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Abstract
This work reviews the main techniques to model dynamical systems with contact-impact
events. Regularized and non-smooth formulations are considered, wherein the fundamental
features associated with each approach are analyzed. A brief description of contact dynam-
ics is presented, and an overview of the state-of-the-art of the main aspects related to the
contact dynamics discipline is provided. This paper ends by identifying gaps in the current
techniques and prospects for future research in the field of contact mechanics in multibody
dynamics.
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1 Introduction

Many applications of multibody dynamics to real-world mechanical systems demand the
analysis of contact scenarios [1]. Contact behavior depends on the matter at hand, material
properties, and technique utilized to model the contact dynamics. In a simple and com-
prehensive manner, a contact dynamics formulation is a threefold problem, involving the
determination of potential contact points between the colliding bodies within a multibody
system, the evaluation of the contact-impact forces, and the establishment of the transition
between contact and non-contact scenarios, and between different contact states [2].

Contact mechanics can be understood as the study of the deformation of solid bodies
when they collide with each other. Frictional contact mechanics analyzes the interaction of
colliding bodies in the presence of friction phenomena [3]. It is worth noting that contact
mechanics is omnipresent in many multibody dynamics applications, and in many cases,
the performance of the systems depends on the modeling process of the contact-impact
events [4–11]. Contact dynamics, which deals with the motion analysis of multibody sys-
tems subjected to collisions, is still one the most challenging and complex areas in science
and engineering [12–31].
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When two bodies within a multibody system collide, the state of multibody system can
change quite rapidly, resulting in jumps, or discontinuities, in the velocities, propagation of
waves, noise and heat generation, high force levels, plastic deformation, energy conversion,
among other mechanical phenomena [32–39].

Over the last four decades, the multibody dynamics community has exhibited an in-
creasing interest in the resolution of the problems related to collisions between mechanical
components [40–102]. Actual examples of mechanical systems in which contact-impact
interactions play a key role are robotics and walking machines [103–109], railway sys-
tems [110–122], vehicle and crash models [123–133], biosystems and biomechatronics
[134–147], machines and mechanisms [148–164], granular media and powder technologies
[165–185], toys models [186–199], civil structures [200–218], sounds and musical instru-
ments [219–234], fruit transport and handling [235–248], just to mention some examples
under the umbrella of dynamical systems.

The process of modeling and simulating contact-impact events in multibody systems
requires to determine the points of contact and to calculate the resulting reaction contact
forces. In essence, the determination of the contact points, usually named as contact detec-
tion phase, evaluates when and which points of a pair of surfaces are in contact [249–257].
The corresponding reaction contact forces, associated with the contact resolution phase, are
the result of the applied forces [258–261] or unilateral constraints [262–266].

In the contact of multibody systems, the interaction between two colliding bodies can
be modeled using contact force-based approaches (continuous methods) [267–280], or tech-
niques based on the geometric constraints (non-smooth formulations) [281–288]. In the for-
mer case, the transition from non-contact to contact situations is described by a continuous
function, yielding in simple and efficient solutions. The force-based models can exhibit nu-
merical difficulties due to bad conditioned system matrices and need of small time steps
[76]. In the non-smooth formulations, the colliding bodies are considered to be absolutely
rigid, and unilateral constraints are utilized to prevent the local interpenetration from occur-
ring. Some numerical difficulties can also be associated with non-smooth approaches, such
as undetermined systems, requiring special techniques to handle them.

This review analyzes the main aspects related to contact mechanics in dynamical sys-
tems. The emphasis of this work is on the regularized methods and non-smooth formula-
tions, where the fundamental ingredients of each approach are highlighted to treat collisions.
Discussion of the extensive literature on numerical schemes for contact-impact problems is
beyond the scope of this paper, the interested reader is referred to the references [289–294].
In addition, methods to deal with rolling contacts, adhesive contacts, surfaces roughness,
thermal effects, and other specific aspects associated with collisions are not within the ob-
jectives of this review. Good representation of these, and other phenomena, may be found
in the works by Johnson [3], Kalker [295], Jean et al. [296], Goryacheva [297], Wriggers
[298], Popov [299], Yastrebov [300], Rao et al. [301], Stronge [302], and Barber [303].

The structure of this paper is organized as follows. Section 2 includes a historical per-
spective of contact dynamics, where special emphasis is given to the achievements reached
during the last decades. Section 3 discusses general aspects associated with contact dynam-
ics under the framework of multibody systems methodologies. The main available tech-
niques to treat contact-impact events in multibody dynamics are characterized in Sect. 4.
Subsequently, Sect. 5 deals with the fundamental features related to the geometry of contact,
namely in terms of the definition of contacting surfaces and a contact detection procedure.
A comprehensive description of regularized contact force models, both for normal and tan-
gential directions, is presented in Sect. 6. Techniques based on non-smooth formulations
are presented in Sect. 7. Several demonstrative examples of application and corresponding
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results are provided in Sect. 8. Finally, Sect. 9 addresses concluding remarks, where future
directions for research under the framework of contact mechanics for dynamical systems are
highlighted.

2 A brief history of contact mechanics

The problem of studying collisions between bodies is a quite old domain that was initiated
simultaneously with the development of the science of mechanics, and that has become an
important branch in the field of multibody dynamics. In fact, the topic of contact-impact
problems in dynamical systems has received a great deal of attention in the past decades
and still remains an active area of research that led to the establishment of important works
and even the publication of relevant textbooks devoted to this theme, such as the ones by
Pfeiffer and Glocker [304], Glocker [263], Leine and Nijmeijer [305], Pfeiffer [306], Acary
and Brogliato [291], and Flores and Lankarani [294]. Additionally, the interested reader is
also referred to the following seminal works on contact problems [267, 284, 307, 308].

Over the last five centuries, a good number of researchers have investigated the contact
problems. Friction has been studied for more than 500 years [309]. Leonardo da Vinci mea-
sured the friction action using blocks with different contact areas, but with same weight
[310]. According to his findings, the friction force is proportional to the weight of the block
and not dependent on the apparent area of contact. Associated results are often attributed
to Guillaume Amontons [311], neglecting the contribution of Leonardo da Vinci. Charles-
Augustin de Coulomb put those findings in a well-known formula referred to as Coulomb’s
friction law, stating that the tangential force is equal to the normal force times the coeffi-
cient of friction [312]. Coulomb conducted an experimental study of frictional phenomena.
Leonard Euler, who introduced the symbol μ for the coefficient of friction, demonstrated
that for a block on a slope the dynamic coefficient of friction has to be smaller than the
static coefficient of friction [313].

Galileo Galilei, who was a pioneer in recognizing the concept of rigid body collision,
stated that the impact forces can become unlimited [314]. Christiaan Huygens performed
studies on completely elastic collisions between two-point masses [315]. His work that de-
scribes the relative velocities inversion during impact was extended and formulated by Isaac
Newton, in 1687, by the coefficient of restitution in order to accommodate the energy dissi-
pation during the impact process [316]. Newton introduced the concept of kinematic coeffi-
cient of restitution, which is still quite used nowadays and can be described as the quotient
between final and initial relative impact velocities normal to the contacting surfaces. For
most of the engineering applications, the coefficient of restitution varies with relative initial
impact velocity [317].

Poisson [318] introduced the kinetic coefficient of restitution as the quotient between
normal impulses at the contact point that takes place during the compression and restitution
phases. The use of Poisson’s hypothesis dates back to the nineteenth century, when Routh
presented a graphical approach to obtain the resulting impulses for the impact between two
bodies [319]. Whittaker [320] extended Newton’s impact law to include friction effect. The
introduction of the friction into contact problems is of great importance and brings major
difficulties [321, 322]. It must be highlighted that Newton’s and Poisson’s impact theories
are equivalent for direct collisions between rough bodies if the direction of slip does not
change during the contact process.

Fourier [323] and Boltzmann [324] studied unilateral behavior, taking into account me-
chanical principles. The scientific problem of vibrations developed in elastic rods under
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longitudinal impacts was investigated by Young [325]. Goldsmith [315] demonstrated that
the effect of waves could be neglected if the contact duration is long enough when compared
with the lowest eigenfrequency of impacting bodies. For these cases, the contact problem can
be solved using a quasi-static approach, such as the Hertzian theory [326]. The Hertz contact
law describes the static compression of two isotropic elastic bodies, surfaces of which can be
approximated by two paraboloids in the vicinity of contact point. Sears [327] employed the
Hertz contact theory to study longitudinal collisions. Goldsmith [315] observed that Hertz’s
law provides good results for collisions between two spheres and for the impact of a sphere
against a thick plate, only if the materials involved are hard and the initial impact velocities
are low.

The subject of contact mechanics and its applications in multibody dynamics had not
been developed until the last few decades. Wittenberg [328], Wehage [329], and Khulief et
al. [330] utilized a piecewise approach to handle impact events in multibody systems. In this
discontinuous technique, the resolution of the equations of motion is halted at the instant of
collision, where an impulse-momentum balance is performed to obtain the rebound veloci-
ties. The resolution of the equations of motion is then resumed with the updated velocities
until a new collision takes place. Wehage and Haug [331] utilized Newton’s impact law
together with piecewise contact approach to discuss contact problems in constrained multi-
body mechanical systems. Khulief and Shabana [332] formulated the generalized impulse-
momentum balance equations to analyze impacts in multibody systems.

The problem of friction in multibody dynamics was investigated by Khulief [333]. Battle
and Condomines [334] utilized a Lagrangian formulation and impulsive drivers to maintain
the continuity of a set of generalized velocities during the impact process to model collisions
in dynamical systems. A similar analysis was conducted by Lankarani and Nikravesh [44]
to treat multibody systems with intermittent motion. These authors demonstrated that the
numerical resolution of the canonical equations of motion is quite efficient and stable. Haug
et al. [335] formulated and solved the equations of motion using the Lagrange multipliers
technique. Newton’s hypothesis and Coulomb’s friction law were considered to represent
the impacts. The problem was replicated by Wang and Kumar [336] and Anitescu et al.
[337], solution of which was obtained as a quadratic programing problem.

Hunt and Crossley [40], Khulief and Shabana [41, 42], Lankarani and Nikravesh [43],
and Flores et al. [77] utilized a continuous approach and effective mass to model contact-
impact events in multibody systems. Kuwabara and Kono [165] presented a viscoelastic
contact force model and compared it with experimental data resulting from collisions be-
tween two pendula. Their force model was capable to predict the velocity dependence of the
coefficient of restitution for low dissipative conditions. Inspired by Dubowsky and Freuden-
stein investigations [338, 339] and Hunt and Crossley [40], Kraus and Kumar [340] proposed
a compliant contact approach for rigid body collisions able to overcome the deficiencies as-
sociated with Newton’s and Poisson’s theories. The algorithm presented was appropriate to
handle the different regimens of contact points, which was demonstrated in the peg-in-hole
insertion problem.

Kane [341] pointed out an apparent paradox on the application of Newton’s impact the-
ory with Coulomb’s friction to a problem of the collisions in a double pendulum with the
ground, leading to an overestimation of energy in the system. Kane and Levinson [342] ob-
served that the solution of rigid body impact based on Newton’s approach produces energet-
ically inconsistent data. Newton’s hypothesis is not able to predict changes in the direction
of slip, which is the source of overestimation of the rebound velocity as a result of an im-
pact. Pereira and Nikravesh [343] also solved the double pendulum impact problem using
Newton’s impact law, establishing bounds on the coefficient of restitution to achieve the
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correct energy balance. Keller [344] presented a solution to Kane’s paradox, which results
in widespread interest in the contact dynamics research community [3, 302, 304, 351].

Based on Keller’s work, Hurmuzlu and Marghitu [345] developed a differential-integral
approach and used different models for the coefficient of friction. Their approach was ap-
plied to a contact-impact problem in planar mechanical systems. Zhang and Sharf [346]
proposed an integrated form of Keller’s solution to deal with rebound velocities. Han and
Gilmore [347] used an algebraic formulation for the equations of motion together with Pois-
son’s impact theory and Coulomb’s friction law to define the tangential motion. Different
motion regimens that characterize the dynamic response (sliding, sticking, and reverse slid-
ing) were examined by analyzing velocities and accelerations at the contact points. These
authors verified and compared their numerical results with experimental data for simple
unconstrained systems with two and three bodies.

Wang and Mason [348], based on Routh’s approach, compared the coefficient of resti-
tution given by Newton and Poisson. They conducted studies able to eliminate the energy
overestimation when Newton’s impact theory is considered, their solution being applied to
unconstrained impacting bodies. Wang and Mason [349] also used Routh’s approach to dis-
cuss the contact problem between a moving body against the ground. Smith [350] presented
an algebraic solution to the impact problem utilizing Newton’s impact law. Brach [351] pro-
posed another algebraic solution, revising Newton’s impact theory and introducing impulse
ratios, to characterize the dynamic behavior in tangential direction.

Pfeiffer [352] utilized contact and friction constraints to model and analyze the stick-slip
phenomena. Dierassi [353, 354], considering a recursive summation technique, presented
a study on one-step evaluation of impulse components during sticking and discontinuous
sliding. Stronge [355, 356] showed energy inconsistencies in some solutions with Poisson’s
hypothesis when the coefficient of restitution is considered to be independent of the coeffi-
cient of friction. More recently, Stronge [357] presented a comprehensive investigation on
the energetically consistent calculation for oblique impacts in unbalanced systems with fric-
tion. Najafabadi et al. [358] described a study on the energy dissipation during impact in a
three-link constrained planar system using the energetic coefficient of restitution.

The problem of rigid body collisions with multiple contact points was analyzed by
Marghitu and Hurmuzlu [359]. A detailed analysis of energy dissipation within rigid body
impacts was addressed by Chatterjee [360] and Batlle [361]. Glocker [362, 363] presented
two comprehensive and detailed treatises on the energetic consistencies for standard impacts
together with several applications.

It should be highlighted that most of the investigations described above are limited to
unconstrained and planar systems. Papastavridis [364] presented an analytical dynamics
formulation of constrained multibody mechanical systems of rigid bodies with impulse con-
straints. For simple multibody systems, Stronge [302] utilized the piecewise approach and
the energetic coefficient of restitution to treat impact events. Glocker and Pfeiffer [48], based
on the unilateral technique proposed by Moreau [365], used Poisson’s impact theory together
with a complementarity approach to obtain the normal and tangential impulses at the con-
tact points in the context of dynamics of multibody systems. Johansson and Klarbring [366]
developed an approach based on the impenetrability condition and Coulomb’s friction law,
where the equations of motion were formulated in terms of velocities and impulses rather
than accelerations and forces [367].

Ahmed et al. [368] proposed a joint-coordinate Poisson-based canonical formulation for
the treatment of frictional impact problems in constrained multibody mechanical systems.
Subsequently, Lankarani and Pereira [2] presented a general formulation to model impacts
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with friction in open and closed multibody systems, where the kinetic coefficient of resti-
tution defined by Poisson’s hypothesis was considered. This methodology was able to cor-
rectly predict different regimens of tangential contacts, namely sliding, sticking, and reverse
sliding. Lankarani [57] and Stoenescu and Marghitu [369] studied kinematic systems with
impacts. Pereira and her co-workers [82, 83, 370], in a series of interesting papers, presented
a complete and critical analysis of cylindrical contact force models for multibody dynamics.
Their regularized approach was compared with FEM data and applied to dynamic modeling
of chain drives [371]. Boos and McPhee [81] developed a volumetric contact force model,
which combines both elastic and dissipative terms expressed as function of the volume in-
dentation. Their force model was validated with experimental data. Several contact force
models for different types of applications have been proposed in the same research group
over the last years [86, 87, 92].

Uchida et al. [372] presented a general formulation able to model simultaneous frictional
impacts in spatial multibody systems. Their impact approach, named as PLUS (acronym for
Poisson, Lankarani, Uchida, and Sherman), was effective in capturing the main features in
3D contact events. Several other researchers have considered the problem of studying three-
dimensional systems with frictional contacts over the last years [373–381]. Kleinert et al.
[382] applied the non-smooth approach to study large-scale problems of granular matter,
using differential variational inequality (DVI) to formulate and solve collisions. The DVI
approach has been identified as a powerful tool to deal with multiple contact problems in
dynamical systems [383–385]. Pazouki and his co-authors [386] presented a comparative
analysis of regularized and non-smooth formulation in the context of granular media dy-
namics.

3 Fundamental issues in contact dynamics

The key features associated with both normal and tangential contact problems in dynamical
systems are revisited in this section, since they constitute the main ingredients necessary for
the process of modeling contact-impact events in multibody systems [43, 263].

Figure 1 represents the behavior of the one-dimensional central collision between two
solid and isotropic spheres. For the sake of simplicity, let us consider that the spheres are
moving with constant velocities and without any external forces. Before the collision, the
velocity of sphere 1 is higher than the velocity of sphere 2, meaning that sphere 1 will collide
with sphere 2. After the impact, the velocity of sphere 2 is higher than the velocity of the
sphere 1, this implies that the two spheres separate from each other when the collision ends
[387].

During the impact between the two spheres, local deformation or pseudo-penetration oc-
curs, resulting in reaction normal contact forces that act over the contact period. Figure 1
also shows the evolution of the deformation and normal contact force at the impact dura-
tion, as well as the velocities and accelerations of each sphere before, during, and after the
collision. In these diagrams, t (−) represents the instant just before the impact, t (+) denotes
the instant immediately after the impact, and �t is the duration of the impact, which is con-
sidered to be finite for illustrative purpose. In the collision represented in Fig. 1, the relative
approaching velocity and the relative separating velocity are defined as, respectively,

δ̇(−) = v
(−)

1 − v
(−)

2 , (1)

δ̇(+) = v
(+)

1 − v
(+)

2 . (2)
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Fig. 1 (a) One-dimensional central collision between two solid spheres; (b) Deformation and normal contact
force evolutions during the collision; (c) Velocities of the spheres before, during, and after the collision; (d)
Accelerations of the spheres before, during, and after the collision

A contact-impact event happens during the collision of two or more bodies that may be exter-
nal or belong to a multibody system [1, 43]. Poisson [318] divided the collision process into
two distinct and complementary phases, namely the approaching (loading or compression)
period and the separating (unloading or restitution) period. During the approaching phase,
the colliding bodies deform in the normal direction of the contact, and the relative veloc-
ity of the colliding points is gradually reduced to zero. The end of the approaching phase
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is referred to as the instant of maximum deformation. The separation phase of the contact
starts at this instant and finishes when the colliding bodies separate from each other. During
the contact process, part of the kinetic energy of the system is dissipated due to propagation
of waves, viscoelastic material behavior, and noise and heat generation [47, 52]. From the
macro mechanical point of view, the several different ways by which kinetic energy dissipa-
tion happens are collectively condensed in the coefficient of restitution [388, 389].

The coefficient of restitution constitutes the foundation of the impact models of mechani-
cal systems [307, 372]. For a fully elastic collision, this parameter is equal to unity, while for
a fully inelastic collision, the coefficient of restitution is null. The most general and predom-
inant type of collision involves a coefficient of restitution, value of which varies between 0
and 1 [390]. In rigid multibody systems the coefficient of restitution can be established at
three different levels, namely kinematic, kinetic, and energetic, which correspond to New-
ton, Poisson, and Stronge hypotheses, respectively.

The kinematic coefficient of restitution, which is based on Newton’s impact theory [316],
can be established as the quotient between the relative normal velocities of the colliding
bodies just after and just before the impact [315]. Newton’s hypothesis can be written as

cr = − δ̇(+)

δ̇(−)
. (3)

The kinetic coefficient of restitution, which is based on Poisson’s impact theory [391], is
equal to the quotient between the accumulated normal impulses corresponding to the resti-
tution and compression phase [315]. Poisson’s hypothesis can be expressed by

cr = −pf − pc

pc
, (4)

in which pf denotes the total normal impulse, or the final impulse, after the restitution phase,
and pc represents the normal impulse at which the relative normal velocity is null. It is clear
that pf is the accumulated impulse during the compression and restitution phases, while pc

is the impulse for the compression phase.
Finally, the energetic coefficient of restitution, which is based on Stronge’s impact theory

[391, 392], is equal to the square root of the negative of the ratio of elastic strain energy re-
leased during restitution to the internal energy of deformation absorbed during compression.
Stronge’s hypothesis can be written as

cr =
√

−W (pf) − W (pc)

W (pc)
, (5)

where W (pf) is the work done by the normal impulse during impact, and W (pc) represents
the work done by the normal impulse during compression phase.

Frictional contact problems are fascinating in multibody dynamics not only due to their
ubiquity, but also because of their complex nature [2, 263, 393]. By and large, friction hap-
pens when two contacting bodies have relative motion [1, 277–279]. In fact, two contacting
bodies with no null relative tangential velocity develop friction forces acting in the opposite
direction to the local relative motion.

Figure 2 represents the interaction of a solid block and the ground. In a stationary situ-
ation, the weight of the block fg is balanced by the normal reaction force fn as it can be
observed in the diagram of Fig. 2a. It is clear that the block remains in stationary regimen
if an external applied force f is not sufficient to move the block, as it is the case illustrated
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Fig. 2 (a) Stationary block on the ground without an external applied force; (b) Stationary block when a
small external force is applied; (c) Block in motion due to a large external applied force; (d) Friction force
evolution for the different regimens of the block; (e) Coulomb’s friction law

in Fig. 2b. In this static situation, the friction force prevents the motion of the block from
occurring. It can be verified that the friction force and the applied force cancel out each
other, and the block keeps its stationary phase. Thus, when the external applied force acts
on the block and it is maintained in a stationary regimen, the weight of the bock and the
applied force are equilibrated by the oblique reaction force fr as Fig. 2b depicts. The angle
ϕ, represented in Fig. 2b, is the adhesion angle. For the stationary regimen, the static friction
can be expressed by Coulomb’s friction law [312]

ft = μsfn, (6)

where μs represents the static friction coefficient, and fn denotes the normal reaction force.
The maximum friction force takes place at the end of the stationary phase, as it is rep-

resented in Fig. 2d, meaning that the motion of the block is in the eminence to be initiated.
When block starts its motion, the magnitude of the friction force is reduced. This scenario
is visible by the discontinuity of the plot in Fig. 2d.

When the external applied force f is large enough to move the block, the static friction
changes to the dynamic friction. In this regimen, the oblique reaction force fr has two com-
ponents, namely the tangential and the normal forces, as Fig. 2c shows. It is clear that the
tangential force ft represents the friction force that opposes the relative motion. During the
motion of the block on the ground, the friction force is given by Coulomb’s law [312]

ft = μdfn, (7)
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where μd represents the dynamic coefficient of friction, and fn denotes the normal reaction
force. It must be noticed that, in general, μs is greater than μd [394]. In the dynamic friction
regimen, the angle φ is called friction angle. The cone illustrated in Fig. 2c is often referred
to as the friction cone [347]. It is clear that when the reaction force fr is situated inside this
cone, there is no sliding of the block. The tangent of the friction angle is, by definition, the
coefficient of the friction, that is,

μd = tanφ = ft

fn
(8)

which represents, in fact, Coulomb’s friction law.
Figure 2e shows the representation of the Coulomb, or dry, friction force model, which

states that the friction force opposes the relative motion of bodies and is proportional to
the normal reaction force. Coulomb’s friction model is dependent on the relative tangential
velocity vt except for the case of null velocity, where the friction force is a multivalued
function of the external tangential force [263, 304].

4 Techniques to model contacts in multibody dynamics

The problem of modeling contact-impact events in multibody dynamics embraces two main
tasks, namely the evaluation of the geometry of contact, and the resolution of the contact in-
teraction. The first task incorporates the definition of the contacting surfaces and the contact
detection procedure. For the determination of the contact points, gap functions are usually
utilized, for which the point of minimum distance between the surfaces is used as the poten-
tial contact point [193, 395]. This procedure can be performed analytically or numerically,
depending on the surfaces level of complexity. Furthermore, the contact detection step can
be implemented independently of the contact resolution solver module [396, 397]. In turn,
the resolution of the contact itself includes the calculation of the normal and tangential con-
tact forces developed at the contact [33, 43, 77], as well as the application of the contact
forces in the multibody system equations of motion under analysis. The technique selected
to perform the contact resolution task must be able to handle the transition between different
regimens at the contact points [57, 76, 304, 372].

There are two main techniques to solve contact dynamic problems, specifically: the regu-
larized approaches (continuous methods) and the non-smooth formulations (piecewise meth-
ods) [2, 57, 395]. In the former techniques, also known as compliance or elastic methods,
the contacting bodies are considered to be deformable at the contact zone, and the contact
forces can be expressed as a continuous function of the local deformation between the con-
tacting surfaces. In turn, in the non-smooth formulations, also called instantaneous or rigid
methods, the contacting bodies are assumed to be truly rigid, and the contact dynamics is
resolved by applying unilateral constraints in order to avoid the penetration from occurring
[45, 191, 304].

The regularized approaches are quite important in the context of multibody dynamics
because of their good computational efficiency and extreme simplicity to be implemented.
However, in some circumstances, numerical problems can arise, resulting from bad condi-
tioned system matrices [76, 398]. With the regularized methods there are no impulses at the
impact process, hence there is no need for impulse dynamics computations. Therefore, the
transition between contact and non-contact situations can easily be handled from the sys-
tem configuration and contact kinematics [43, 61]. With these methods, the contact forces
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include spring-damper elements to prevent interpenetration from occurring, and no explicit
kinematic constraints are utilized, but simply contact reaction forces are considered instead.

In the regularized approaches, the location of the contact point does not coincide in the
contacting bodies, and a large number of potential, or candidate, contact points exist, the
actual contact point being the one associated with the maximum indentation. Thus, relative
pseudo-penetration between contacting bodies is permitted to occur, reason why the regular-
ized methods are often called elastic approaches [395, 398]. The pseudo-penetration plays
a key role as it is utilized to calculate the contact reaction forces according to an appropri-
ate constitutive law [77]. In general, the contact force models can include viscoelastic and
plastic terms [47, 49], as well as contact kinematics and geometric properties of the con-
tacting surfaces [52, 399]. The existence of friction in the continuous methods can easily be
incorporated by considering any regularized friction force model [106, 393, 400].

An inconvenience associated with regularized approaches deals with the estimation of the
contact parameters, in particular when the contact geometry is of complex nature [104, 401].
A second difficulty, or limitation, of the regularized methods is the introduction of high-
frequency dynamics into the system due to the existence of contact related spring-damper el-
ements in the contacting surfaces. Thus, when the dynamics requires the integration scheme
to take small time steps, the computational efficiency can be penalized [76]. In the methods
based on non-smooth formulations, the contact points on both colliding bodies are necessar-
ily coincident due to the unilateral constraints introduced into the system. In these methods,
the relative interpenetration between the colliding bodies is not allowed, since the bodies are
considered to be entirely rigid at the contact zone [284, 402, 403].

Assuming that the contacting bodies are absolutely rigid, as opposed to locally de-
formable bodies as in the regularized approaches, the non-smooth formulations resolve the
contact-impact problems using unilateral constraints to determine impulses to avoid pene-
tration from occurring. At the core of non-smooth methods is an explicit formulation of the
unilateral constraints between colliding rigid bodies [45, 404].

The central idea of the non-smooth formulations is the non-penetration condition that
only prevents bodies from moving toward each other and not apart, reason why this approach
is called unilateral constraint [405, 406]. For this purpose, usually, a complementarity for-
mulation is utilized to describe the relation between the contact force and the gap distance
at the contact point. Such a unilateral constraint does not permit the interpenetration of the
two colliding bodies and ensures that either the contact force or the gap distance is null. This
means that, when the gap distance is positive (open or inactive contact), the corresponding
contact force is null. Conversely, when the contact force is positive (closed or active contact),
the gap distance is null [304]. Thus, this formulation leads to a complementarity problem,
which constitutes the rule that permits to treat multibody systems with unilateral constraints
[407, 408].

The numerical problems related to the regularized approaches do not appear in the non-
smooth methods, but they lead to other difficulties and requirements [292, 395]. For instance,
the existence of a unique solution is not guaranteed, because in some cases the system can be
undetermined or have multiple solutions [291, 409–411]. In general, commercial multibody
codes with collision and dry friction features deal with the non-smooth nature of the problem
by an ad hoc regularized solution, using continuous models to avoid undesired interpene-
tration between bodies, which can ultimately lead to some numerical and computational
difficulties.

Figure 3 shows the graphical representation of the normal and tangential contact forces
for the regularized approaches and non-smooth formulations. In essence, the regularized
approaches and the non-smooth methods, utilized to handle contact-impact events under the
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Fig. 3 (a) Regularized normal contact force model; (b) Non-smooth normal contact force model; (c) Regu-
larized tangential contact force model; (d) Non-smooth tangential contact force model

Table 1 Summary of the main features associated with regularized and non-smooth techniques

Regularized approaches Non-smooth formulations

Bodies can locally deform Bodies are strictly rigid

Pseudo-penetration is allowed Impenetrability condition is utilized

Contact forces are continuous Impulse-momentum is applied

Can cause high-frequency Are robust and stable

Small time steps are required Large time steps can be used

Local properties can be difficult to establish Local properties are simple to identify

Multiple contacts are easy to handle Difficult for multiple contacts

Differential equations are stiff Undetermined and multiple solution can arise

Easy to implement Not easy to generalize

framework of multibody dynamics, inevitably have advantages and disadvantages. Anyway,
none of these techniques briefly characterized above can be identified as superior. In fact,
a particular multibody mechanical system with collisions might easily be described by one
method; nevertheless, this does not automatically imply a general predominance of that
formulation in all multibody applications [80, 175, 340, 412].

Table 1 presents some of key features associated with the regularized and non-smooth
techniques, which allows for a simple and quick comparison. From the accuracy and fidelity
of the results obtained, one critical issue related to frictional contact problems deals with the
discretization, or modeling process, of the mechanical system under analysis. If the problem
is well discretized, in general, both regularized and non-smooth techniques are effective to
treat any frictional problem. In any case, the evaluation of the geometry of contact (con-
tact detection) is the same regardless of the choice of the technique selected to model the
contact interaction between the colliding bodies (contact resolution) whether the regularized
approaches or non-smooth formulations are being used [260, 413].

5 Geometry of contact in multibody dynamics

The geometry of contact in multibody dynamics encompasses three fundamental aspects,
namely: (i) the geometric description of the contacting surfaces; (ii) the identification of the
potential contact points; (iii) the evaluation of the contact kinematics. These three features
characterize the preparation phase of the contact modeling process in dynamical systems.
The computational accuracy and efficiency of the preparation of the contact problems in
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Fig. 4 (a) Open or inactive contact relative to a non-contact situation, δ > 0; (b) Instant of the beginning of
contact, δ = 0; (c) Closed or active contact relative to a contact scenario, δ < 0

multibody dynamics strongly depends on the level of complexity of the contacting surfaces
[414, 415], the number of potential colliding elements [19, 384], and kinematics of the
bodies [416, 417].

In most of the practical applications, the contact locus is considered to be punctual due
to convex boundary nature of the surfaces where contact points might occur. The contact-
ing surfaces of the colliding bodies can be defined by straight lines [418, 419], circles
[134, 141], spheres [420, 421], planes [422, 423], polygonal meshes [251, 259, 261, 396],
superquadric elements [75, 424, 425], superellipsoidal surfaces [19, 426–430], freeform sur-
faces [257, 415], etc. No matter how the contacting surfaces are established, it is required to
search for the potential contact points in the moving bodies. A demanding task in the con-
tact detection step in multibody dynamics is to check whether the potential, or candidate,
contact points are in contact or not. For that, the point of minimum distance between the
contacting surfaces is utilized as the potential contact point, employing gap distances [63].
Figure 4 shows three different scenarios between two generic contacting surfaces, where the
gap distance δ assumes three distinct values [431], which allows for the identification of
active (closed) and inactive (open) contacts.

It has been recognized that most of the time consumed in modeling and analyzing impact
problems is spent in the contact detection task. For simple geometries, such as in revolute
clearance joints [52] and granular media [26], the contact detection step can be performed
analytically. In these cases, the location of the contact points is given explicitly by functions
of the coordinates of the contacting bodies. Surfaces of complex nature, such as in human
articulations [431] and rail-wheel systems [257], the identification of the potential contact
points must be done considering numerical procedures [76]. The geometry of contact in
multibody dynamics contemplates as input the geometry and kinematics of the simulated
systems, and produces outputs according to the queries if, where, when, and which points
are in contact. In fact, the geometry and kinematics of contacting surfaces constitute the fun-
damental ingredients to formulate and analyze contact-impact events in dynamical systems
[403].

At this stage, it must be noticed that the contact detection step requires, in general,
a tremendous computational effort due to the iterative nature of the numerical procedure
utilized. This aspect plays a crucial role in complex surfaces and in problems with mul-
tiple and simultaneous contacts. Several authors have employed lookup-table-based tech-
niques with the aim of improving the computational efficiency when dealing with collisions
[415, 432–437]. In turn, problems with hundreds of simultaneous contacts have been simu-
lated with GPU parallelization in order to distribute the computational cost associated with
search of contact [438–442]. The computational accuracy and efficiency of modeling and
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Fig. 5 Representation of the
contact between two generic
freeform profiles, where the gap
distance is exaggerated with the
purpose to include of the
necessary geometric elements

analysis of dynamical systems with contact-impact events are features of central importance
in computer games, virtual reality, and real-time simulation scenarios, where realistic and ef-
fective responses of the collisions are required [414, 443–446]. Another approach to reduce
the time consumed during the contact detection step consists of building bounding objects
of simple geometric nature, such as spheres or boxes. Thus, plausible contact scenarios are
considered instead of taking into consideration all the possible contacts. Some of the most
popular contact detection algorithms are the axis-aligned bounding box (AABB) trees, ori-
ented bounding box (OBB) trees, binary space partitioning (BSP) trees, and inner sphere
trees (IST) [259, 396, 415, 447–457].

In what follows, a general and straightforward procedure to treat the geometry of con-
tact in multibody dynamics is described. Figure 5 depicts two generic contacting surfaces of
two colliding bodies, which are represented by a collection of points. This type of freeform
profile is branded by three key features, chiefly: (i) the spatial position; (ii) the sense of ori-
entation; (iii) the measure of proximity, or distance, between bodies. Thus, the central issue
is how to compute such representations in the context of multibody systems methodologies.

Firstly, let us consider that the potential contact points on bodies i and j are represented
by Pi and Pj , respectively. Further, the contacting surfaces are defined by two cubic spline
functions as [431]

si = a3θ
3
i + a2θ

2
i + a1θi + a0, (9)

sj = b3θ
3
j + b2θ

2
j + b1θj + b0, (10)

in which a0, a1, a2, a3, b0, b1, b2, b3 are the cubic spline polynomial coefficients, and θi

and θj represent the profile of the curve polar parameters that define the splines considered
[458].

The distance function between potential contact points, Pi and Pj , of the two freeform
profiles represented in Fig. 5, can be written as

d = rP
j − rP

i , (11)

where rP
i and rP

j are the global coordinates with respect to the inertial reference frame [459]

rP
k = rk + Aks′P

k (k = i, j), (12)
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in which ri and rj are the global position vectors of bodies i and j , and s′P
i and s′P

j represent
the local components of the two potential contact points. In turn, Ai and Aj denote the
rotational transformation matrices [459].

The normal vector to the plane of collision can be defined as

n = d
d

, (13)

in which the magnitude of the vector d is given by

d = δ = √
dTd. (14)

The tangential vector t can be obtained by rotating the vector n in the counter-clockwise
direction by 90°, as shown in Fig. 5.

The first condition for the potential contact points Pi and Pj to be satisfied is that those
points belong to the contacting surfaces of the colliding bodies i and j . The second condi-
tion corresponds to the minimum distance given by Eq. (11). Nevertheless, this equation is
not sufficient to find the possible contact points between the two generic freeform profiles
represented in Fig. 5, because it does not cover all the scenarios that can happen in a con-
tact problem in multibody dynamics. Thus, the actual contact points are established as those
that correspond to maximum penetration, that is, points of maximum indentation measured
along the normal direction. It is worth noting that a normal contact direction in the contact
detection process is not known beforehand and usually needs to be determined iteratively
[460].

In a simple manner, potential contact points Pi and Pj of the two contacting profiles illus-
trated in Fig. 5 must fulfil the following four conditions: (i) the points belong to contacting
surfaces of the bodies i and j ; (ii) the distance between the candidate contact points, given
by Eq. (11), corresponds to the minimum distance; (iii) the vectors d and ni are collinear;
(iv) the normal vectors ni and nj are collinear. Conditions (iii) and (iv) can be expressed as

d × ni = 0, (15)

nj × ni = 0. (16)

It must be noted that in the current case, Eqs. (15) and (16) form a system of two nonlinear
equations with two unknowns that can be solved numerically, employing, for instance, the
Newton–Raphson iterative procedure [461]. This nonlinear problem has to be solved at every
time step of resolution of the equations of motion of the multibody system under analysis.
The obtained solutions correspond to the effective location of the potential contact points.
Subsequently, the value of pseudo-penetration can be evaluated using Eq. (14).

The remaining information relative to the contact kinematics can be established based on
the computation of the velocities of the contact points, which are expressed as [459]

ṙP
k = ṙk + Ȧks′P

k (k = i, j), (17)

where the dot represents the derivative with respect to time. Then, the relative velocity of the
contact points must be projected onto the normal and tangential directions of the contacting
surfaces since they play a key role in the determination of this kind of contact dynamics
problem. The scalar normal and tangential velocities are given by

vn = δ̇ = (
ṙP
j − ṙP

i

)T
n, (18)
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vt =
(
ṙP
j − ṙP

i

)T
t. (19)

It is clear that the normal relative velocity defines whether the colliding bodies are ap-
proaching or separating. In turn, the tangential relative velocity establishes whether the con-
tacting bodies are sliding or sticking, which are of paramount importance in the friction
analysis in multibody dynamics [462–464].

In summary, the geometry of contact between two bodies in multibody dynamics is rep-
resented as the seven-tuple

C = {
i j Pi Pj δ vn vt

}T
, (20)

where i and j are the colliding bodies, Pi and Pj denote the contact points, δ is the pseudo-
penetration, vn represents the normal relative velocity, and vt is the tangential relative veloc-
ity.

6 Regularized methods for dynamical systems

Following the formulation proposed by Nikravesh [459], the kinematic constraints in multi-
body systems can be described by algebraic equations in a compact form as

�(q, t) = 0, (21)

in which q represents the vector of generalized coordinates, and t denotes the time variable.
Based on the Lagrange multipliers technique, Nikravesh [459] presented the translational

and rotational equations of motion for constrained multi-rigid-body systems as

Mq̈ + �T
qλ = g, (22)

where M represents the generalized mass matrix, q̈ denotes the vector of generalized accel-
erations, �q is the Jacobian matrix, λ contains the Lagrange multipliers associated with the
system’s kinematic constraints, and g is the vector of generalized forces that includes all the
external applied forces, such as those that result from contact-impact events.

In order to have a proper solution for the dynamic response of multibody systems, it is
necessary to add the algebraic constraint Eqs. (21) to the equations of motion (22), resulting
in a set of differential algebraic equations (DAE) of index 3. With the purpose to avoid
this type of equations, which present some numerical difficulties, the acceleration constraint
equations must be considered instead of using Eq. (21). Taking the second time derivative
of Eq. (21) yields

�qq̈ = γ , (23)

where γ represents the right-hand side of acceleration constraint equations, which contains
the terms exclusively function of position, velocity, and time.

Combining Eqs. (22) and (23), the equations of motion for a constrained multibody me-
chanical system can be written in the matrix form [459]

[
M �T

q
�q 0

]{
q̈
λ

}
=

{
g
γ

}
. (24)
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This equation is a system of DAE of index 1 that is solved for accelerations and Lagrange
multipliers. Then, the accelerations and velocities are integrated in time to determine the
new velocities and positions. This numerical procedure is repeated until the final time of
simulation is reached. Different strategies exist in the thematic literature to handle, for in-
stance, the constraints violation and to ensure good computational accuracy and efficiency
[160, 459, 465–471].

When two bodies come into contact with each other, both normal and tangential contact
forces are applied and removed in a very short time interval, demanding for special atten-
tion in terms of the integrator scheme utilized in the resolution of the equations of motion
(24). In general, integration algorithms with both variable time step and order are preferable
[76]. The resolution of a collision problem in the context of multibody systems embraces
two main tasks, namely the evaluation of contact forces and the introduction of those forces
into the equations of motion. The contributions of the forces and moments that result from
collisions to the vector of generalized forces g are determined by projecting the normal and
tangential forces onto the x and y directions. The contact forces, which act at the contact
points (see Fig. 6), are transferred to the center of mass of the colliding bodies, and the cor-
responding transport moments are also applied to each body. Thus, with regard to Fig. 6, the
resulting forces and moments acting on the center of mass of colliding body i are computed
as follows [459]:

fi = fn + ft, (25)

τ i = sP
i × fi . (26)

The corresponding forces and moments that act on colliding body j are defined as follows:

fj = −fi , (27)

τ j = −sP
j × fi . (28)

The contact forces in multibody dynamics, modeled with regularized methods, can be evalu-
ated using appropriate constitutive laws, in which the forces vary in a continuous manner. In
other words, when two bodies collide, the velocities are continuous during the impact dura-
tion (see Fig. 1d), as the bodies undergo a local deformation, or indentation. The regularized
force models must account for energy store and energy dissipation processes during the con-
tact period, which are typically modeled as spring and damper elements [340]. In most of
the common applications, in the context of multibody systems, the normal and tangential
contact forces are based on Hertz’s law [326] and Coulomb’s law [312], respectively.

The oldest and simplest contact force model is the one associated with Hooke’s theory,
which can be applied when a contact is active. This regularized force model considers a
linear spring to mimic the contact interaction and can be expressed as [472]

fn = kδ, (29)

where k represents the spring stiffness related to the contact materials, and δ is the pene-
tration between the contacting surfaces (14). The contact stiffness can be determined an-
alytically, numerically, or experimentally. Figure 7a shows a generic representation of the
force-penetration evolution for the linear Hooke contact force model. This approach is quite
simple but does not account for any kind of energy dissipation during the contact process.
In fact, Hooke’s law is valid for collisions involving extremely low impact velocities [315].
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Fig. 6 Normal and tangential
contact forces generated during a
collision between bodies i and j

A more advanced contact force model was developed by Hertz. It considers a nonlinear
relation between force and penetration as [326]

fn = Kδn, (30)

where the nonlinear exponent n is typically equal to 3/2. The contact stiffness K can be
determined analytically as a function of material properties and the geometry of contacting
surfaces [294]. Figure 7b depicts the force-penetration relation for nonlinear Hertz’s law.
In a similar manner to Hooke’s law, the Hertz contact force model is unable to predict any
energy dissipation associated with the contact-impact events.

The first contact force model that accommodates energy dissipation in collisions is the
Kelvin–Voigt approach. This model combines a linear spring with a linear damper to repre-
sent the contact forces as [315]

fn = Kδ + Dδ̇, (31)

where the first parcel is the elastic force term, and the second parcel denotes the dissipative
force component, in which D represents the damping coefficient, and δ̇ is the normal relative
velocity of the contacting bodies (18). Figure 7c shows the force-penetration relation for
the linear Kelvin–Voigt contact force model. It is worth noting that this approach exhibits
discontinuities at the beginning and ending of the contact process. In fact, the damping term
originates finite forces when the penetration is null, which is not acceptable from a physical
point of view. Furthermore, at the end of contact, the Kelvin–Voigt force model produces
negative forces that are not correct because the bodies involved in the collision cannot attract
each other.

Hunt and Crossley [40], in their seminal work, presented a contact force model that asso-
ciates a nonlinear spring with a nonlinear damper in parallel to mimic the contact interaction.
This force model can be expressed as

fn = Kδn

[
1 + 3(1 − cr)

2

δ̇

δ̇(−)

]
, (32)

where the first term represents nonlinear elastic Hertz’s law, and the second term is the
dissipative parcel, cr being the coefficient, and δ̇(−) is the normal contact velocity at the
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Fig. 7 Force-penetration relations for different contact force models: (a) Hooke’s law; (b) Hertz’s law; (c)
Kelvin–Voigt approach; (d) Hunt and Crossley contact force model

initial instant of impact. Figure 7d illustrates the force-penetration evolution for the Hunt and
Crossley contact force model, in which the compression and restitution phases of an impact
can be identified. In this diagram, the area of the hysteresis loop represents the amount of
energy lost during the impact process. The Hunt and Crossley force model does not present
any discontinuity at the beginning or ending of the collision.

The most popular contact force model in the multibody dynamics community is the one
proposed by Lankarani and Nikravesh [43], which was developed based on the Hertzian
contact theory and on the damping approach by Hunt and Crossley. The contact force model
presented by Lankarani and Nikravesh can be written as

fn = Kδn

[
1 + 3(1 − c2

r )

4

δ̇

δ̇(−)

]
, (33)

which is valid for collisions with high values of the coefficient of restitution [43], that is, this
model is applicable to elastic impacts [47]. The contact force model presented by Lankarani
and Nikravesh has been utilized in many areas of science and engineering [473–489].

More recently, Flores et al. [77] described a contact force model applicable to the entire
domain of possible values for the coefficient of restitution, which is given by

fn = Kδn

[
1 + 8(1 − cr)

5cr

δ̇

δ̇(−)

]
. (34)

The use of contact force models (33) and (34) provides a similar evolution of the force-
penetration diagram as for the case of the Hunt and Crossley approach (see Fig. 7d). For low
values of the coefficient of restitution, the hysteresis loop for the Flores et al. contact force
model is larger [294]. It must be noticed that the contact force models (32)–(34) can exhibit
some limitations when the contacts are too long, and when the velocity ratio δ̇/δ̇(−) becomes
significantly less than 1 [19, 120, 435]. Over the last years, a good number of contact force
models have been presented in the literature, the reader interested in detailed information is
referred to the following references [29, 37, 61, 92, 97–100, 268, 270, 272, 275, 490, 491].

When two bodies collide with each other, besides the normal contact forces, tangential
or friction forces are also generated. In fact, two contacting bodies with no null tangential
relative velocity develop friction forces that act in the opposite direction to the local relative
velocity. Haug et al. [335] directly solved the differential equations of motion by using
the Lagrange multipliers technique. Newton’s impact law was utilized for normal contact,
while Coulomb’s friction law was considered for the tangential contact. More recently, Haug
revisited the problem of modeling friction in multibody systems [492, 493].
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The most well-known friction force model is, undoubtedly, the one represented by
Coulomb’s law, which can be expressed as [312]

ft =
{ ≤ μsfn if vt = 0

μdfnsgn(vt) if vt �= 0
(35)

with

sgn(vt) =
{

0 if ‖vt‖ = 0
vt

‖vt‖ if ‖vt‖ �= 0 , (36)

in which μs and μd represent the static and dynamic coefficients of friction, respectively,
fn denotes the normal contact force, and vt is the tangential relative velocity of contacting
elements (19). Figure 8a shows the graphical representation of Coulomb’s friction force
model. It must be noticed that this friction law exhibits some numerical difficulties in terms
of computational implementation in multibody systems simulations because it does not give
any specific value when the tangential relative velocity is null [256, 277–280, 435, 494–496].
This issue was well described by Glocker when stated that “With that friction law, one has
chosen one of the most complicated force laws that occur in application problems. It seems
to be so easy and so clear at a first view, however, when trying to apply it, or even when just
trying to write it down as a mathematical expression, one immediately encounters a lot of
serious and not expected problems of very different nature” [263].

Threlfall [497] proposed a regularized friction force model that does not present disconti-
nuities, as it can be observed from the diagram of Fig. 8b. The Threlfall friction force model
can be written as

ft =
{

μdfn
(
1 − e− 3vt

v0
)
sgn(vt) if vt ≤ v0

0.95μdfn if vt > v0

, (37)

where v0 is a threshold velocity.
Bengisu and Akay [498] presented an alternative friction force model as

ft =
{ [

−μsfn
v0

(‖vt‖ − v0)
2 + μsfn

]
sgn(vt) if vt ≤ v0[

μdfn + (μsfn − μdfn) e−κ(‖vt‖−v0)
]

sgn(vt) if vt > v0

, (38)

where κ is a positive parameter that represents the negative slope of the sliding state. Fig-
ure 8c depicts the evolution of the Bengisu and Akay friction force model.

Ambrósio [499] proposed another regularized approach for Coulomb’s law that includes
a ramp to avoid numerical difficulties. This friction force model can be written as

ft = cdμdfn sgn(vt) (39)

with

cd =
⎧⎨
⎩

0 if vt < v0
vt−v0
v1−v0

if v0 ≤ vt ≤ v1

1 if vt > v1

, (40)

in which the dynamic correction factor cd prevents that the friction force changes direction
for almost null values of the tangential relative velocity. Figure 8d shows Ambrósio’s friction
law.



Contact mechanics for dynamical systems: a comprehensive review 147

Fig. 8 Graphical representation of several friction force models: (a) Coulomb’s friction law; (b) Threlfall
friction force model; (c) Bengisu and Akay friction force model; (d) Ambrósio friction force model

The use of friction models (37), (38), and (39) has the advantage of allowing the nu-
merical stabilization of the integration algorithm used during the resolution of equations of
motion for constrained multibody systems. However, these approaches do not consider the
stiction; thus, several alternative friction force models have been proposed over last decades,
the interested reader is referred to the following references [61, 86, 276, 309, 340, 393, 394,
492–515].

7 Non-smooth formulations for dynamical systems

Non-smooth dynamics is characterized by discontinuities, or jumps, in the system’s kine-
matic quantities, namely at the velocity level, which are the result of collisions [516]. Non-
smooth theory has its roots in the work by Moreau [365], who established the foundations
of this powerful formulation. Panagiotopoulos [517] expanded this methodology by intro-
ducing inequalities with regard to non-convex features. Pfeiffer and Glocker, in a series of
cornerstone publications, developed and applied the non-smooth formulation to the case of
multibody systems with contact-impact events [66–68, 186, 281–284, 306, 402]. In the non-
smooth approach, the colliding bodies are considered to be rigid, that is, the contact zone
does not deform in a classic sense. A fundamental law with respect to this concept is the
complementarity rule often called Signorini’s law [407]. This rule states that in contact dy-
namics either relative kinematic quantities are zero and the corresponding constraint force
are not zero, or vice-versa [406].

The equations of motion of a multibody system with frictional unilateral contacts can be
expressed, at the acceleration level, as [304]

Mu̇ − h − wNλN − wTλT = 0 (41)

q̇ = u ∀t, (42)

where M is the positive-definite and symmetric mass matrix, u̇ represents the vector that
contains the system accelerations, h denotes the vector of all external and gyroscopic forces
acting in the system, wN and wT are the generalized normal and tangential forces directions,
λN and λT are the normal and tangential contact forces, q represents the vector of generalized
coordinates, and u is the system generalized velocities.

The solution of the equations of motion (41) requires incorporation of appropriate con-
stitutive laws for the normal and tangential contact forces, such as the set-valued law of
Signorini’s rule and the set-valued law of Coulomb’s friction model [263]. Non-smooth sys-
tems cannot be described solely by equations of motion (41) when impulsive forces exist.
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Equalities of measures provide an elegant and effective way to obtain a valid and com-
prehensive description of non-smooth systems with impacts. Thus, when the equations of
motion for impacts are integrated over a singleton in time, it yields

M
(
u+ − u−) − wN�N − wT�T = 0 (43)

q̇ = u a.e., (44)

in which u− and u+ represent pre- and post-impact velocities, and �N and �T denote the
normal and tangential impulsive forces, which are well defined in the case of impacts.

In order to be able to use together the equations of motion without impacts (41) and the
equations of motion with impacts (43), let us multiply these two set of equations by dt and
dη, respectively, yielding

Mu̇dt − hdt − wNλNdt − wTλTdt = 0, (45)

M
(
u+ − u−)

dη − wN�Ndη − wT�Tdη = 0. (46)

Thus, adding Eqs. (45) and (46) results in

Mdu − hdt − wNdPN − wTdPT = 0, (47)

where the Lebesgue measure is represented by dt , and dη denotes the sum of the Dirac
impulsive measures at the impacts. The measure for the velocities du = u̇dt + (u+ − u−)dη

is split in Lebesgue measurable part u̇dt , which is continuous, and the atomic part which
occurs at the discontinuity points with the left and right limits u− and u+, and the Dirac
point measure dη. For impact free motion it holds that du = u̇dt . Similarly, the measure for
the so-called percussions corresponds to a Lagrangian multiplier, which gathers both finite
contact forces λ and impulsive contact forces �, that is, dP = λdt + �dη [63, 66]. In the
case of non-impulsive motion, all measures dη vanish and a formal division by dt yields the
equations of motion (41).

It must be noticed that the system’s kinematics, which are required to evaluate the contact
and impulsive forces, can be expressed as [263]

γN = wT
Nu + w̃N (48)

γT = wT
Tu + w̃T (49)

that represent the normal and tangential relative velocities of the potential contact points,
where wN and wT represent the generalized normal and tangential forces directions, and w̃N

and w̃T are the Jacobian terms that represent the rheonomic constraints [66].
The equations of motion (47) can be complemented with appropriate laws for normal and

tangential contact-impact forces. For this purpose, a unilateral version of Newton’s impact
hypothesis is utilized for the normal direction with coefficient of restitution εN. In turn,
Coulomb’s friction law is considered for the tangential direction with coefficient of friction
μ which is complemented by a tangential coefficient of restitution εT. Thus, the normal and
tangential contact-impact laws can be written as inclusions in the form

−dPN ∈ Upr (ξN) , (50)

−dPT ∈ μdPNSgn (ξT) , (51)
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with

ξN := γ +
N + εNγ −

N , (52)

ξT := γ +
T + εTγ −

T , (53)

where (
γ +

N , γ −
T

) := (γN, γT)
(
u±)

. (54)

Finally, the complete description of the dynamics of non-smooth systems, which accounts
for both contact and impact phases, is given by Eqs. (47)–(54). This problem can be solved
by using Moreau’s time-stepping method as a linear complementarity problem (LCP) [518]
or as an augmented Lagrangian approach [367].

At this stage, it is opportune to revisit the concepts associated with Eqs. (50) and (51),
namely the unilateral primitive and the Sgn-multifunction [63, 263, 519]. The set-valued
map unilateral primitive is a maximal monotone set-value map related to complementarity
problems, which can be written as

Upr(x) :=
⎧⎨
⎩

{0} x > 0
(−∞,0] x = 0

∅ x < 0
. (55)

The graphical representation of the unilateral primitive map is presented in Fig. 9a. It is clear
that each complementarity condition of an LCP can be expressed as one unilateral primitive
(Upr) inclusion as [63]

−y ∈ Upr(x) ⇔ y ≥ 0, x ≥ 0, xy = 0. (56)

The second maximal monotone set-valued map is the filled-in relay function Sgn-
multifunction, which can be written as [63, 263, 519]

Sgn(x) :=
⎧⎨
⎩

{+1} x > 0
[−1,+1] x = 0

{−1} x < 0
. (57)

It is important to highlight that, while the classical Sgn-function is defined with Sgn(0) =
0, the Sgn-multifunction is set-valued at x = 0. The graphical representation of the Sgn-
multifunction is depicted in Fig. 9b. An inclusion in the Sgn-multifunction can always be
represented by two inclusions involving the unilateral primitive [63]. This decomposition,
illustrated in Fig. 9c, can be expressed as

−y ∈ Sgn(x) ⇔ ∃xR, xLs.t.

⎧⎨
⎩

−y ∈ +Upr(xR) + 1
−y ∈ −Upr(xL) − 1

x = xR − xL

(58)

8 Examples of application

This section comprises several examples of application that are utilized to illustrate the key
role played by the modeling process of contact-impact events in dynamical systems.
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Fig. 9 (a) The map x → Upr(x); (b) The map x → Sgn(x); (c) The decomposition Sgn(x) into Upr(x)

Fig. 10 Snapshots of the hexapod robotic system of a standard set of stairs climbing dynamic simulation

1. Hexapod robotic system [520] The first example is a hexapod walking machine that in-
volves normal and tangential contact phenomena between the feet and ground surfaces and
stairs. Figure 10 shows a three-dimensional multibody model of the hexapod robotic system
analyzed, which is composed of a mainframe and six similar and symmetrically distributed
legs. Each leg is comprised ofa four-bar linkage connected to the main body by means of a
revolute joint. The hexapod system operates by six rotational motors and six linear actuators,
which accomplish traction and elevation motions, respectively. A spherical foot is rigidly at-
tached to each leg, the normal and tangential contact interactions with ground and stairs are
modeled with regularized approaches. Two representative computational simulations have
been performed, which allows to assess the dynamic behavior of the hexapod system. In
the first simulation, a straight path on a planar horizontal surface is considered, while the
second scenario deals with climbing a standard set of stairs. Figure 10 depicts an animation
sequence of the computational simulation relative to the stairs climbing case.
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Fig. 11 (a) Torque developed in the rotational motor during the hexapod traction motion; (b) Force generated
in the linear motor on the front leg during the traction motion

Fig. 12 Planar slider-crank
mechanism with a revolute
clearance joint between the
connecting-rod and slider

Figure 11 illustrates the time evolution of the torque and force developed in the rota-
tional and linear drivers of a front leg for the motion on a flat surface and stairs climbing.
The worst scenario in terms of mechanical load on the machine components occurs in the
stairs climbing case. Overall, this study permits to examine how critical the contact process
is for the success of hexapod motion simulations. In particular, the contact detection pro-
cedure adopted, as well as the smooth transition between different contact regimens, is of
paramount importance to ensure dynamic stability of the hexapod robotic system.

2. Revolute joint with clearance [521] The existence of a gap, or clearance, in actual joints
is necessary for the functionality of the mechanical systems. A revolute clearance joint,
the so-called journal-bearing, can be modeled by contact-impact forces generated between
the journal and bearing surfaces. For that, regularized methods are utilized to evaluate the
normal and tangential contact forces. Figure 12 shows a planar slider-crank mechanism that
includes a revolute joint with clearance, namely the one located at the slider body. In this
type of joint, the journal can freely move inside the bearing. The remaining joints of the
slider-crank multibody model are considered to be ideal joints, that is, they are modeled
with kinematic constraints.

The dynamic behavior of the slider-crank multibody model is displayed in Fig. 13, where
the torque acting on the crank body and the journal center trajectory inside the bearing
boundaries are plotted. The results are relative to two complete crank rotations after the
steady-state has been reached, and they are plotted against those obtained with an ideal joint.
The crank torque diagram presents high peaks that are associated with impacts between the
journal and bearing surfaces, as depicted in Fig. 13a. Moreover, the smooth evolution of
the crank torque indicates that the journal and bearing surfaces are in continuous contact
regimen, meaning that the journal follows the bearing wall. These scenarios can also be
observed in the plot of Fig. 13b, where the different types of relative motion between the
journal and bearing elements are visible, namely the free flight motion, the continuous con-
tact mode, and the impacts followed by rebounds. The points plotted outside the clearance
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Fig. 13 (a) Crank torque; (b) Journal center trajectory relative to the bearing

circle represent the penetration between the journal and the bearing. In addition, during the
free flight motion, the distance between two consecutive markers is larger, which means that
the integration scheme is able to adjust the time step for the different scenarios. Thus, for
the first impact after the free flight motion, the integrator decreases the time step to ensure
that the first penetration depth does not exceed the one physically acceptable for the mate-
rials involved in the impact process. This procedure permits to demonstrate the importance
of using integration schemes with both variable order and step when simulating multibody
systems with contact-impact problems [76].

3 Spherical joint with clearance [421] Spherical joints with clearance can be employed, for
instance, on car suspensions and human hip articulations models. Figure 14 depicts a generic
representation of a spherical clearance joint within a multibody system, which is composed
of a ball that can freely move inside the socket. A spherical joint with clearance does not
impose any kinematic constraint to the system, but it can be modeled by intra-joint contact
forces that are the result of collisions between ball and socket surfaces. Thus, the regular-
ized models described above are utilized to determine the intra-joint normal and tangential
contact forces.

Figure 15 shows the path of the ball center within the socket boundaries for the dynamic
response of a spatial four-bar mechanism that includes a spherical clearance joint. It should
be noted that the gray half-spherical surface represents the radial clearance size, while the
small spheres inside it denote the ball center trajectory. The first six impacts between the ball
and socket elements are illustrated in Fig. 15a, which are immediately followed by rebounds.
The free flight motions of the ball are represented by clear spheres, whilst the impacts are
illustrated by dark (red) spheres. Figure 15b shows the ball and the socket continuous contact
motion, after steady state has been reached, meaning that the ball remains in contact with
the socket wall.

4. Translational joint with clearance [522] A translational clearance joint is composed of a
prismatic guide that holds a slider block. Figure 16 illustrates a planar slider-crank mecha-
nism with a translational clearance joint between the ground and slider elements. The pres-
ence of the clearance joint introduces two extra degrees of freedom and permits free motion
of the slider inside the guide limits. Figure 16 also shows four possible configurations of the
slider with respect to the upper and lower guide surfaces. The modeling process of trans-
lational joints with clearance involves the precise contact detection and transition between
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Fig. 14 Representation of a generic spherical joint with clearance connecting bodies i and j

Fig. 15 Ball center trajectory inside the socket limits: (a) First instants of simulation where free flight motion
and impacts followed by rebounds are visible; (b) Continuous, or permanent, contact between the ball and
socket wall (Color figure online)

these four different scenarios. The problem of handling translational clearance joints under
the framework of multibody dynamics was solved using both regularized methods [523] and
non-smooth formulations [522].

Figure 17 depicts the phase space portrait of the connecting rod and the dimensionless
motion of the slider inside the guide for two full crank rotations after the steady-state has
been reached. These diagrams allow for the identification of the different types of slider
motion inside the guide, namely impacts followed by rebounds, which are visible in the
discontinuities at the velocities. Additionally, periods of continuous, or permanent, contact
between the slider and the guide walls can also be observed in the plots of Fig. 17.
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Fig. 16 (a) Planar slider-crank mechanism with a translational joint with clearance; (b) Four different sce-
narios for the slider position with respect to guide limits

Fig. 17 (a) Phase space portrait of the connecting rod; (b) Dimensionless motion of the slider inside the
guide

5. Cam-follower mechanism [193] A cam-follower system of an industrial cutting file ma-
chine was considered as a demonstrative example of application of the regularized and non-
smooth techniques to handle contact-impact events [524–526]. Figure 18 shows a picture of
a machine-tool used to produce files, as well as the cam-follower mechanism responsible
for the motion of the cutting beater. The contact-impact phenomena that occur between the
cam and the follower must be precisely modeled since they strongly affect the quality of the
files produced. The cam-follower mechanism operates with high loads and high speeds, the
cam being composed of six rebounds that produce a small follower displacement. Therefore,
these ingredients make the numerical process of modeling the collisions between the cam
and the follower surfaces quite demanding in terms of both the computational accuracy and
the efficiency points of view.

Figure 19 illustrates an animation sequence of the dynamic computational simulation of
the cam-follower motion during the first instants after the follower reaches the up dead point
until the cam and the follower experience a new contact. It must be noted that this time
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Fig. 18 (a) Picture of an industrial cutting-file machine; (b) Cam-follower mechanism used in the machine-
tool

Fig. 19 Animation sequence of the virtual simulation of the cam-follower movement during the first instants
after the follower reaches the up dead point

interval is of paramount and crucial importance to ensure that the machine-tool produces
files with appropriate quality [524–526].

6. Woodpecker toy [367] The woodpecker toy is one of the most popular multibody bench-
marks in the field of systems working with frictional contacts. Figure 20 shows a picture
of the woodpecker toy and the corresponding multibody mechanical system. This model is
composed of a pole, a sleeve that operates with some amount of clearance, a helical spring,
and the woodpecker itself. The motion of the woodpecker is simple and intuitive, being acted
by the gravity effect only. During the descend motion of the woodpecker, several frictional
contacts can be activated, namely the contact between the beak and the pole, and the contact
interaction between the sleeve and the pole. This last case can be seen as a translational joint
with clearance.

The frictional contacts that may occur in the dynamics of the woodpecker have been sim-
ulated with regularized methods [527] and non-smooth approaches [193]. Figure 21 displays
an animation sequence of the global motion produced by the woodpecker during, approxi-
mately, one period. These representative diagrams permit to identify the dynamic behavior
of the toy as well as the different motion phases. In particular, the contact-impact events in
terms of sliding and locking of the woodpecker are visible since the woodpecker motion is
stable with a regular solution with a period equal to 0.146 s [48, 186, 187, 190, 367].

7. Human knee articulation [431] The natural and healthy human knee articulation is a syn-
ovial joint that connects the distal condylar surfaces of the femur, the proximal condylar
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Fig. 20 (a) Picture of a woodpecker toy; (b) Equivalent multibody mechanical model

Fig. 21 Snapshots of the woodpecker descend motion computational simulation

surfaces of the tibia, and the posterior surface of the patella. Figure 22a shows the outlines
of the femur and the tibia free form profiles of the knee joint in the sagittal plane. The col-
lection of points can be described by cubic splines in order to define a free form contact pair,
for which the contact detection approach described in Sect. 5 can be applied. The geometric
definition of the femur and the tibia can also be done using revolute joints with clearance, as
Fig. 22b depicts [78].

Figure 23a presents a two-dimensional multibody knee model that is composed of tibia
and femur segments, which are connected by four ligaments, namely the two cruciates and
the two collaterals, modeled as nonlinear elastic springs [431]. This biomechanical multi-
body system has been solved using the regularized approach presented above in what con-
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Fig. 22 (a) Magnetic resonance
image of the human knee
articulation in the sagittal plane;
(b) Femur and tibia profiles
defined as a revolute joint with
clearance

Fig. 23 (a) Multibody knee joint model composed of femur and tibia components and four primary ligaments;
(b) Tibia contact points for human knee articulation modeled as a free contact joint and as a revolute clearance
joint

cerns the contact detection and resolution phases. Figure 23b shows that the free form ap-
proach exhibits a knee flexion larger than that for the case of revolute joint with clearance
formulation. It can be observed that the contact between the femur and tibia surfaces is es-
sentially continuous, meaning that the two anatomical segments are in permanent contact.
This is sound because the human knee experiences contacts at low impact velocities.

8. Human foot-ground interaction [528] Figure 24 displays a two-dimensional biomechan-
ical foot system utilized to simulate the contact interaction with ground. This multibody
model encompasses three rigid bodies that represent the shank, the main foot segment, and
the toes. The ground is a fourth body which is considered to be rigid, flat, and smooth. Two
ideal revolute joints connect the shank and toes to the main foot part. A torsional springer-
damper element is attached at the metatarsal-phalangeal articulations. In order for the foot-
ground interaction to be modeled, the plantar surface of the foot is represented by a set of
spherical surfaces with adjustable radii and locations [294, 529, 530].

The behavior of the foot-ground multibody system is performed based on a forward
dynamic analysis using experimental data to establish the necessary prescribed kinematic
guide elements. Furthermore, the contact interaction between the foot plantar surface and
the ground is modeled by considering regularized approaches for the normal and tangential
contact-impact forces. The contact detection procedure comprehends simple geometries,
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Fig. 24 Planar biomechanical
multibody foot-ground model

Fig. 25 (a) Animation sequence of the human gait cycle of the biomechanical foot model; (b) Vertical ground
reaction force for a complete gait cycle

namely spheres and planes. Figure 25a illustrates an animation sequence of the global mo-
tion that results from the computational simulation, which allows for the identification of
different human gait phases, namely the swing and the stance periods. Figure 25b shows
the vertical ground reaction force diagrams for both experimental and computational ap-
proaches, which are in accordance.

9 Concluding remarks

A comprehensive review of contact mechanics for dynamical systems has been presented in
this paper. For that, the regularized methods (continuous or contact force-based approaches)
and non-smooth formulations (piecewise or geometric based approaches) have been com-
pared as the main available techniques to treat contact-impact events in multibody systems.
In the sequel of this process, the principal features associated with the definition of the con-
tacting surfaces and the contact detection procedures have been analyzed. Several demon-
strative examples of applications in the umbrella of multibody systems methodologies have
been discussed, which allowed to highlight the key aspects related to the process of mod-
eling contact-impact events in dynamical systems. Future directions for research under the
framework of contact mechanics in multibody dynamics may include the following: the
identification and estimation of the contact parameters for complex scenarios; the develop-
ment of benchmark problems to assess the suitability of the existing techniques to handle



Contact mechanics for dynamical systems: a comprehensive review 159

contact-impact events; the analysis of contact problems with very large contact areas; the
study of contacts with very flexible bodies; the development of techniques to accelerate the
contact detection with multiple potential contacts.
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