botella points, can be
used [9]. The following section briefly summarizes the contact algorithm described in [13].
This collocation method is combined with the penalty method for contact treatment. An
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optimal choice of the penalty factor cp for static contact is described in [11]. For dynami-
cal contact treatment, the corresponding penalty factor is chosen heuristically. Thereby, the
penalty factor should be chosen large enough such that the results become independent of the
chosen parameter [16]. When the penalty factor is increased beyond its converging value, the
differential equation (1) becomes stiffer, and the simulation time is unnecessarily increased,
or the simulation might even terminate unsuccessfully. Although the penalty method allows
penetration of the bodies, the penetration is negligibly small when using the above proce-
dure to determine the penalty factor. If no penetration is desired, then the Lagrange method
can be used [8].

At each time step, the individual bodies must be checked for contact. To this end, the
position of the deformed control points P i,j is determined. First, the control points dis-
placements are recovered from

ue = Φqe (14)

with the global shape functions Φ and the elastic coordinates qe. After that, the position
of the control points is computed from Eq. (6). In case of contact between two bodies, one
body is defined as the contact body, and the other as the target body, as depicted in Fig. 4.
The Botella points, which are located on the outer surface of the contact body and in the
contact area, are tested for contact with the exterior surface of the target body. The contact
check is achieved by solving

(
∂xT(ξ)

∂ξ

)ᵀ
(xC − xT(ξ)) = 0 (15)

with the Newton–Raphson method for the respective knot coordinate ξ . This knot coordi-
nate ξ corresponds to the target point xT(ξ), which is closest to the current Botella point xC

of the contact body.
As a side note, the contact evaluation of isoparametric elements requires checking every

contact element individually with each target element resulting in a high number of element
combinations, whereas in the IGA, an evaluation point is checked with an interval on the
exterior surface of the target body, which is more convenient.

The distance gn between the contact and target points is determined by

gn = nᵀ(xC − xT(ξ)), (16)

where the normal vector n is orthogonal to the surface of the target body. If the normal
gap gn is greater than zero, then there is no contact. Otherwise, the contact force for the
current sampling point is determined by

f c = cpgnN
ᵀnω̂i , (17)

where cp is the penalty factor, N is the local shape functions, and ω̂i is the collocation
weight of the current collocation point. See [9] for the derivation of the collocation weight.
To eliminate the distinction between contact and target body, they are switched, and the
contact force is averaged. After the contact search, the discrete forces can be calculated with

hd =
n∑

i=1

m∑
j=1

⎡
⎣

E
P̃ i,j

Φ
ᵀ
i,j

⎤
⎦f c,i,j (18)
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Fig. 4 Contact detection between
two bodies

Fig. 5 Impact of two spheres

and inserted into Eq. (1). The contact algorithm described above is implemented in MAT-
LAB. However, for computational efficiency, the algorithm is compiled into a MATLAB
EXECUTABLE (MEX) file. The contact search can be parallelized with respect to the contact
evaluation points.

5 Application Example I: impact of two axisymmetric spheres

The aim of this application example is to compare globally and locally refined isogeometric
models in the context of an impact simulation in a flexible multibody system. We investigate
whether a locally refined model has the same accuracy as an equivalent globally refined
model and how locally and globally refined models differ in computation time.

In this application example, we simulate the impact of two spheres. This simple example
is a well-suited benchmark, since Hertzian contact theory provides an analytical solution [6].
For simplicity, the spheres are identical. Thus the problem is symmetric. Despite the sym-
metry, we model both spheres. However, we exploit the axisymmetric property of a sphere.
The simulation setup is visualized in Fig. 5. The radii of the spheres are r = 1 cm, and
the selected material is steel. Therefore Young’s modulus is chosen as E = 2.11e11 Pa,
the density as ρ = 7850 kg/m3, and Poisson’s ratio as ν = 0.3. Both spheres have an ini-
tial velocity of v0 = 0.1 m/s, and the gravity is ignored. For the initialization of the
geometry, the knot vectors of the semicircle are defined as Ξ = [

0 0 0 1 1 1
]

and H = [
0 0 1 1

]
. The initial order of the B-splines is given by p = 2 and q = 1.

The control points and weights in the physical space are

P 0
i,j,x =

⎡
⎣

0 0
r r

r r

⎤
⎦ , P 0

i,j,y =
⎡
⎣

−r r

−r r

0 0

⎤
⎦ , and wi,j =

⎡
⎣

1 1
1√
2

1√
2

1 1

⎤
⎦ . (19)
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Table 1 Globally and locally refined models of an axisymmetric sphere

locally refined nlvl = 3 nlvl = 4 nlvl = 5 nlvl = 6

degrees of freedom ndofs 3856 2884 2728 1708

number of elastic coordinates nq
= (normal modes) + (dimension)

× (interface control points)

10+2×41 10+2×40 10+2×42 10+2×41

preprocessing time 13 s 8 s 11 s 4 s

globally refined reference

degrees of freedom ndofs 9216 7440 6726 5368

number of elastic coordinates nq 10+2×41 10+2×40 10+2×40 10+2×39

preprocessing time 44 s 29 s 24 s 16 s

After defining the geometry, the model is globally refined to better represent the overall
elastic deformation. In the course of this, the order of the B-splines is increased by two
resulting in p = 2 + 2 = 4 and q = 1 + 2 = 3. Adding 15 knots in the ξ -direction and 24
knots in the η-direction increases the number of elements from one to 400. This refined
model serves as a starting point for various benchmark models. It is worth noting that all
tested models have an element edge length of 10 µm in the contact area. All models are
reduced with the Craig–Bampton method using ten normal modes, and the exterior control
points in the contact area are used for the constrained modes.

Four locally refined models are compared in the following studies, in which the number
of hierarchy levels nlvl is varied between three and six. Each of these four locally refined
models has an equivalent globally refined reference model. The equivalence is that the knot
vectors of the globally refined models are identical to the knot vectors in the lowest level of
the locally refined models. The investigated models are listed in Table 1 and visualized in
Fig. 6.

The number of interface control points is nearly identical for all models. Accordingly,
the number of elastic coordinates nq after the model reduction is almost identical regardless
of whether the model is globally or locally refined. In addition, the number of degrees of
freedom ndof decreases as the number of hierarchy levels nlvl increases. In terms of prepro-
cessing, the locally refined models are slightly faster because they have fewer degrees of
freedom than the globally refined models. The dimensions on the left side of the four IGA
models in Figs. 6a–6d represent the height of the lowest hierarchy level, which becomes
relevant in the further course of the analysis. The model with nlvl = 5 hierarchy levels in
Fig. 6c represents the most uniform distribution of elements. Since the goal in this applica-
tion example is creating an element length of 10 µm in the contact area, models with more
than six hierarchy levels are not necessary, as shown in Fig. 6d.

In addition to the isogeometric models, an isoparametric model is tested for validation.
Similarly to the IGA models, the isoparametric model uses an element length of 10 µm. The
full model is simulated in ANSYS without reduction.

The impacts in this work are simulated for 0.1 ms using a penalty approach. As men-
tioned before, the penalty factor cp is increased until the results become independent of
the penalty factor. As a first guess for the penalty factor, the optimal penalty factor for
static contact can be determined according to [11]. The procedure yields penalty factors
around cp = 1e19 N/m. With this initial information, the penalty factor for the dynamical
contact can be determined heuristically. Therefore the maximum contact forces of the re-
duced IGA models and of the analytic solution by Hertz [6] are visualized in Fig. 7. Two



Hierarchical refinement in isogeometric analysis for flexible multibody. . . 353

Fig. 6 Detailed plot of the contact area of the hierarchically refined axisymmetric models

Fig. 7 Contact force error compared to analytic solution by Hertz [6]

observations can be made from Fig. 7. First, it is observed in Fig. 7a that the penalty factor
is independent of the number of hierarchy levels. Second, globally and locally refined mod-
els behave almost identically here, as seen in Fig. 7b. Figure 7 shows that for the penalty
factors cp greater than 5e18 N/m, the maximum contact force remains constant. Therefore
this factor is used for the following simulations. As mentioned before, the penalty method
allows penetration. However, the ratio between the maximum normal gap gn and the max-
imum deformation in the contact area is only 2%. Note that the calculation time also in-
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Fig. 8 Contact forces of axisymmetric sphere models

Fig. 9 Comparison of computation times

creases with increasing penalty factor, since the equations of motion become stiffer. For the
penalty factor cp = 5e18 N/m, the maximum relative error of the contact force with respect
to the analytical solution [6] can be evaluated. As mentioned in Sect. 3.4, modal damping
is used in this work, resulting in a maximum relative error of 1% for all models. In the
previous work [12], Rayleigh damping is used, and the error is slightly higher at 2%. The
reason for this is that modal damping only dampens the high-frequency modes, leaving the
low-frequency modes undamped.

The same procedure to determine the penalty factor is used for the isoparametric model
in ANSYS as for the IGA models. This results in the penalty factor cp = 5e17 N/m. In
Fig. 8 the analytical solution by Hertz, a hierarchically refined model, its globally refined
reference model, and the isoparametric model are visualized. Both the IGA models and
the isoparametric model well represent the analytical solution of the impact. Although all
models use the same element resolution in the contact area, the ANSYS model performs
worst in this setup.

Next, we discuss the influence of the number of hierarchy levels nlvl on the computa-
tion time of the impact simulation shown in Fig. 9. The computation time does not include
the preprocessing, only the time integration. It is worth mentioning that the hierarchical
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refinement algorithm used in [12] has been improved here in performance. Previous subop-
timal implementations have been revised, and overlapping hierarchy levels whose NURBS
are zero are not multiplied out. Additionally, the usage of modal damping increases the
performance of the locally and globally refined models. Although the contact search can
be parallelized with respect to the evaluation points, sequentially executed simulations are
more independent of the architecture of the computer, the MEX implementation of parallel
for-loops, and the used operating system WINDOWS. Therefore the sequential computation
allows a better relative comparison of the individual models. The processor used is the Intel
W-2295 model with 18 cores. Note that the following qualitative observations may depend
on the particular application example.

Observing the computation time of the sequential simulation in Fig. 9a, we can see that
the computation time increases with the number of hierarchy levels. In contrast, the compu-
tation time of the globally refined reference models decreases. The latter observation can be
attributed to the fact that the number of degrees of freedom ndof decreases; see Table 1. Since
the globally refined models have only one level in the parameter space, it is likely that the
number of degrees of freedom ndof directly influences the computation time. If the number
of degrees of freedom ndof is smaller, then the matrix of global shape functions Φ ∈R

ndof×nq

is also smaller. Thereby, the matrix multiplications in the course of the contact algorithm,
e.g., Eqs. (14) and (18), are computed faster for models with fewer degrees of freedom ndof.
However, this effect is rather small, as can be seen in the computation time of the globally
refined models in Fig. 9a. This can be explained by the fact that matrix multiplications are
relatively inexpensive to calculate, in contrast to, for example, matrix inversions.

Although the degrees of freedom of the locally refined models decrease as the number of
hierarchy levels increases, the aforementioned effect does not seem to be dominant here. In
the literature [4, 10, 14, 20] the degrees of freedom ndof saved by local refinement are listed
as an advantage. This advantage does not apply in this example since the models are reduced
with the Craig–Bampton method. The reduced mass and stiffness matrix are then used in the
evaluation of the equations of motion in the context of the floating frame of reference for-
mulation. However, the number of degrees of freedom ndof of hierarchically refined models
is lower compared to globally refined models, but the number of elastic coordinates nq is
almost identical regardless of the type of refinement; see Table 1. After model reduction, the
number of degrees of freedom ndof only has an influence on the global shape functions Φ .
As described before, the influence of the size of the global shape functions is rather small.
Since the number and position of contact evaluation points are also identical for the re-
spective globally and locally refined models, the evaluation of the NURBS in the course
of the contact evaluation remains the last possible reason for the difference in computation
time. In fact, additional computational effort in computing hierarchical NURBS described
in Sect. 3.3 is responsible for the higher computational time in Fig. 9a.

In the parallel computation shown in Fig. 9b, the globally refined models are likewise
faster. However, the difference between the globally and locally refined models is much
smaller compared to the sequential computation in Fig. 9a. In this case the locally refined
models seem to benefit more from the parallel computation than the globally refined models,
whereby the MEX implementation could be responsible for this. The ANSYS solution is
simulated with a step size of 100 ns and requires 200 s of computation time. Therefore the
computation time is slightly higher than that for the IGA models in Fig. 9b.

In the last analysis of this application example, the von Mises stresses are observed to
occur at maximum impact force. The von Mises stresses are maximal when the impact force
is the highest [6]. With the analytical solution by Hertz [6], the von Mises stresses along
the symmetry axis of the sphere are displayed in Fig. 10. Initially, we can observe that all
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Fig. 10 Maximum von Mises stresses along the symmetry axis of the locally refined models

locally refined models can well represent the stresses. However, it is noticeable that we can
see a small oscillation at the y-position, where a switch of the hierarchy level takes place.
The height of the lowest hierarchical level from Fig. 6 is indicated by the circles in the stress
analysis in Fig. 10. For comparison, we tested an unreduced hierarchical IGA model. To
include it in the same framework, the unreduced IGA model is modally transformed. The
oscillations still occur and thus are independent of the model reduction. Further analysis
reveals that this effect does not influence the overall behavior and is only a minor local
phenomenon. Using a hierarchically refined model with no order elevation or a coarser el-
ement resolution in hierarchy level above, the contact area increases the local effects in the
von Mises stresses. However, the overall contact force is still well mapped compared to
the analytic solution. In the globally refined models, which are not shown here, these small
oscillations do not occur.

6 Application Example II: impact of two three-dimensional spheres

In the second application example, the previous application example from Sect. 5 is extended
and simulated with full three-dimensional models instead of two-dimensional axisymmetric
half circles. The motivation of this extension is monitoring the behavior of the computation
time when three-dimensional, hierarchically refined models are used, as shown in Fig. 11.
The question arises whether the gap in the computation time between globally and locally
refined model increases due to more linear combinations of B-splines in three dimensions
instead of two or other effects dominate. In the course of this analysis, three hierarchically
refined models with three to five levels and their corresponding globally refined reference
models are compared. Additionally, a full isoparametric model is simulated in ANSYS to
validate the impact results of the IGA models. The penalty factor is again determined to
be cp = 5e18 N/m for the IGA models and cp = 5e17 N/m for the isoparametric model
following the procedure as in Sect. 5. The number of degrees of freedom before and after
the model reduction are summarized in Table 2. The number and size of predefined contact
elements are identical for all six models. Here the lowest level of the locally refined models
is defined as the contact region.

The differences in the number of degrees of freedom and the preprocessing time are
now significantly larger compared to the first application example. As in the first application
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Fig. 11 Setup of the spheres with nlvl = 5 levels

Table 2 Globally and locally refined models of a sphere

locally refined nlvl = 3 nlvl = 4 nlvl = 5

degrees of freedom ndofs 18891 14940 12711

number of elastic coordinates nq
= (normal modes) + (dimension)

× (interface control points)

50+3×273 50+3×297 50+3×321

preprocessing time 273 s 262 s 246 s

globally refined reference

degrees of freedom ndofs 139431 117267 92823

number of elastic coordinates nq 50+3×441 50+3×441 50+3×441

preprocessing time 100 min 162 min 128 min

example, the number of degrees of freedom ndof decreases as the number of levels increases.
However, the number of elastic coordinates nq varies for the locally refined models and is
only constant for the globally refined models. Additionally, it is noticeable that all locally
refined models have less elastic coordinates than the globally refined ones. The reason for
this difference can be monitored in Fig. 12.

The number of elastic coordinates corresponds to the number of interface control points,
of which the model in Fig. 12a has the fewest. Considering Fig. 12, we can see that the re-
spective levels adjacent to the contact areas have different element resolutions. The element
resolution is lowest for the model in Fig. 12a. Therefore the number of interface control
points at the edges of the hierarchical model with nlvl = 3 levels is the lowest compared
to the other models. The effect of the differences is visualized in Fig. 13 representing the
computation times. In contrast to the previous application example, the simulations are
only evaluated with parallelized computing. Figure 13a shows that the hierarchical model
with nlvl = 3 levels takes the least computation time. The same observation was made in
the first application example in Fig. 9 and was reasoned on the number of intersecting lev-
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Fig. 12 Contact areas of spheres for various refinement levels

els. In this three-dimensional simulation the effect is further enhanced by the small number
of elastic coordinates. However, all hierarchical models take less computation time than
the globally refined reference models. The ANSYS solution is simulated with a step size
of 10 ns and requires 6 h 33 min of computation time. Therefore the computation time is
slightly higher than for the hierarchical IGA models and lower than for the globally refined
IGA models in Fig. 13.

The small number of elastic coordinates of the hierarchically refined models compared
to the globally refined models raises the question whether the reduced computation time is
bought by a reduced accuracy. The contact forces of the six IGA models and the isoparamet-
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Fig. 13 Comparison of computation times

Fig. 14 Contact forces of three-dimensional spheres

ric model simulated in ANSYS are shown in Fig. 14 and compared to the analytical solution
by Hertz [6]. All models well reproduce the contact force curve. In the detailed view in
Fig. 14, we can see that the globally refined models and the ANSYS model represent the
maximum occurring force minimally better than the locally refined models. However, the
advantage of reducing the computation time by a factor of about three outweighs the in-
significantly worse accuracy. Comparing the hierarchical model in Fig. 12c with its global
reference model in Fig. 12d, the hierarchical model has less interface control points in the
outer contact area. In this area, elastic deformation and penetration are lower than in the
center of the contact area. Thus no significant differences in the contact force occur.

Since the outer contact area is less important, the number of interface control points of
the globally refined model could be further reduced. By handpicking the interface control
points in the outer contact area a simulation time equivalent to that in a hierarchically refined
model may be achieved. However, the hierarchical refinement achieves a reduced number
of elastic coordinates fully automatically. This is beneficial when implementing an adaptive
online refinement within a flexible multibody impact simulation in future works.
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Fig. 15 Simulation setup of two
flexible double pendulums

Table 3 Computation time of
two flexible double pendulums simulation phase simulation time computation time

preimpact 166.6 ms 11 min

impact 144.9 µs 7 h 43 min

postimpact 8.233 ms 7 h 32 min

7 Application Example III: multibody simulation of two flexible double
pendulums

The third application example demonstrates the usage of the hierarchical refinement in im-
pact simulations with more than two flexible bodies and large rigid body rotations. Therefore
the impact of two flexible double pendulums is investigated; see Fig. 15. Hierarchically re-
fined models are used to handle the flexible bodies in contact. In this setup the flexible multi-
body system consists of two double pendulums where the connection between the suspen-
sion and the sphere is modeled by a flexible rod. The rods are modeled by globally refined
isogeometric models, which are modally reduced with nq = 20 elastic coordinates. The pen-
dulum on the left-hand side in Fig. 15 is initially deflected by α0 = 19◦ and β0 = 20.079◦.
The two angles are chosen such that at the time of impact, we have α = β = 0◦. Both double
pendulums have no initial velocity. Since gravity is under consideration with the gravita-
tional constant g = 9.81 m/s2, the initial values of the elastic coordinates of the four flex-
ible bodies need to be determined. A straightforward approach is to solve the equations of
motion for the elastic coordinates qe so that the accelerations q̈e vanish. Subsequently, the
flexible multibody system is simulated for 175 ms. The simulation consists of three phases
listed in Table 3.

The first phase has the longest simulation time and shortest computation time. Although
large rigid-body motions occur, the computation time is small since the high-frequency elas-
tic modes are not yet excited. Due to the contact in the second phase, the high modes are
induced, and small step sizes are required for the second and third phases. The impact ex-
cites oscillations in the spheres and in the two rods. The maximum elastic deflections of the
rod of the right pendulum are shown in Fig. 16. For better visibility, only the elastic deflec-
tion and position of the center line of the rod without the rigid body motion are displayed.
Finally, the simulation is validated by a rigid body simulation with Hertzian contact [6]. The
contact forces of the flexible and rigid body simulation are visualized in Fig. 17. The preim-
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Fig. 16 Maximum elastic deflections of the oscillating rod

Fig. 17 Validation of the contact force with Hertz in a rigid body simulation

pact phase is highlighted in white, the impact phase in gray, and the postimpact phase in
light gray. In particular, the long preimpact phase to the contact area can be seen in Fig. 17a.
The impact phase is relatively short and is shown in Fig. 17b. The area in gray before the
impact belongs to the impact phase, since a subsequent time step of the preimpact phase
would already lead to an impact. Both the impact time and the course of the contact force
are well represented by the flexible multibody simulation.

8 Conclusions

Overall, we can conclude that it is feasible to obtain global shape functions for flexible
multibody systems from hierarchically refined isogeometric finite element models. A model
reduction with the Craig–Bampton method can be performed, and the global shape functions
of the IGA can be smoothly included in the floating frame of reference formulation. Subse-
quently, an impact simulation can be performed using the penalty formulation. The penalty
factor converges for hierarchically refined models, and the differences in the accuracy be-
tween the locally and globally refined models are minor. In the two-dimensional application
example, the locally and globally refined models are approximated with the same number
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of elastic coordinates. However, since the hierarchical NURBS in the contact routine are
more complex, the overall computation time using the locally refined models is higher than
using the globally refined models. In the three-dimensional application example, the locally
refined models require less interface control points than the globally refined models, which
significantly reduces the effort to solve the equations of motion. Similarly to hierarchical
refined models in statics, computational savings can also be achieved in flexible multibody
simulations.

Funding Note Open Access funding enabled and organized by Projekt DEAL.

Declarations

Competing Interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bathe, K.J.: In: Finite Element Procedures. Klaus-Jürgen Bathe, United States Watertown, MA (2014)
2. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis. Wiley, New York (2009)
3. Craig, R.R., Bampton, M.C.C.: Coupling of substructures for dynamic analyses. AIAA J. 6(7),

1313–1319 (1968)
4. D’Angella, D., Kollmannsberger, S., Rank, E., Reali, A.: Multi-level Bézier extraction for hierarchical

local refinement of isogeometric analysis. Comput. Methods Appl. Mech. Eng. 328, 147–174 (2018).
https://doi.org/10.1016/j.cma.2017.08.017

5. Held, A., Moghadasi, A., Seifried, R.: DynManto: A matlab toolbox for the simulation and analysis
of multibody systems. In: Volume 2: 16th International Conference on Multibody Systems, Nonlinear
Dynamics, and Control (MSNDC). American Society of Mechanical Engineers, New York (2020)

6. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (2004)
7. Les Piegl, W.T.: The NURBS Book. Springer, Berlin (1997)
8. Matzen, M.E.: Isogeometrische Modellierung und Diskretisierung von Kontaktproblemen. Ph.D. thesis,

University of Stuttgart, Institute of Structural Mechanics (2015). (In German)
9. Matzen, M., Bischoff, M.: A weighted point-based formulation for isogeometric contact. Comput. Meth-

ods Appl. Mech. Eng. 308, 73–95 (2016). https://doi.org/10.1016/j.cma.2016.04.010
10. Noël, L., Schmidt, M., Messe, C., Evans, J., Maute, K.: Adaptive level set topology optimization us-

ing hierarchical b-splines. Struct. Multidiscip. Optim. 62(4), 1669–1699 (2020). https://doi.org/10.1007/
s00158-020-02584-6

11. Nour-Omid, B., Wriggers, P.: A note on the optimum choice for penalty parameters. Commun. Appl.
Numer. Methods 3(6), 581–585 (1987)

12. Rückwald, T., Held, A., Seifried, R.: Flexible multibody impact simulations using hierarchically re-
fined isogeometric models. In: 10th ECCOMAS Thematic Conference on Multibody Dynamics 2021,
pp. 114–125 (2021). http://hdl.handle.net/11420/11688

13. Rückwald, T., Held, A., Seifried, R.: Reduced isogeometric analysis models for impact simulations. In:
17th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (2021)

14. Schillinger, D., Dedè, L., Scott, M.A., Evans, J.A., Borden, M.J., Rank, E., Hughes, T.J.: An isogeometric
design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed
boundary methods, and t-spline CAD surfaces. Comput. Methods Appl. Mech. Eng. 249–252, 116–150
(2012). https://doi.org/10.1016/j.cma.2012.03.017

15. Schwertassek, R., Wallrapp, O.: Dynamik flexibler Mehrkörpersysteme. Teubner, Leipzig (2014). (In
German)

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cma.2017.08.017
https://doi.org/10.1016/j.cma.2016.04.010
https://doi.org/10.1007/s00158-020-02584-6
https://doi.org/10.1007/s00158-020-02584-6
http://hdl.handle.net/11420/11688
https://doi.org/10.1016/j.cma.2012.03.017


Hierarchical refinement in isogeometric analysis for flexible multibody. . . 363

16. Seifried, R., Hu, B., Eberhard, P.: Numerical and experimental investigation of radial impacts on a half-
circular plate. Multibody Syst. Dyn. 9(3), 265–281 (2003)

17. Tschigg, S.: Effiziente Kontaktberechnung in Fexiblen Mehrkörpersystemen. Ph.D. thesis, Hamburg
University of Technology (2020). (In German)

18. Tschigg, S., Seifried, R.: Efficient evaluation of local and global deformations in impact simulations
in reduced flexible multibody systems based on a quasi-static contact submodel. In: 8th ECCOMAS
Thematic Conference on Multibody Dynamics, MBD 2017, vol. 2017, pp. 315–325 (2017)

19. Tschigg, S., Seifried, R.: Efficient impact analysis using reduced flexible multibody systems and contact
submodels. In: 6th European Conference on Computational Mechanics: Solids, Structures and Coupled
Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018,
pp. 2711–2722 (2018)

20. Zimmermann, C., Sauer, R.A.: Adaptive local surface refinement based on LR NURBS and its applica-
tion to contact. Comput. Mech. 60(6), 1011–1031 (2017). https://doi.org/10.1007/s00466-017-1455-7

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1007/s00466-017-1455-7

	Hierarchical refinement in isogeometric analysis for flexible multibody impact simulations
	Abstract
	Introduction
	Floating frame of reference formulation
	Global shape functions from IGA
	Basis splines
	Nonuniform rational basis splines
	Hierarchical refinement
	Model order reduction

	Contact handling in IGA
	Application Example I: impact of two axisymmetric spheres
	Application Example II: impact of two three-dimensional spheres
	Application Example III: multibody simulation of two flexible double pendulums
	Conclusions
	References


