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Abstract Three rotation parameters are commonly used in multibody dynamics or in space-
craft attitude determination to represent large spatial rotations. It is well known, however,
that the direct time integration of kinematic equations with three rotation parameters is not
possible in singular points. In standard formulations based on three rotation parameters, sin-
gular points are avoided, for example, by applying reparametrization strategies during the
time integration of the kinematic equations. As an alternative, Euler parameters are com-
monly used to avoid singular points. State-of-the-art approaches use Lie group methods,
specifically integrators, to model large rigid body rotations. However, the former methods
are based on additional information, e.g. the rotation matrix, which must be computed in
each time step. Thus, the latter method is difficult to incorporate into existing codes that are
based on three rotation parameters. In this contribution, a novel approach for solving rota-
tional kinematics in terms of three rotation parameters is presented. The proposed approach
is illustrated by the example of the rotation vector and the Euler angles. In the proposed
approach, Lie group time integration methods are used to compute consistent updates for
the rotation vector or the Euler angles in each time step and therefore singular points can be
surmounted and the accuracy is higher as compared to the direct time integration of rotation
parameters. The proposed update formulas can be easily integrated into existing codes that
use either the rotation vector or Euler angles. The advantages of the proposed approach are
demonstrated with two numerical examples.
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1 Introduction

The parametrization of spatial rotations is an important issue in many fields such as multi-
body dynamics (MBD) or in spacecraft attitude determination, for example, since the effi-
ciency of non-linear computations involving large rotations depends largely upon the ade-
quacy of the set of parameters adopted [16]. A commonly used type of rotation parameters
in multibody systems dealing with the orientation of rigid or flexible bodies are Euler angles
[41], whereas in spacecraft attitude determination, the rotation vector components are often
used as rotation parameters [39, 52]. It is well known, however, that the direct time integra-
tion of kinematic equations with three rotation parameters is not possible in singular points.
For a detailed discussion of singular points, see [49]. Hence, the rotational motion cannot
be reconstructed by direct integration of the kinematic equations.

This contribution provides a novel numerical solution for the problem of direct time
integration of Euler angles and, alternatively, the rotation vector as well as a novel imple-
mentation strategy for Lie group time integration methods.

1.1 The problem with the direct time integration of rotation parameters

To illustrate the problem of direct time integration of rotation parameters, we consider Eu-
ler’s equations of motion (EOM) for a single rigid body expressed in a local frame [35,
40]

Jω̇ + ω × (Jω) = τ (1)

that provides the angular velocity ω ∈R
3, defined by

ω̃ = RT Ṙ, (2)

where R is the rotation matrix transforming the body fixed coordinates of a point to the
spatial coordinates. In Eq. (2), ω̃ is the skew-symmetric matrix such that ω × x = ω̃x for
ω,x ∈ R

3 [30]. Solving Eq. (1) for angular velocity does not reveal the rotational motion
of the rigid body. Therefore, Euler’s EOMs (1) must be complemented with the kinematic-
reconstruction equation

Ṙ = R ω̃, (3)

which relates the angular velocity ω expressed in a local frame with the time derivative
of the rotation matrix [51]. In order to determine R and thus obtain the orientation of the
body, it is required to solve Eq. (3), which is an ordinary differential equation (ODE) on the
rotation group SO(3) [30, 51].

In many applications, however, e.g. rotor dynamics [38], the direct time integration in the
rotation group is avoided by the introduction of a parametrization with generalized coordi-
nates1 q ∈ R

3, e.g. Euler angles, such that their time derivatives q̇ are related via

ω = G(q)q̇ (4)

to the angular velocity ω [30]. When solving the kinematic equations (4) numerically, it is
important to note that for each choice of rotation parameters q, regardless of the transfor-
mation itself, the transformation (4) depends on the configuration. For any three rotation

1 By introducing a global rotation parametrization with the rotation parameters q, R = R(q) applies.
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parameters (e.g. Euler angles, Rodrigues parameter, rotation vector, etc.), G becomes sin-
gular at certain configurations, leading to discontinuities in q. If such points are passed, the
direct time integration of Eq. (4) is no longer possible. Therefore, a reconstruction of the
rotational motion is no longer possible, although the discontinuities in q are finite.

1.2 State-of-the-art solutions for direct integration of rotation parameters

In spacecraft attitude determination, switching algorithms are often used as a reparametriza-
tion strategy to avoid singular points when using three rotation parameters. For example,
the singular points of the rotation vector are often avoided by considering only small rota-
tions (thus the rotation vector represents a locally non-singular three-dimensional rotation
parametrization) and by accumulating the incremental attitude in a unit quaternion or di-
rection cosine matrix (DCM) such that the rotation angle corresponding to a rotation vector
never gets large [39]. However, the storage in a unit quaternion or a DCM increases the
amount of memory required as compared to three rotation parameters. In [48] a switching
algorithm is proposed to switch between different Euler angle sets to avoid the singular
points while integrating the kinematic equations (4). In [29] a reparametrization strategy
based on Shuster’s idea of artificial rotation [45] is presented, which shifts the rotation an-
gles associated with singular points of the rotation vector in such a way that either the Ro-
drigues parameters or the rotation axis and rotation angle can be used without running into
a singular point. However, applying a switching algorithm during the integration of Eq. (4)
increases the computational complexity as well as the implementation complexity compared
to the direct integration of Eq. (4).

Three rotation parameters can be used in simulation if a reparametrization strategy such
as, for example, the updated Lagrangian point of view [9, 16] is implemented to avoid sin-
gular points [8]. In the updated Lagrangian point of view, rotations are treated in an updated
incremental form. In each step of the solution process, the rotation increment required for
moving from the known reference configuration to the current configuration is determined
by means of the rotation vector, which is used as a local but not as a global parametrization
of the rotation group [9]. Using the rotation vector as well as the rotation matrix from the
previous time step, the rotation matrix is updated in the updated Lagrangian point of view
in each time step. As in the updated Lagrangian point of view the rotation matrix is used as
rotation variable instead of three rotation parameters, it may be difficult to implement the
updated Lagrangian point of view approach in existing codes that are based on three rotation
parameters.

A common approach in MBD and spacecraft attitude determination to avoid singular
points is to use Euler parameters (also known as unit quaternions) [38], as they have only
four components – just one more parameter than the dimension of the space of rotations.
However, the extra component is bothersome, it requires extra storage as well as extra
work to manage the redundancy, e.g. renormalization to unit length [17], or requires solving
differential–algebraic equations (DAEs) [5, 51]. The need of solving DAEs, however, can
be eliminated as shown in [51]. However, it is important to note that if the quaternion in-
tegration scheme proposed in [51] is implemented correctly, redundancy will not appear at
any time.

The rest of the paper is organized as follows: In Sect. 2, we introduce the standard ap-
proach to integrating the kinematic-reconstruction equation (3) using Lie group methods.
This section presents the fundamentals on which the proposed approach builds. Subse-
quently, in Sect. 3, we present our approach independently of a specific choice of rotation
parameters. In Sect. 4 (resp. Sect. 5), we apply the proposed approach to the rotation vector
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(resp. Euler angles). The implementation of the proposed approach is discussed in Sect. 6.
In Sect. 7, numerical examples are discussed which illustrate the benefits of the proposed
approach. Finally, Sect. 8 draws conclusions from the study.

2 Standard Lie group approach

The singular points in formulations based on three rotation parameters can be circumvented
by using the so-called Lie group integrators [3]. In MBD (see, e.g. the integrators proposed
in [7, 9]), one seeks, similarly as in the Munthe–Kaas methods [18, 25, 34] for solving ODEs
on Lie groups, a solution to the kinematic-reconstruction equation (3) in the form

R = R0 φ(˜�), (5)

where ˜� ∈ so(3) is the new unknown and the solution of

�̇ = T−1
φ (�)ω, �0 = 0. (6)

In Eq. (5), R0 is the initial attitude, and so(3) is the Lie algebra of the Lie group SO(3). Note
that �0 in Eq. (6) is an initial condition and that so(3) is isomorphic to R

3; see, e.g. [3]. The
smooth coordinate map φ takes so(3) to SO(3) [22, 24]. The most important coordinate
map is the matrix exponential2 exp(·), which may be evaluated on SO(3) efficiently by
Rodrigues’ formula [3, 24]. In Eq. (6), T−1

φ is the inverse tangent operator associated with
the coordinate map3 φ. In case φ(�) = exp(�), � is termed instantaneous or incremental
rotation vector in the context of Lie group methods on SO(3) [32, 47, 51]. To ensure a
consistent notation in the following, the term incremental rotation vector is associated with
� regardless of the choice of a coordinate map.

The crucial feature of Eq. (5) is that no global parametrization is required. In contrast
to Eq. (4), Eq. (6) can be integrated without running into a singular point. This is because
� serves as a coordinate vector that locally parametrizes the configuration increment from
time step i to time step i + 1 and is assumed to describe small rotations [32].

As shown in [7], R0 is updated in Eq. (5) in each integration step. Therefore, the rotation
matrix R0 represents a kind of history variable that needs to be available in each integration
step during the simulation.4 Handling the history variable R0 during time integration is
cumbersome and requires additional memory compared to three rotation parameters. The
latter procedure may therefore be difficult to implement in existing codes. Specifically on
embedded systems, additional history variables might be difficult to be integrated.

3 Proposed approach (independent of specific rotation parameters)

In this section we present the proposed approach for computing consistent updates for a
general set of three rotation parameters, which is subsequently applied to the rotation vector
as well as Euler angles.

2 In Appx. A.1 and Appx. A.2, we provide the exponential map as well as a first order Cayley transform on
SO(3) and the corresponding inverse tangent operators.
3 As shown in [10, 36], other coordinate maps than the exponential map or the Cayley transformation can
also be used.
4 Note that only the matrix R0 belonging to the previous time step must be stored.
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Fig. 1 Schematic comparison of the procedure for computing three rotation parameters. Note that f (R) is a
function that computes three rotation parameters from a rotation matrix R

In the proposed approach, the rotation matrix R that is reconstructed with Eq. (5) using
the incremental rotation vector � is parametrized by three rotation parameters5q ∈ R

3, and
therefore Eq. (5) may be represented in the form

R(q) = R(q0)φ(˜�), (7)

where q0 represents initial attitude such that R(q0) = R0.
The idea of the proposed approach is to consider Eq. (7) as that rotation, which is equiv-

alent to a rotation R(q0 ◦ �q) due to an incremental change of the rotation parameters
�q ∈R

3 such that

R = R(q0)φ(˜�) =̂ R(q0 ◦ �q) = R(q) (8)

applies and therefore to consider

q = q0 ◦ �q (9)

as the solution of Eq. (3) instead of Eq. (5). In Eqs. (8)–(9), the symbol ‘◦’ represents the
composition rule for the selected rotation parameters q. Note that the explicit form of the
composition rule ‘◦’ for rotation parameters depends on the selected rotation parameters.
Note also that the symbol ‘◦’ is used here to indicate that the rotation parameters q are
determined from the rotation parameters q0 and �q using the appropriate6composition rule.
In Eq. (9), we assume that

�q = �q(q0,�) (10)

and that �q does not need to be small. Furthermore, we consider the incremental change of
the rotation parameters �q as a finite increment of rotation. To be able to compute the rota-
tion parameter update with Eq. (9), �q(q0,�) must be determined for the selected rotation
parameters depending on the incremental rotation vector �, where the incremental rotation
vector is determined in each time step by solving Eq. (6) numerically.

The rotation parameters q can, of course, also be extracted from the rotation matrix as
shown in [19, 27, 43], which is a detour compared to the method proposed in this paper. In
the proposed approach, the rotation parameters q are computed directly using the incremen-
tal rotation vector without having to evaluate in advance the rotation matrix, see Fig. 1, last
line.

5 Note that, in contrast to the standard Lie group integration approach presented in Sect. 2, our approach
reintroduces a global parametrization of the rotation matrix.
6The composition rule for the rotation vector parametrization, which is used in this paper to describe large
rotations, is defined in [1, 37, 39, 54], for example.
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As shown in Fig. 1, in the proposed approach the rotation parameters are not determined
by integrating the corresponding kinematic equations (4), but by using the incremental rota-
tion vector. Thus, we do not need to deal with the singular points occurring in the kinematic
equations (4). Of course, there is no three-parametric description of spatial rotations that is
free of singular points [49]. Consequently, singular points are also present in the proposed
approach. However, Eq. (9) allows dealing with singular points at the coordinate level. At
the coordinate level, singular points can be embedded within the composition rule of rota-
tions that applies to the selected rotation parameters using case distinctions, for example,
such that the time integration scheme reconstructs the rotation parameters associated with a
singular point without failing.

We would like to note, however, that the idea of computing rotation updates based on
the incremental rotation vector is not new at all, see the references in Sect. 1.2 and Sect. 2.
However, the authors are not aware that an approach similar to the presented one has already
been discussed for the time integration of three rotation parameters.

As a final remark, we would like to note that the reason why we consider different
parametrizations for the map φ in Eq. (7) is that the choice of the parametrization of the
map φ has a significant influence on the computational effort required to compute �q and
thus on the computational effort required to determine a rotation parameter update.

The advantages of the proposed approach are shown in the following by the example of
the rotation vector, as well as by the example of Euler angles.

4 Proposed approach for the time integration of rotation vector

In this section, we apply the general approach to integrating rotation parameters presented
in Sect. 3 to the rotation vector parametrization, i.e. q = v.

4.1 Definition of the rotation vector

If n ∈ R
3 is a unit vector along the rotation axis and ϕ ∈ R is the rotation angle, then the

corresponding rotation vector v ∈R
3 is given by [4, 28, 32, 43] (see also Fig. 2)

v = ϕ n, (11)

where the rotation angle ϕ and rotation axis n can be recovered from rotation vector v by

ϕ = ‖v‖ and n =
{

0 if ‖v‖ = 0,
v

||v|| else.
(12)

4.2 Rotation vector update

To be able to compute an update of the rotation vector in the form of Eq. (9), we need to find
the composition rule for rotation vectors depending on the incremental rotation vector7�.

7Note that although the incremental rotation vector in the case that φ = exp is a rotation vector, it is as-
sumed that the incremental rotation vector describes small rotations, in contrast to the classical rotation vector
parametrization.
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Fig. 2 Body-fixed vector in
positions r before and r∗ after
the rotation (ϕ, n), see also [53]

The relation between the incremental rotation vector � and the rotation vector increment
�v when φ = exp is8

�v = �. (13)

The composition rule of two successive rotations with rotation vectors

�v = �ϕ �n (14)

and

v0 = ϕ0 n0, (15)

with v being the resultant rotation vector, is determined by using Eq. (11) as

v = v0 ◦ �v = ϕ(ϕ0,�ϕ,n0,�n)n(ϕ0,�ϕ,n0,�n) = ϕ n. (16)

In Eq. (16), ϕ(ϕ0,�ϕ,n0,�n) and n(ϕ0,�ϕ,n0,�n) are given by

ϕ = ϕ0 ◦ �ϕ = 2 acos

(

cos
ϕ0

2
cos

||�||
2

− nT
0 �

sin ϕ0
2 sin ||�||

2

||�||

)

, (17)

n = n0 ◦ �n = sin ϕ0
2 cos ||�||

2

sin ϕ

2

n0 + sin ||�||
2

||�|| sin ϕ

2

[

I cos
ϕ0

2
+ ñ0 sin

ϕ0

2

]

�, (18)

after elementary transformations of the equations given in [1, 37, 39, 54] where I is a 3×3-
identity matrix. In Eqs. (17)–(18), we have used the relationships

�ϕ = ‖�‖ (19)

and

�n = �

‖�‖ . (20)

In Eqs. (17)–(18), ϕ0 ◦ �ϕ represents the composition rule for rotation angles and n0 ◦ �n
represents the composition rule for rotation axes. It should be noted, however, that Eqs. (17)–
(18) can only be evaluated for ‖�‖ �= 0 and ϕ /∈ Sv where

Sv =
{

x | sin
x

2
= 0, x ∈R

}

. (21)

8Equation (13) can be verified with R(v) = R(v0) exp(�) =̂ R(v0)R(�v) from which it follows that
R(�v) = exp(�) and thus �v = �. To find a relation between �v and �, a Cayley transform could also
be used as a coordinate map in Eq. (13) instead of the exponential map. However, the relationship between
�v and � would be more complicated since R(v) �= cay(v).
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4.3 Improved rotation vector update

The case ‖�‖ = 0 can be covered using the cardinal sine function

sinc(x) =
{

1 if x = 0,
sinx
x

else,
(22)

which is continuous and computable at x = 0 [32]. Therefore, we replace Eqs. (17)–(18)
with

ϕ = ϕ0 ◦ �ϕ = 2 acos

(

cos
ϕ0

2
cos

||�||
2

− nT
0 �

2
sin

ϕ0

2
sinc

||�||
2

)

, (23)

n = n0 ◦ �n = sin ϕ0
2 cos ||�||

2

sin ϕ

2

n0 + sinc ||�||
2

2 sin ϕ

2

[

I cos
ϕ0

2
+ ñ0 sin

ϕ0

2

]

�. (24)

To cover the case ϕ ∈ Sv , we introduce the rotation axis n̄ using the case distinction9

n̄ =
⎧

⎨

⎩

0 if ϕ ∈ Sv,

sin
ϕ0
2 cos ||�||

2
sin ϕ

2
n0 + sinc ||�||

2
2 sin ϕ

2

[

I cos ϕ0
2 + ñ0 sin ϕ0

2

]

� else.
(25)

By using Eqs. (23) and (25), the composition rule for rotation vectors reads

v = v0 ◦ �v = ϕ(ϕ0,n0,�) n̄(ϕ0,n0,�) = ϕ n̄, (26)

which can be evaluated for all ϕ ∈R without restrictions.
The improvements of Eqs. (23) and (24) (resp. Eq. (25)) compared to Eqs. (17)–(18) are

shown with the following considerations:

• Case 1. In the case that ϕ0 �= 0 and � = 0, after a few steps of calculation, it follows from
Eqs. (23) and (25) that

ϕ(ϕ0 �= 0, � = 0) = ϕ0 (27)

and

n̄(ϕ0 �= 0, � = 0) = n0. (28)

For this case, Eq. (26) therefore gives

v(ϕ0 �= 0, � = 0) = v0. (29)

• Case 2. In the case that ϕ0 = 0 and � �= 0, after a few steps of calculation it follows from
Eqs. (23) and (25) that

ϕ(ϕ0 = 0, � �= 0) = ‖�‖ (30)

and

n̄(ϕ0 = 0, � �= 0) = �

‖�‖ . (31)

9 The case distinction (25) can be verified with Rodrigues’ formula Eq. (34) which gives R(0,n) =
R(±2πN,n) = I as shown in Eq. (35).
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For this case, Eq. (26) therefore gives

v(ϕ0 = 0, � �= 0) = �. (32)

• Case 3. Of course, for the trivial case ϕ0 = 0 and � = 0, Eq. (26) yields

v(ϕ0 = 0, � = 0) = 0. (33)

Note that the rotation vector exhibits a redundancy at the rotation angles ϕ ∈ Sv [20].
However, the Rodrigues’ formula

R(ϕ,n) = I + sinϕ ñ + (1 − cosϕ)̃n2 (34)

resolves the redundancy ϕ ∈ Sv ,

R(0,n) = R(±2πN,n) = I. (35)

Note that the redundancy of the rotation vector at ϕ ∈ Sv can be bypassed by scaling the
rotation vector such that its magnitude always belongs to an interval ϕ ∈ [−π, π ] as shown
in [20].

Since we use the exponential map Eq. (77) in Eq. (13) to establish a relation between �

and �v, the inverse tangent operator corresponding to the exponential map T−1
exp in Eq. (82)

needs to used in Eq. (6). Therefore, Eq. (6) takes the form

�̇ = T−1
exp(�)ω, �0 = 0. (36)

The incremental rotation vector � is then determined in each time step by solving Eq. (36)
numerically.

As a final remark, we would like to note that Engø [14] presented a closed form of the
Baker–Campbell–Hausdorff formula on so(3) and has interpreted it as a composition of two
rotations, which was extended in [12] for SE(3) and dual quaternions. However, the formula
presented in [14] cannot be applied directly for the time integration of the rotation vector,
since it only provides correct answers for rotation angles smaller than π /2 as noted in the
paper.

5 Proposed approach for the time integration of Euler angles

In this section, we apply the general approach to the Euler angle parametrization, i.e. q = α.
To be able to compute an update for Euler angles in the form of Eq. (9), we need to

find the composition rule as well as the Euler angle increment depending on the incremental
rotation vector �. Since there are 12 possible sets of Euler angles [13, 19, 44], we present a
general procedure to determine the Euler angle increment for an arbitrary set of Euler angles.
In Appx. B we apply the general procedure shown in this section to determine the Euler
angle increment for Cardan/Tait–Bryan angles, which has been omitted here for reasons of
space and clarity.

Any combination of three elementary rotations is given as

R(α1, α2, α3) = exp(α1ẽ1) exp(α2ẽ2) exp(α3ẽ3), (37)
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with ei being a constant unit vector [32, 48] and exp being the exponential map Eq. (77).
For the Cardan/Tait–Bryan angle parametrization, these are the unit vectors

e1 = [

1 0 0
]T

, e2 = [

0 1 0
]T

, e3 = [

0 0 1
]T

, (38)

whereas for 313-Euler angles these are unit vectors [32]

e1 = [

0 0 1
]T

, e2 = [

1 0 0
]T

, e3 = [

0 0 1
]T

. (39)

In the proposed approach, the composition rule of two successive rotations with Euler angles
α0,1, α0,2, α0,3 and �α1, �α2, �α3 where α1, α2, α3 are the resulting Euler angles is applied
as10

αi = α0,i ◦ �αi = α0,i + �αi for i = 1,2,3, (40)

where �αi is implicitly defined by the standard Lie group method Eq. (5) and explicitly
computed in our approach.

By using Eq. (40), the elementary rotation exp(αi ẽi ) associated with the ith Euler angle
αi is written as

exp(αi ẽi ) = exp((α0,i + �αi)̃ei ) = exp(α0,i ẽi ) exp(�αi ẽi ). (41)

By multiplying Eq. (41) with expT (α0,i ẽi ) from the left, the elementary rotation exp(�αi ẽi )

associated with the Euler angle increment �αi is given by

exp(�αi ẽi ) = expT (α0,i ẽi ) exp(αi ẽi ). (42)

From Eq. (42) two equations are obtained for �αi , one equation for the sine and one equa-
tion for the cosine of an incremental angle, which read11

sin�αi = cosα0,i sinαi − sinα0,i cosαi =: yi, (43)

cos�αi = cosα0,i cosαi + sinα0,i sinαi =: xi. (44)

From Eqs. (43)–(44), the Euler angle increment �αi is computed using the proper four-
quadrant inverse tangent function atan212

�αi = atan2 (yi, xi) . (45)

In order to be able to compute �αi with Eq. (45), sinαi and cosαi in Eqs. (43)–(44)
need to be expressed depending on the incremental rotation vector. However, the equations
that provide this connection assume different forms for each of the 12 possible Euler angle

10Note that the Euler angle composition rule shown in Eq. (40) is written for a single elementary rotation
whose axis of rotation is given by one of the unit vectors from Eq. (38) (resp. Eq. (39)). Note also that �αi

is associated with the ith Euler angle increment and that �αi is non-linear in α0,1, α0,2, α0,3 and �, see
Eq. (45).
11 Equations (43)–(44) always take the same form, independent of the particular Euler angle set, which can
be verified by direct calculation of Eq. (42) with different combinations of ei .
12 In the numerical examples shown in Sect. 7, we have used the atan2 function implemented by default in
Matlab2018b. We would like to point out that compared to the implementation of the atan2 function proposed
in IEEE [21], the Matlab2018b implementation of the atan2 differs by having the property atan2(0,0)=0. This
property is essential for the correct implementation of the proposed Euler angle integration scheme.
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combinations. The procedure for establishing a relationship between sinαi and cosαi and
� is illustrated in Appx. B using the Cardan/Tait–Bryan angles as an example.

By combining the Euler angles α0,i in vector

α0 = [

α0,1 α0,2 α0,3
]T

(46)

and the Euler angle increments �αi obtained with Eq. (45) in vector

�α = �α(α0,�) =
⎡

⎣

�α1

�α2

�α3

⎤

⎦ =
⎡

⎣

atan2( y1, x1 )

atan2( y2, x2 )

atan2( y3, x3 )

⎤

⎦ (47)

and the Euler angles αi in vector

α = [

α1 α2 α3
]T

, (48)

the composition rule of two successive rotations in vector form for Euler angles is

α = α0 ◦ �α(α0,�) = α0 + �α(α0,�). (49)

6 Time integration scheme for the proposed approach

In the proposed approach, the rotational update within the ith integration step is based on
Eq. (9), where the incremental rotation vector updates a rotation of qi to qi+1. Therefore we
express the update for the step i + 1 in the form

qi+1 = qi ◦ �q(qi ,�i), (50)

where �i is the incremental rotation vector of step i and qi represents the rotation parame-
ters at the ith step; see, e.g. [3, 8]. In order to obtain �i , we write Eq. (6) as

�̇i = T−1
φ (�i)ωi+1, �0 = 0, (51)

where �0 is the initial condition for the integration of Eq. (51) in the ith integration step and
ωi+1 is the angular velocity of step i + 1. The equations (51) should be integrated within
each integration step together with the dynamical equations of motion, which determine the
angular velocity field ω from the angular acceleration field

ω̇ = ω̇(q, ω) (52)

by using Euler’s EOMs (1); see, for example, [51].

6.1 Explicit Euler (RK1)

Using the time step size h, the explicit Euler method takes the following form for the pro-
posed approach:

ωi+1 = ωi + h ω̇i (qi , ωi ), (53)

�i = hωi+1, (54)
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qi+1 = qi ◦ �q(qi ,�i), (55)

which differs from the standard explicit Euler Lie group method presented in [26] by the
fact the no history variables are required. The conventional explicit Euler method for the
direct time integration of rotation parameters would have the form

ωi+1 = ωi + h ω̇i (qi , ωi ), (56)

qi+1 = qi + hG−1(qi )ωi . (57)

The comparison of Eqs. (56)–(57) with Eqs. (53)–(55) shows that the proposed approach
can be integrated into existing applications that use three rotation parameters by simply
replacing13Eq. (57) with Eqs. (54)–(55).

Using the rotation vector, i.e. q = v, for Euler’s EOMs (1)

ω̇i = J−1 (τ (vi , ωi ) − ω̃iJωi ) (58)

for the proposed approach, the explicit Euler method takes the form

ωi+1 = ωi + h ω̇i , (59)

�i = hωi+1, (60)

ϕi+1 = 2 acos

(

cos
ϕi

2
cos

||�i ||
2

− nT
i �i

2
sin

ϕi

2
sinc

||�i ||
2

)

, (61)

n̄i+1 =
⎧

⎨

⎩

0 if ϕi+1 ∈ Sv, else
sin

ϕi
2 cos

||�i ||
2

sin
ϕi+1

2
ni + sinc

||�i ||
2

2 sin
ϕi+1

2

[

I cos ϕi

2 + ñi sin ϕi

2

]

�i,
(62)

vi+1 = ϕi+1n̄i+1. (63)

At this point, we would like to give a brief interpretation of the RK1 method with regard
to its functionality in a singular point: Since ω̇ is bounded (due to the physical limitation
of torque), ω is also bounded, and thus also �. Consequently, v is also bounded due to
the definition of the composition rule for rotation vectors defined in Sect. 4. However, if
one would consider the direct integration of the kinematic equations of the rotation vector
Eq. (87) (Appx. A.3), v̇ would not be bounded at a singular point.

Note that, according to the explicit Euler method, Eqs. (53)–(55) are only first-order
accurate and have a numerical stability limit for the step size h in case of stiff differential
equations.

6.2 Explicit Runge–Kutta method of fourth-order (RK4)

To achieve a higher accuracy with larger step sizes h, we consider the explicit fourth-order
Runge–Kutta method presented for time integration of Euler parameters by Terze et al. in
[51] in all presented numerical examples, which we have written here in accordance with
the proposed approach. Starting with values at the previous step qi , ωi , the slope estimations
are obtained by

k1 = h ω̇(qi , ωi ), K1 = hT−1
φ (0)ωi , (64)

13Note that these considerations also apply to other time integration schemes such as the fourth-order Runge–
Kutta method discussed in Sect. 6.2.
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k2 = h ω̇(qi ◦ �q(qi ,
1

2
K1), ωi + 1

2
k1), K2 = hT−1

φ (
1

2
K1) (ωi + 1

2
k1), (65)

k3 = h ω̇(qi ◦ �q(qi ,
1

2
K2), ωi + 1

2
k2), K3 = hT−1

φ (
1

2
K2) (ωi + 1

2
k2), (66)

k4 = h ω̇(qi ◦ �q(qi ,K3), ωi + k3), K3 = hT−1
φ (K3) (ωi + k3). (67)

The four coefficients K1, . . . ,K4 represent the slopes within one time step (i → i +1) in the
solution process of Eq. (51) and the four coefficients k1, . . . ,k4 contain the slopes within
one time step in the solution process of the dynamic equations of motion. The equations

ωi+1 = ωi + 1

6
(k1 + 2k2 + 2k3 + k4) , (68)

�i = 1

6
(K1 + 2K2 + 2K3 + K4) , (69)

qi+1 = qi ◦ �q(qi , �i), (70)

update the angular velocity vector ω and the rotation parameter vector q to (qi+1, ωi+1)

based on the current state (qi , ωi ).
Since the composition rule of two successive rotations can be expressed in a closed form

for the rotation vector and the Euler angles, the order of accuracy of the overall algorithm de-
pends only on the accuracy of the ODE integrator used to solve Eq. (51). The main paradigm
of the Lie group methods is the reformulation of the underlying equation on the Lie group
as an algebra action, and since the Lie algebra is a linear space, all reasonable discretization
methods can be expected to respect its structure [23, 24]. Therefore the user can influence
the accuracy of the overall algorithm by choosing the ODE integrator to solve Eq. (51).

7 Numerical examples

7.1 Behaviour in singular configurations

As a first numerical example, we investigate the behaviour of the proposed rotation vector
and Euler angle approach near and in a singular point where G(q) in Eq. (4) becomes sin-
gular. For this purpose, we consider a parameter study for the torque-free, free rotation of a
rigid body with parametrized initial conditions, which are changed such that the orientation
approaches the singular point and finally reaches it. Since there are a total of 12 possible Eu-
ler angle sets, we limit ourselves to Cardan/Tait–Bryan angles for the proposed Euler angle
approach in all following numerical examples. The rigid body is considered to be a box with
inertia tensor J given in standard units equal to J = diag(5.2988,1.1775,4.3568). The rota-
tion vector parametrization has a singular points at the rotation angles ϕ ∈ Sv , see Eq. (87)
in Appx. A.3, whereas the Cardan/Tait–Bryan angles exhibit a singular point at α2 = ±nπ

2
with n ∈ N, see Eq. (88) in Appx. A.4. In order to determine ω(t), �(t) and thus also v(t)

and α(t), Euler’s equations of motion (1) as well as the incremental rotation vector differ-
ential equation (36) are integrated using the RK4 algorithm presented in Sect. 6.2, whereby
in the proposed Cardan/Tait–Bryan approach we use the exponential map Eq. (78) as a co-
ordinate map. Similar results for Cardan/Tait–Bryan angles can be obtained by choosing the
Cayley transform Eq. (83) as a coordinate map. The whole algorithm has been implemented
in MATLAB R2018b.
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Fig. 3 Time history of the
rotating rigid body’s rotation
angle ‖v‖2 using different initial
conditions, see Eq. (71).
(a) shows the time history of the
rotation angle ‖vStdAppr‖2
computed by direct time
integration of Eq. (87). (b) shows
the time history of the rotation
angle ‖vPropAppr‖2 computed
with the proposed approach

7.1.1 Numerical tests for the proposed rotation vector approach

In this subsection we investigate the behaviour of the rotation vector approach proposed in
this paper near and in the singular point at ϕ = 0. Similar results can be obtained for other
singular points of the rotation vector. In order to reach the singular point at ϕ = 0 step by
step, we change the initial condition for angular velocity according to

ω0 = [

0, 2π, 2πε
]T

, (71)

gradually increasing the factor ε ∈ {0, 1e–7, 1e–5, 1} whereby the initial orientation of the
rigid body is kept constant at v0 = [

0, − π
2 , 0

]T
rad. Thus, the singular point is reached

after t = 0.5 s.
As can be seen in Fig. 3(a), in the case of ϕ = 0, the rotation vector vStdAppr can no longer

be determined by integrating Eq. (87) at t = 0.5 s due to the division by zero. In contrast,
as can be seen in Fig. 3(b), the proposed approach for computing a rotation vector update
vPropAppr is able to pass through the singular point without failing.

Figure 4 illustrates convergence in the norm of the rotation error ‖vRef − vconverged‖ for
decreasing values of the integration step hn = (2(1−n))n=2,3,...,15, where the rotation vector
vStdAppr is obtained by directly integrating (87). The converged reference solution vRef is
obtained with h = 1/32768 s using the proposed approach. As can be seen in Fig. 4(a), the
rotation vector vStdAppr converges slower the closer the rotation angle comes to the singular
point at ϕ = 0 and it even fails as the rotation angle reaches ϕ = 0. The failure of the
standard method corresponds to the expectation, since in the kinematic Eq. (87) a division
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Fig. 4 Error in the norm of the
rotating rigid body’s rotation
vector shown on a
double-logarithmic scale

by zero occurs at ϕ = 0. In contrast, the rotation vector vPropAppr computed with the proposed
approach exhibits the expected fourth-order convergence characteristics for all considered
values of ε, as can be seen in Fig. 4(b). Furthermore, as can be seen in Fig. 4(b), the rotation
angle ‖vPropAppr‖2 for ε = 0 is already converged at larger time steps, such that ‖vRef −
vconverged‖ = 0, except at h = 1/2048 where a deviation of approximately 1e–13 is observed.
To illustrate the situation ‖vRef − vconverged‖ = 0 in a better way, ‖vRef − vconverged‖ = 1e–14
was set in Fig. 4(b) for ε = 0.

7.1.2 Numerical tests for the proposed Cardan/Tait–Bryan angle approach

In this subsection we investigate the behaviour of the proposed Cardan/Tait–Bryan angle
approach near and in the singular point at α2 = π

2 . In order to reach the singular point at
α2 = π

2 step by step, we change the initial condition for angular velocity according to

ω0 = [

0, π, πε
]T

, (72)

gradually increasing the factor ε ∈ {0, 1e–5, 1e–2, 1e–1} whereby the initial orientation of
the rigid body is kept constant at α0 = [

0, 0, 0
]T

rad. Thus, the singular point is reached
after t = 0.5 s.

As can be seen in Fig. 5(a), as ‖αStdAppr‖2 (which is dominated by the rotation angle α2)
comes to the singular point at α2 = π

2 , ‖αStdAppr‖2 can no longer be determined at t = 0.5 s
by integrating the kinematic equation (88). This corresponds to the expectation, since in
Eq. (88) a division by zero occurs at α2 = π

2 . In contrast, as can be seen in Fig. 5(b), the
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Fig. 5 Time history of the
rotating rigid body’s norm of
Cardan/Tait–Bryan angles for
different initial conditions, see
Eq. (72)

proposed approach is able to pass through the singular point at α2 = π
2 without failing.

In the case that ε = 0, the rigid body performs a pure rotation around the middle axis of
rotation. For this simple case an analytical solution of Eq. (88) for the rotation angle α2 can
be given, which is

α
Analytical
2 (t) = tπ. (73)

However, as can be seen in Fig. 6(b), the Cardan/Tait–Bryan angles determined with the pro-
posed approach show finite jumps compared to the analytical solution (Fig. 6(a)) at angle
values for α2 = nπ

2 with n ∈N (these are the angle values where the Cardan/Tait–Bryan an-
gle parametrization has singular points). However, the Cardan/Tait–Bryan angles determined
with the proposed approach can, if desired, be converted in the course of post-processing,
see Fig. 7(a). The conversion can be done by evaluating the rotation matrix and extracting
the angles as shown for example in [19]. However, we would like to emphasize that this
conversion is not necessary in order to uniquely represent the rotational attitude of a rigid
body using the proposed approach. Figure 7(b) shows the deviation of the converted angle
α2 from the analytic solution for a time interval of 100 s, whereby the angles determined
with the proposed approach were determined with a time step size of h = 1e–3 s.

Figure 8 illustrates convergence in the norm of the rotation error ‖αRef − αconverged‖ for
decreasing values of the integration step hn = (2(1−n))n=1,2,...,14, where the rotation vector
αStdAppr is obtained by integrating the kinematic equation (88). The converged reference
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Fig. 6 Time evolution of the
rotating rigid body’s
Cardan/Tait–Bryan angles in case
of a pure rotation around the
middle axis of rotation

solution αRef is obtained with h = 1/16384 s using the proposed approach. As can be seen
in Fig. 8(a), αStdAppr converges slower the closer α2 comes to the singular point at α2 = π

2
and it even fails as the rotation angle α2 reaches α2 = π

2 . The failure of the standard method
corresponds to the expectation, since in the kinematic Eq. (88) a division by zero occurs at
α2 = π

2 . In contrast, the proposed Cardan/Tait–Bryan angle approach exhibits the expected
fourth-order convergence characteristics for all considered values of ε, as can be seen in
Fig. 8(b). Furthermore, as can be seen in Fig. 8(b), ‖αPropAppr‖2 is in case that α2 = π

2 already
converged at larger time steps. For the convergence investigations in Fig. 8, the Cardan/Tait–
Bryan angles determined with the proposed approach were converted as described above in
the case of ε = 0.

7.1.3 Influence of the used ODE integrator for solving Eq. (51)

To illustrate how the accuracy of the proposed approach depends on the order of the ODE
integrator used to integrate Eq. (51), we compare in Fig. 9 the rotation vector error when
the integration of Eq. (51) (resp. Eq. (36)) was performed using the two methods RK1 (see
Sect. 6.1) and RK4 (see Sect. 6.2). As model problem we consider here the rotation of a
torque-free rigid body about an axis close to its unstable axis of rotation. The rigid body is
considered to be a box with inertia tensor equal to J = diag(5.2988,1.1775,4.3568). Since
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Fig. 7 Time evolution of the
rotating rigid body’s of
Cardan/Tait–Bryan angle α2 in
case of a pure rotation around the
middle axis of rotation

J11 > J33 > J22, an unstable rotation about the third axis is expected. The initial conditions
are set as v0 = [

0, 0, 0
]T

and ω0 = [

0.01, 0, 100
]T

.
Figure 9 illustrates convergence in the norm of the rotation error ‖vRef − vconverged‖ for

decreasing values of the integration step hn = ( 1
2 · 10(1−n))n=2,3,...,6, where the converged

reference solution vRef is obtained with h = 1/2000000 s. Convergence is investigated at
t = 0.5 s. As can be seen in Fig. 9, the overall integration results show first and fourth order
convergence characteristics as expected. This demonstrates the fact that the order of accu-
racy of the proposed approach can be selected by the user and that it depends only on the
accuracy of the ODE integrator used for the integration of Eq. (51). The versatility of the
proposed approach in terms of the possibility of arbitrarily selecting the order of accuracy
according to the field of application should contribute positively to its use in the various
fields of application, including those requiring higher-order integration schemes. The same
behaviour is observed in the Euler angle integration scheme presented in this paper. How-
ever, due to space reasons we do not present the corresponding figure here. We would like
to note that the latter behaviour is also observed for the Euler parameter integration scheme
presented in [51].
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Fig. 8 Error in the norm of the
rotating rigid body’s
Cardan/Tait–Bryan angles shown
on a double-logarithmic scale

Fig. 9 Convergence in the norm
of the rotation vector, shown on a
double-logarithmic scale
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Fig. 10 Convergence in the
norm of position vector p(t),
shown on a double-logarithmic
scale

7.1.4 Convergence comparison with the standard Lie group method

To illustrate how the proposed approach compares to the standard Lie group method in terms
of accuracy, we compare in Fig. 10 the position error of a point p = [

1, 1, 1
]T

that is
located on a rotating rigid body. In the standard Lie group method, the point p is rotated with
the rotation matrix obtained from Eq. (5). In the proposed approach for the integration of the
rotation vector the point p is rotated with the rotation matrix Eq. (86), which is computed
from the rotation vector obtained from Eq. (26). In the proposed approach for the integration
of the Cardan/Tait–Bryan (CTB) angles, the point p is rotated using the rotation matrix
Eq. (77), which is computed based on the Cardan/Tait–Bryan angles obtained from Eq. (49).
As coordinate map φ the exponential map Eq. (77) is used. The time integration of Eq. (51)
is performed with the RK4 method shown in Sect. 6.2.

The rigid body is considered to be a box with inertia tensor equal to J =
diag(5.2988,1.1775,4.3568) that rotates about an axis close to its unstable axis of ro-
tation. No external torques are acting on the rigid body. Since J11 > J33 > J22, an un-
stable rotation about the third axis is expected. The initial conditions are set as R0 = I,
v0 = α0 = [

0, 0, 0
]T

and ω0 = [

0.01, 0, 100
]T

.
Figure 10 illustrates convergence in the norm of the position error ‖pRef − pconverged‖ for

decreasing values of the time step hn = (10−2 · 2(1−n))n=1,2,...,7. Convergence is investigated
at t = 1 s. The converged reference solution pRef is obtained with h = 1/12800 s using the
standard Lie group method. Table 1 shows the position error ‖pRef − pconverged‖ of the three
methods considered.

As can be seen in Fig. 10 and Table 1, the proposed approach exhibits almost the same
convergence behaviour as the standard Lie group method. The difference between the stan-
dard Lie group method and the proposed approach that can be observed in Table 1 is due
to round-off errors. From this observation we conclude that the proposed method is equiva-
lent to a Lie group method. As the proposed approach is equivalent to a Lie group method,
we will not further compare the proposed approach with the standard Lie group method
in the following accuracy comparisons. For further investigations and results on Lie group
methods, we would like to refer to the corresponding literature; see, e.g. [2, 3, 18, 26].
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Table 1 Position error ‖pRef − pconverged‖ of the three methods considered

Step size h Std. Lie gr. method Prop. appr. (rot. vec) Prop. appr. (CTB angles)

1/100 0.549811289692861 0.549811289692830 0.549811289692856

1/200 0.023479516401450 0.023479516402369 0.023479516401451

1/400 0.000903507383824 0.000903507381255 0.000903507383812

1/800 0.000037626681174 0.000037626682346 0.000037626681192

1/1600 0.000001780842324 0.000001780855730 0.000001780842339

1/3200 0.000000076473482 0.000000076512566 0.000000076473481

1/6400 0.000000030868480 0.000000030777588 0.000000030868478

7.2 Heavy top

As a second example, we present the integration of the dynamics of a heavy top to illustrate
the performance of the proposed approach. The heavy top is a kind of benchmark problem
in the context of geometric integration methods, which is, for example, also discussed in [3,
8, 15, 33, 50, 51]. Following [51], the configuration space of the heavy top is set as SO(3)

and the dynamical model is formulated in the classical ODE form on the basis of Euler’s
rotational equation

JFPω̇ + ω̃JFPω = τ FP. (74)

In Eq. (74), ω and ω̇ are the body angular velocity and angular acceleration, JFP is the tensor
of inertia with respect to the top’s fixed point, which is computed from the mass center
inertia tensor J using the parallel-axis theorem

JFP = J − m̃rb r̃b. (75)

In Eq. (75), m is body mass and rb is the body mass center position expressed in the body
fixed frame with respect to the top’s fixed point. The gravity torque τ FP with respect to the
fixed point is computed as

τ FP = m̃rbRT g, (76)

where g = [0, 0, −9.81]T represents gravity and R is a rotation matrix.14

In standard units, the mass center inertia tensor is defined as

J = diag(0.234375,0.46875,0.234375),

the mass m is given by m = 15, and the center of the mass is positioned in the body-
fixed frame at rb = [0, 1, 0]T . The initial conditions are set as q0 = [0, 0, 0]T and
ω0 = [0, 150, −4.61538]T .

In order to determine ω(t), �(t) and thus also the rotation vector v(t) as well as the
Cardan/Tait–Bryan angles α(t), the equations of motion (74) as well as the incremental
rotation vector ODE (36) are integrated using the RK4 algorithm shown in Sect. 6.2. In the
proposed Cardan/Tait–Bryan angle approach, we use the exponential map as a coordinate

14Note that Eq. (76) includes the rotation matrix. Since the rotation matrix is not directly available in the
proposed approach, the rotation matrix has to be computed from the rotation parameters. In contrast, when
implementing the standard Lie group approach, see Sect. 2, the rotation matrix is directly available.
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Fig. 11 Spatial trajectory of
body mass center

Fig. 12 Position of body mass
center

map. Similar results can be obtained by choosing the Cayley transform as a coordinate map.
The whole algorithm has been implemented in MATLAB R2018b. The integration results,
obtained using a fixed time step size of h = 1e − 3s, are shown in Figs. 11–17.

The variables ω(t), v(t) and α(t) shown in Figs. 14 and 15–16 are basic results that result
from the integration of the equations of motion and from the selected rotation parameters,
while the results shown in Figs. 11, 12, 13 and 17 are computed on the basis of v(t) and ω(t)

using basic kinematic relationships. The results shown in Figs. 11–13 and 17 can, of course,
also be achieved with the proposed Cardan/Tait–Bryan angle approach, which is why we do
not present them explicitly here.

The time evolution of the rotation vector components as well as the time evolution of the
Cardan/Tait–Bryan angle components, obtained by the proposed approach, are illustrated in
Figs. 15–16.

The deviation of the orthogonality constraint of the rotation matrix is shown in Fig. 17(a).
As can be seen in Fig. 17(a), the proposed approach does not introduce any drift in the inte-
gration results during the whole simulation time domain of 1000 s. In comparison, Fig. 17(a)
shows the deviation of the orthogonality condition of the rotation matrix in the case where
Euler parameters are used as rotation parameters, whereby the Euler parameters were com-



Time integration of rigid bodies modelled with three rotation. . . 367

Fig. 13 Velocity of body mass
center

Fig. 14 Body angular velocity

puted using the method presented by Terze et al. in [51]. As illustrated in Fig. 17(b), the
maximum error of the orthogonality constraint of the rotation matrix is for the simulation
time domain of 1000 s in the range of machine precision.

Figure 18 illustrates the convergence in norm of the rotation error ‖v − vconverged‖ as
well as the convergence in norm of the rotation error ‖α − αconverged‖2 for decreasing val-
ues of the time step hn = (10−2 · 2(1−n))n=1,2,...,11. The reference solution for the rotation
vector vconverged = v(t = 1) as well as the reference solution for the Cardan/Tait–Bryan an-
gles αconverged = α(t = 1) were computed using the proposed approach and a integration
step of h = 1/204800. In order to be able to compare the convergence behaviour of the
proposed approach with the convergence behaviour of the standard approach (direct inte-
gration of the kinematic equations of the rotation vector and the Cardan/Tait–Bryan angles),
the initial orientation of the heavy top may not be defined by v0 = 0, since the kinematic
equations (87) of the rotation vector cannot be evaluated at v0 = 0 (because of the divi-
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Fig. 15 Components of rotation
vector (proposed approach)

Fig. 16 Components of
Cardan/Tait–Bryan angles
(proposed approach)

sion by zero). Therefore, the initial conditions for the convergence considerations are set as
q0 = v0 = α0 = [0, 0.52359877, 0]T rad.

As can be seen in Fig. 18(a) as well as in Fig. 18(b), the proposed approach for comput-
ing a rotation vector update and a Cardan/Tait–Bryan angle update exhibit smaller errors (of
about the order of 1e–2) in norm of the rotation error for each time step h in comparison
to the rotation updates computed by directly integrating the corresponding kinematic equa-
tions. Especially the newly introduced rotation vector formulation shows a much smaller
error at larger time steps than the direct integration of the corresponding kinematic equa-
tions, as can be seen in Fig. 18(a).

7.3 Computational costs

Finally, we compare in Tables 2–3 the number of arithmetic operations required by the
proposed approach Eq. (9) with those required by the standard Lie group method Eq. (5) and
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Fig. 17 Time evolution of the
norm of rotation matrix
orthogonality condition as well
as maximum error in rotation
matrix orthogonality condition
computed for one million steps

by the Euler parameter integration scheme presented in [51] to determine an update for the
rotation vector or Euler angles. For the comparison of the standard Lie group method and the
Euler parameter integration scheme with the proposed approach, three rotation parameters
are computed from the rotation matrix Eq. (5), respectively the Euler parameters computed
with Eq. (12) in [51]. The rotation matrix R0 in Eq. (5) and the Euler parameters θ0 are
reconstructed from the rotation vector v0 and the Cardan/Tait–Bryan angles α0, respectively.
The cost of the integration of the incremental rotation vector differential equation (6) is left
out in the following considerations, since the computational cost depends on the chosen
integration scheme. As the three rotation parameters determined by direct integration of
the kinematic equations (4) cannot be determined in singular points, we do not consider
the computational costs of this methods any further here. The columns in Tables 2–3 show
the respective number of additions, subtractions, multiplications, divisions, trigonometric
functions and roots and the results of adding all these together. While the rows of Tables 2–
3 show the method considered in each case.

As shown in Table 2, the proposed rotation vector approach requires fewer operations
to determine a rotation vector update as compared to determining the rotation vector up-
date from the rotation matrix computed with the standard Lie group method. In contrast,
the method which computes an update for the rotation vector from the Euler parameters
requires fewer operations than the proposed approach. As shown in Table 3, the proposed
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Fig. 18 Comparison of the
convergence of the norm of the
rotation vector error and of the
norm of Cardan/Tait–Bryan angle
error, shown on a
double-logarithmic scale

Table 2 Number of arithmetic operations needed in the proposed approach Eq. (26), in the standard Lie
group method Eq. (5), and in the quaternion integration scheme [51] for computing a rotation vector update.
Note that f (·) is a function that computes the rotation vector from a given rotation matrix R according to
page 54 in [46], respectively Euler parameters according to page 482 in [42]. Note also that the term exp or
cay in the second and third row indicates which coordinate map is used in Eq. (5)

Method on the basis of which a rotation
vector update is computed

add sub mult divis trig sqrt total

Proposed approach 20 4 43 3 6 1 77

Std. Lie gr. method f (R(v0) exp(�)) 101 6 145 5 6 2 265

Std. Lie gr. method f (R(v0) cay(�)) 103 5 145 5 4 1 263

Euler par. [51] f (θ(v0) expS3(�)) 14 6 43 4 6 2 75

Cardan/Tait–Bryan angle approach requires fewer operations to determine a Cardan/Tait–
Bryan angle update as compared to determining the Cardan/Tait–Bryan angle update from
the rotation matrix. In contrast, the method which computes an update for the Cardan/Tait–
Bryan angles from the Euler parameters requires fewer operations as the proposed ap-
proach.
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Table 3 Number of arithmetic operations needed in the proposed approach Eq. (49), in the standard Lie
group method Eq. (5), and in the quaternion integration scheme [51] for computing a Cardan/Tait–Bryan
angle update. Note that f (·) is a function that computes Cardan/Tait–Bryan angles from a given rotation
matrix R according to page 15 in [19], respectively Euler parameters according to page 469 in [42]. Note also
that the term exp or cay indicates which coordinate map is used as the basis of the respective formulation

Method on the basis of which a
Cardan/Tait–Bryan angle update is computed

add sub mult divis trig sqrt total

Proposed approach (exp) 38 9 68 3 11 2 131

Proposed approach (cay) 38 8 68 3 9 1 127

Std. Lie gr. method f (R(α0) exp(�)) 62 6 100 2 11 2 183

Std. Lie gr. method f (R(α0) cay(�)) 64 5 100 2 9 1 181

Euler par. [51] f (θ(α0) expS3(�)) 20 11 58 1 11 1 102

8 Conclusions

A novel numerical solution for solving rotational kinematics by using three rotation pa-
rameters is presented in this paper. The proposed approach is illustrated by the example
of the rotation vector and the Euler angles. In contrast to standard formulations based on
three rotation parameters, in which singular points are avoided, for example, by applying
reparametrization strategies, singular points can be passed through in the proposed approach
by computation of finite increments of rotation. On the contrary to standard formulations
based on three rotation parameters, the proposed approach is based on the numerical inte-
gration of the kinematic relations in the form of the so-called incremental rotation vector.
The kinematic relations of the incremental rotation vector form a system of ODEs on the
Lie algebra so(3) of the rotation group SO(3) that can be solved singularity-free by any
standard ODE integration scheme. In the proposed approach, after the incremental rotation
vector has been determined for the current step, the rotation parameter update for the current
step is determined with the composition rule of rotations that applies to the particular rota-
tion parameters using the finite increments of rotation (which are expressed in dependence
of the incremental rotation vector), and the rotation parameters of the previous integration
step.

By taking this route, the proposed approach is able to reconstruct the rotation parameters
even in singular configurations. As shown in the paper, the proposed approach exhibits the
same accuracy as the standard Lie group method and the accuracy is higher as compared to
the direct time integration of rotation parameters. As the presented results show, the order
of accuracy of the presented integration scheme depends only on the accuracy of the ODE
integrator used for solving Eq. (51). Therefore the user can influence the accuracy of the
overall algorithm by choosing the ODE integrator to solve Eq. (51).

The new methods proposed in this paper are more favourable compared to the stan-
dard Lie group method in terms of their computational effort. However, the newly proposed
methods are less favourable in terms of the required computational effort as compared to
reconstructing the rotation vector or Cardan/Tait–Bryan angles from the Euler parameter
integration scheme proposed in [51]. Therefore, the improvement of the proposed approach
regarding its computational efficiency will be the subject of future research.

For solving stiff problems, the use of an implicit time integration scheme is advantageous
[18]. Therefore, embedding the proposed approach in an implicit time integration scheme
will be the content of future work.
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In summary, the current paper provides a novel numerical solution for the long-standing
problem of direct time integration of Euler angles and, alternatively, the rotation vector.
The paper provides ready to implement update formulas that allow to compute consistent
updates for the rotation vector and the Euler angles. The provided update formulas can be
easily integrated into existing codes that uses either the rotation vector or Euler angles and
provide a novel implementation strategy of Lie group methods.
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Appendix A: Basic expressions for exponential map, Cayley transform,
rotation vector and Euler angles

A.1 The exponential map on SO(3)

According to [3, 26, 32], the matrix exponential map exp : R
3 → SO(3) may be evaluated

in SO(3) by

exp(�) = I + sin(‖�‖)
‖�‖ ˜� + 1 − cos(‖�‖)

‖�‖2
˜�2. (77)

Since � represents a rotation vector, the exponential map also exhibits a singular point. The
singular point at ‖�‖ = 0 is crucial for the evaluation of the exponential map. However, the
singular point in case that ‖�‖ = 0 is removable using the cardinal sine function sinc(x)
Eq. (22). Thus, the form

exp(�) = I + sinc(‖�‖)˜� + 1

2
sinc2

(‖�‖
2

)

˜�2 (78)

allows an evaluation of the exponential map for the case that ‖�‖ = 0 as shown in [32].
An alternative to implementing the exponential map in the form of Eq. (78) is to remove

the singular point of the exponential map at ‖�‖ = 0 using the case distinction

exp(�) =
{

I if ‖�‖ ∈ {0,2πN} ,

I + sin(‖�‖)
‖�‖ ˜� + 1−cos(‖�‖)

‖�‖2
˜�2 else,

(79)

which is used in [11, 26], for example.
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The inverse tangent operator T−1
exp corresponding to the exponential map on SO(3) is

given by [51]

T−1
exp(�) = I + 1

2
˜� + 1 − ||�||

2 cot( ||�||
2 )

||�||2 ˜�2, (80)

which exhibits singular points at ‖�‖ = ±2πk, k = 0,1,2, . . . Decisive for the evaluation of
Eq. (80) is the situation ‖�‖ = 0, because T−1

exp has a discontinuity there, which is removable
due to

lim
‖�‖→0

det(T−1
exp(�)) = 1, (81)

as shown in [32]. In the implementation, the singular point at � = 0 in Eq. (80) is according
to Eq. (81) removed by using the case distinction

T−1
exp(�) =

{

I if ‖�‖ = 0,

I + 1
2
˜� + 1− ||�||

2 cot( ||�||
2 )

||�||2 ˜�2 else,
(82)

which allows a singular-point-free integration of the angular kinematics in the range ‖�‖ ∈
(−2π,2π), i.e. for a full double turn [32].

A.2 The Cayley transform on SO(3)

The Cayley transform can be used as coordinate map φ(˜�) = cay(˜�) as well. This is due
the fact that the Cayley transform also maps algebra elements to group elements, which is
well know on SO(3) [31].

The Cayley transform cay : R
3 → SO(3) is defined by [10, 26]

cay(�) =
[

I − 1

2
˜�

]−1 [

I + 1

2
˜�

]

(83)

= I + 4

4 + ||�||2
(

˜� + 1

2
˜�2

)

, (84)

while the corresponding inverse tangent operator is given by

T−1
cay(�) =

(

1 + 1

4
||�||2

)

I + 1

2
˜� + 1

4
˜�2. (85)

A.3 Rotation vector

The rotation matrix is represented in the form [16]

R(v) = I + sin ||v||
||v|| ṽ + 1 − cos ||v||

||v||2 ṽ2. (86)

Note that R(v) = exp(v) holds. The kinematic equation of the rotation vector is according
to [6] given by

v̇ =
[

I + 1

2
ṽ + 1

||v||2
(

1 − ||v|| sin ||v||
2(1 − cos ||v||)

)

ṽ2

]

ω = G−1(v)ω. (87)

An equivalent form of Eq. (87) can be found in [43], for example.
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A.4 Cardan/Tait–Bryan angles

The kinematic equation of Cardan/Tait–Bryan angles is according to [35] given by

α̇ =
⎡

⎣

α̇1

α̇2

α̇3

⎤

⎦ = 1

cosα2

⎡

⎣

cosα3 − sinα3 0
sinα3 cosα2 cosα3 cosα2 0

− cosα3 sinα2 sinα3 sinα2 cosα2

⎤

⎦

⎡

⎣

ω1

ω2

ω3

⎤

⎦ = G−1(α)ω. (88)

Appendix B: Proposed approach with Cardan/Tait–Bryan angles

This section is an extension of Sect. 5. In the following we show how sinαi and cosαi

for Cardan/Tait–Bryan angles are determined depending on the incremental rotation vec-
tor �. The relation between sinαi and cosαi and � is needed to be able to compute the
Cardan/Tait–Bryan angle increments �αi with Eq. (45). The procedure shown in the follow-
ing can be applied analogously to the derivation of sinαi and cosαi for 313-Euler angles,
for example.

When writing down the components of the rotation matrix for Cardan/Tait–Bryan angles,

R(α) =
⎡

⎣

cα2 cα3 −cα2 sα3 sα2

sα1 sα2 cα3 + cα1 sα3 cα1 cα3 − sα1 sα2 sα3 −sα1 cα2

sα1 sα3 − cα1 sα2 cα3 cα1 sα2 sα3 + sα1 cα3 cα1 cα2

⎤

⎦ =
⎡

⎣

R11 R12 R13

R21 R22 R23

R31 R32 R33

⎤

⎦ ,

(77)
it is observed that there are six entries Rij ∈R in Eq. (77), such that the relations

sinα2 = R13, cosα2 =
√

1 − R2
13, (78)

sinα1 = −R23

cosα2
, cosα1 = R33

cosα2
, (79)

sinα3 = −R12

cosα2
, cosα3 = R11

cosα2
, (80)

are valid.15 In Eq. (77), we used the abbreviation cαi
= cosαi and sαi

= sinαi . To estab-
lish a relation between the incremental rotation vector � and the Cardan/Tait–Bryan angle
increments �αi , we consider Eq. (7) in the form

R(α) = R(α0)φ(�). (81)

Using Eq. (81), each entry Rij in Eq. (77) may be computed by

Rij = eT
i R(α0)φ(�)ej = uivj , i, j = 1,2,3, (82)

where the vectors ui and vj are defined as

ui (α0) = eT
i R(α0), vj (�) = φ(�)ej . (83)

In Eq. (82) (resp. Eq. (83), the unit vectors shown in Eq. (38) are used. The vectors ui and vi

can be specified explicitly for the selected coordinate map φ(·). Due to the vast number of

15Equations (78)–(80) can be verified by comparison with Eq. (77).
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possible coordinate maps and space reasons, we do not explicitly state them here. However,
the interested reader may determine the explicit form of ui and vi for the coordinate map of
interest using Eq. (83). By considering Eqs. (78)–(80) and Eq. (82), R13, R23, R33, R12 and
R11 are expressed in dependence of the incremental rotation vector as

R13 = eT
1 R(α0)φ(�)e3 = u1v3, (84)

R23 = eT
2 R(α0)φ(�)e3 = u2v3, (85)

R33 = eT
3 R(α0)φ(�)e3 = u3v3, (86)

R12 = eT
1 R(α0)φ(�)e2 = u1v2, (87)

R11 = eT
1 R(α0)φ(�)e1 = u1v1. (88)

Inserting Eqs. (78)–(80) into Eqs. (43)–(44) taking into account Eqs. (84)–(88) results in

y1(α0,�) = − u2v3

cosα2
cosα0,1 − u3v3

cosα2
sinα0,1, (89)

x1(α0,�) = u3v3

cosα2
cosα0,1 − u2v3

cosα2
sinα0,1, (90)

y2(α0,�) = u1v3 cosα0,2 −
√

1 − (u1v3)2 sinα0,2, (91)

x2(α0,�) =
√

1 − (u1v3)2 cosα0,2 + u1v3 sinα0,2, (92)

y3(α0,�) = − cosα0,3
u1v2

cosα2
− sinα0,3

u1v1

cosα2
, (93)

x3(α0,�) = cosα0,3
u1v1

cosα2
− sinα0,3

u1v2

cosα2
. (94)

It should be noted, that Eqs. (89)–(90) and (93)–(94) can only be evaluated for α2 /∈ Sα

where

Sα = {x | cosx = 0, x ∈R} . (95)

To cover the case α2 ∈ Sα , we replace

1

cosα2
=̂ 1

√

1 − (u1v3)2
(96)

in Eqs. (89)–(90) and (93)–(94) by16

μ =
⎧

⎨

⎩

0 if
√

1 − (u1v3)2 = 0,
1√

1−(u1v3)2
else. (97)

By using Eq. (97), Eqs. (89)–(94) take the form

y1(α0,�) = −μu2v3 cosα0,1 − μu3v3 sinα0,1, (98)

16As shown in the numerical results in Sect. 7.1.2, the case distinction Eq. (97) allows reconstructing the
Euler angles corresponding to the singular points at cosα2 = 0.
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x1(α0,�) = μu3v3 cosα0,1 − μu2v3 sinα0,1, (99)

y2(α0,�) = u1v3 cosα0,2 −
√

1 − (u1v3)2 sinα0,2, (100)

x2(α0,�) =
√

1 − (u1v3)2 cosα0,2 + u1v3 sinα0,2, (101)

y3(α0,�) = −μu1v2 cosα0,3 − μu1v1 sinα0,3, (102)

x3(α0,�) = μu1v1 cosα0,3 − μu1v2 sinα0,3. (103)

From Eqs. (98)–(103), the Cardan/Tait–Bryan angle increments �αi can be computed with-
out restrictions using the atan2 function

�α1(α0,�) = atan2( y1, x1 ), (104)

�α2(α0,�) = atan2( y2, x2 ), (105)

�α3(α0,�) = atan2( y3, x3 ). (106)

Note that it is not necessary to select a specific coordinate map φ(�) in Eq. (82) when
deriving the general expression for the angle increments depending on the incremental rota-
tion vector. Therefore, it is possible to implement the proposed approach for any choice of
Euler angles in such a way that it is easy to switch between different coordinate maps. This
allows influencing the computational efficiency of the proposed approach in a specific way.
Note also that, in general, the coordinate map and the inverse tangent operator must match,
i.e. T−1

φ = T−1
exp if φ = exp or T−1

φ = T−1
cay if φ = cay. However, note that switching between

different coordinate maps is not necessary in the proposed approach. As a final remark, we
would like to note that for an efficient implementation of the proposed Cardan/Tait–Bryan
angle approach, it is advantageous to optimize the implementation for a specific coordinate
map by computing and implementing ui and vi explicitly.
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