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Abstract Joint clearance serves as a crucial element of nonlinearity in multibody systems.
The quantization of the system chaos is conducive to not only the understanding of the non-
linear nature but the rationalization of system controlled parameters. In the present work,
the system dynamics for the planar slider-crank mechanism with multiple clearance joints is
depicted by the correlation dimension and bifurcation actions. Considering the obliqueness
of the slider, the general configuration of the planar joint is proposed. Generalized coordi-
nates and the Lagrangian approach are adopted to derive the dynamic motion equations. The
effects of clearance size and driving speed on the bifurcations of the dynamic response are
investigated. Furthermore, the fractal dimension of the strange attractor is identified by the
correlation dimension from time series. Based on the Cao method, the Mutual Information
(MI) function, and the Grassberger-Procaccia (G-P) algorithm, the controlled factors in the
evaluation of correlation dimension are cautiously determined. Ultimately, the compound
effect of translational and revolute clearance joints on the mechanism dynamics is featured.
The numerical results testify that the correlation dimension of the slider displacement ap-
proximately saturates beyond a specific translational clearance value. Moreover, with the
parameters used in this work, the complexity of system response seems to be more sensitive
to the variation of translational clearance size than with the revolute joint.
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Nomenclature
rHK Global position vector of point H to point K

sOH
k Position vector of point H in the body fixed coordinate of body k respect to the

origin Ok

Rk Rotation matrix of body k
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θk Revolute angle of the mass center of body k [rad]
δ, δ Vector and value of penetration [m]
vT Tangential velocity vector [m/s]
FN , Ff Normal and friction force vectors at the contact points [N]
Qc Vector of the resultant contact force [N]
K Generalized contact stiffness [N/m]
n Exponent of the force deformation characteristics
Ek Elastic module of body k [Pa]
υk Poisson’s ratio of body k

δ̇(−) Initial impact velocity [m/s]
ce Restitution coefficient
ct Normal clearance in the translational joint [m]
cr Normal clearance in the revolute joint [m]
S Area of the contact region [m2]
Ls , Lc Length and width of the rectangular surface for contact region [m]
μ Friction coefficient
z Average bristle deflection [m/N]
σ0 Bristle stiffness [N/m]
σ1 Microscopic damping [Ns/m]
σ2 Viscous friction coefficient
μk Coefficient of kinetic friction
μs Coefficient of static friction
γ Shape factor of Stribeck curve
ω Angular velocity of the crank [rad/s]
ϕ Orientation angle of resultant contact forces [rad]
Mc Moment vector originated in contact forces [Nm]
L Lagrangian function [Nm]
T , U System kinetic and potential energies [Nm]
qk Generalized coordinate
Qnc,k Generalized force
u̇ Time derivative of variable u

τ Time delay
p(x, y) Joint probability density for time series x and y

C(ε) Correlation function respect to the radial ε

m Embedding dimension
D Correlation dimension
E1(m),E2(m) Indexes determined by the Cao method

1 Introduction

In general, the existence of clearance in the joints is inevitable but essential for multibody
systems. Nonlinear surveys reveal that the introduction of joint clearance could bring a
higher precision of mechanism analysis as well as the unpredictability of the system re-
sponse [1–3]. In the classical contact model for clearance joints, the joint elements experi-
ence constant collision and separation. With the specific range of parameters, the discontin-
uous contact forces could contribute to the poor dynamics of the mechanism and lead the
global behaviors into chaos [4, 5].
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In the literature, the revolute joint with clearance is often introduced as an example to
depict the effect of clearance joints [6–9]. Moreover, the prevailing studies have included
multiple revolute clearance joints, flexible multibody systems, and the practical application
of clearance joint [1]. Based on the numerical simulation and experimental results, Zheng et
al. [10] introduced the lubrication forces and revolute joints in flexible multi-link systems,
claiming that the consideration of joint collision was essential. Wang et al. [11] noticed the
uncertain joint clearance and explored the influence in the rigid-flexible multibody system
by the bifurcation diagram. A modified extended delayed feedback control (EDFC) method
was implemented in their work to maintain continuous contact in the joint, which finally sta-
bilized the chaotic motion. The same mechanism was investigated by Rahmanian et al. [12]
as well, where the bifurcation and the period-doubling phenomenon were presented more
in detail. Ma et al. [13] analyzed the dynamic characteristics of the slider-crank mechanism
with three revolute clearance joints. Through a close examination of the contact forces in
every revolute joint, they emphasized that the joint between the ground and crank should
be paid more attention. Similarly, a typical planar four-bar mechanical system with multi-
ple revolute clearance joints was presented by Bai et al. [14]. The nonlinear evolutions of
the contact forces and angular acceleration of the crank demonstrated the strong interaction
between the revolute clearance joints. The bifurcation analysis of a similar mechanism was
proposed by Farahan et al. [15] recently.

Regarding the translational clearance joint, Flores [16] proposed a general methodology
to describe the planar issue. Based on the collision situation of the slider corners, four differ-
ent configurations of contact forces on the slider were conducted. Wu et al. [17] extended the
work into a spatial translational clearance joint and modified the stiffness item, which con-
sidered the geometrical change in contact regions. It was also stated that undesirable torques
could be observed on the slider due to the obliqueness. An experimental rig of slider-crank
mechanism with multiple clearance joints was presented by Erkaya et al. [18], where the
vibrations and noise characteristics were investigated to feature the compound effects of
clearance joints.

Compared with the relatively intuitive judgments of system behaviors from phase por-
traits or time series diagrams, recent research has progressively put the interests in the char-
acterization of the chaotic response. Kappaganthu and Nataraj [19] investigated a rolling
bearing with clearance, where Lyapunov exponents and Poincaré mappings were employed
to analyze dynamic behaviors of the mechanism and determine the regions of chaotic re-
sponse. Concerning the harmonically excited one-degree-of-freedom mechanical system,
Serweta et al. [20, 21] successively detailed the bifurcation action for the system pos-
sessing one or two symmetrical amplitude constraints. By determining the corresponding
spectra of Lyapunov exponents, the research identified the influence of excitation force
frequency on the dynamic behavior in a wide range of control parameters. Liu et al. [22]
studied the smooth bifurcation and grazing non-smooth bifurcation of a periodic motion for
a three-degree-of-freedom vibro-impact system with clearance. The discontinuous jump-
ing phenomenon and co-existing multiple solutions near the grazing bifurcation point were
revealed. More recently, Yousuf [23] focused on the rich nonlinear phenomena of the exper-
imental platform for a polydyne cam and roller follower mechanism. The Lyapunov expo-
nents obtained from test data were utilized to quantify the chaos.

In chaos theory, the correlation dimension is an invariant measure of the scale-invariant
property and self-similarity of a strange attractor [24]. Evaluation of the correlation dimen-
sion can contribute to the description of system complexity. The main object of this paper is
to explore the compound effect and interaction of translational and revolute clearance joints
on the dynamic response of slider-crank mechanism. On account of the extensive research
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Fig. 1 Generic planar
translational joint with clearance
in a multi-body system

on the mechanism with a revolute clearance joint in previous studies, the presented work
will focus on the effects of the translational clearance joint primarily. Then, the dynamics
of clearance joints are modeled by the modified Lankarani-Nikravesh (L-N) contact model
[25] and the LuGre friction model [26]. The Lagrangian approach is utilized to derive the dy-
namic motion equations, based which the system response is reconstituted in discrete phase
space. The correlation dimension and bifurcation diagrams, as well as the probability dis-
tribution function (PDF), are served as the probes to feature the system chaos. Additionally,
the bifurcation analysis illustrates stability ranges of controlled parameters, including clear-
ance size and driving speed. Ultimately, the compound effect of revolute and translational
clearance joint is featured by the correlation dimension.

2 Modeling the planar translational joint with clearance

For an ideal translational kinematic joint, the motion trajectory of the slider coincides with
the line of translation due to the geometrical limitation of the guide. The introduction of
clearance to a planar translational joint removes three DOFs (degrees of freedom) of the
slider, namely two translation motion and one revolute motion. Instead of kinematic con-
straints, the local dynamic behavior of the joint is governed by the generated contact forces,
i.e. the kinematic joint is transformed into the “force joint” [27]. Then the contact forces are
introduced into the system’s dynamic equations as external generalized forces to evaluate
the global system behavior.

3 Kinematics of translational joint with clearance

Before the formulation of impact forces in the motion equations, kinematics of the joint
should be conducted first. In this section, the methodology proposed by Flores [16] is modi-
fied to describe the contact event. It is assumed that the colliding bodies penetrate each other
in a dry contact manner during the impact action. Figure 1 presents a representative trans-
lational clearance joint where the slider collides with the guide obliquely. It shows that the
phenomenon of contact could generate at any corner of the slider, and the collision occurred
at corner B is selected as an illustrative example. Let PQ and RS denote the upper and
bottom geometrical limits of the guide, respectively.
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Relative to the origin of inertial reference frame, the global position vector for a given
point H of body k can be represented by

rH = rOk + RT
k sH

k , (k = i, j) , (1)

where rOk is the global position vector of the mass center (Ok) in body k. Rk denotes the
rotation matrix of the frame (ξkOkηk) with respect to the inertial coordinate and is evaluated
by

Rk = Rk (θk) =
[

cos θk sin θk

− sin θk cos θk

]
. (2)

The global position vector from point H to point K is defined as

rHK = rK − rH . (3)

The penetration depth between the slider corner and guide upper surfaces is given by

δB = nT
PQrBQ = nT

PQ

(
rOi + RT

i sOB
i − rOj − RT

j s
OQ
j

)
, (4)

where nPQ is the unit vector normal to the upper guide surface (PQ), i.e., the vector is
orthogonal to vector rPQ and is evaluated by

nPQ =
[

0 1
−1 0

]
rPQ∥∥rPQ

∥∥ . (5)

Let the positive sign of the penetration depth present the generation of collisions. Then
the orientation of the normal unit vector for the guide surface is stipulated, as shown in the
sketch. The penetration vector δB is formulated by

δB = (
nT

PQrBQ

)
nPQ. (6)

Furthermore, the impact velocity, which is essential to evaluate the damping item of normal
contact forces, is obtained by differentiating Eq. (6) to time, yielding

δ̇B = (
ṅT

PQrBQ + nT
PQṙBQ

)
nPQ + (

nT
PQrBQ

)
ṅPQ. (7)

Assuming that the guide is attached to the ground, the factor ṅPQ is identically zero vector
and the impact velocity is reformulated by

⎧⎨
⎩

δ̇B = (
nT

PQṙBQ

)
nPQ

ṙBQ = ṙOj + ṘT
j sOB

j − ṙOi − ṘT
i sOQ

i

. (8)

The tangential velocity at the contact point, which is requisite to determine the friction, can
be represented by the vector difference between the global velocity of corner B and impact
velocity, yielding

vT = ṙOi + ṘT
i sOB

i − (
nT

PQṙBQ

)
nPQ. (9)
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4 Dynamics of the translation joint with clearance

Generally, the contact forces consist of normal impact force and tangential force, which is
also known as the friction force. Considering the energy dissipation and nonlinear nature of
the collision, the impact force model proposed by Lankarani is widely accepted [25]. How-
ever, the description of this model for the translational clearance joint fails to estimate the
stiffness precisely, which is attributed to the neglect of geometrical variation of the contact
region. As depicted in Fig. 1, the contact region could be considered as a rectangular char-
acterized by the length Lc and penetration depth δB . The impact force can be evaluated by
[25]

FN = Kδn

[
1 + 3

(
1 − c2

e

)
4δ̇(−)

δ̇

]
, (10)

where n is the nonlinear exponent and the value is 1.5 for metal-to-metal collisions. The
generalized stiffness K is formulated as [17]

K
.=

√
S

(σi + σj )

1

11.15 (Ls/Lc + 15.72)−1 + 0.2854
, (11)

where S denotes the area of contact region and Ls represents the length of the slider. Take
contact region illustrated in Fig. 1 as the example, the length Lc can be estimated by the
penetrations of two adjacent corners as

Lc =
⎧⎨
⎩

Ls ifδA, δB > 0
0 ifδA, δB ≤ 0
Ls max (δA, δB) / |δA − δB | else

(12)

The parameters σi and σj denote the material parameter of the colliding elements i and j ,
respectively,

σk = 1 − ν2
k

Ek

(k = i, j) . (13)

Note that the orientation of the normal force vector FN is parallel to the penetration vec-
tor δB .

For the description of collision, the friction force can be a significant factor to estimate
the resultant contact forces. The classical Coulomb friction law could represent the most
fundamental principles of friction in the dry sliding condition. However, the model is in-
capable to represent the physics of the stick-slip effect, which regularly generates in the
relative motion of the interfaces. In this work, the sliding friction, stiction friction, and the
stick-slip transition motion in the contact region are considered. The LuGre friction law is
utilized to simulate the stick-slip friction in the translational joint, and we have [26]

Ff = −μFN

vT

‖vT ‖ . (14)

The instantaneous coefficient of friction μ in Eq. (14) is represented as

μ = σ0z + σ1ż + σ2vT . (15)
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The differential equation for the average bristle deflection z is obtained from

ż = vT − σ0 |vT |
μk + (μs − μk) e−|vT /vs |γ z. (16)

Submitting Eq. (16) to Eq. (17), the friction coefficient is reformulated as

μ = σ0z

[
1 − σ0 |vT |

μk + (μs − μk) e−|vT /vs |γ

]
+ (σ1 + σ2) vT . (17)

The normal contact force and friction force act on the mass center of the contact region,
which is denoted by point W in the diagrammatic sketch of Fig. 1. The resultant contact
force vector together with its magnitude and orientation is evaluated by

⎧⎪⎨
⎪⎩

Qc = FN + Ff

Qc = ‖Qc‖ = K
√

1 + μ2δn
(

1 + 3(1−c2
e )

4δ̇(−) δ̇
)

ϕ = tan−1
(
μ sign

(
vT rPQ

)) + θj

. (18)

The moment vector Mc acting on the slider is represented by the cross multiplication of the
contact force and penetration position vector

Mc = rOiW × Qc. (19)

During the evaluation of resultant contact forces, four different contact scenarios pro-
posed by Flores et al [16] are considered. In the numerical integration routines, the colli-
sions generated in the four corners of the slider are the criterion determining the contact
configuration.

5 Dynamic equations of the multibody system

In this section, the motion equations for the unconstrained multibody systems are derived
based on the generalized coordinates and Lagrangian approach. Due to the introduction of
clearance joints, the kinematic translational constraints along the Y-axis and the revolute
constraints are removed. Then, the dynamic characteristic of the joint is governed by the
contact forces. For a non-conservative multibody system, the Lagrange motion equations
are generally obtained by [15]

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk

= Qnc,k (k = 2,3,4) , (20)

where L = T − U is the Lagrangian function. Qnc,k is the generalized force corresponding
to the generalized coordinate qk and is given by

Qnc,k =
4∑

i=2

(
F∗

i · ∂vi,c

∂q̇k

+ M∗
i · ∂ωi

∂q̇k

)
, (21)

where F∗
i and M∗

i denote the vector of resultant external forces and moments acting on the
mass center of the body i, respectively. vi,c and ωi,c indicate the translational and revolute
velocity of the mass center of body i, respectively.
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Fig. 2 Configuration of the slider-crank mechanism with a translational clearance joint

Considering the slider-crank mechanism with a translational clearance joint shown in
Fig. 2, the generalized coordinates are chosen as q = [θ2; θ3; θ4], responding to the revolute
angle of the mass center of the crank, connecting rod and slider, respectively. The geometri-
cal relationship between the markers of each body is evaluated by

OA + AB − y4 = x4. (22)

Let vector j represent the global unit vector along the Y-axis, and the penetration depth
derived from Eq. (4) is given by

δk = ∥∥[
y4 + (R (θ4) sBk)

]
j
∥∥ − ct , (23)

where k = A, B , C, D, denoting the corners of the slider respectively. And the positive
sign of penetration depth is the metric of the collision generation in the corresponding po-
sition. To evaluate the non-conservative forces and the kinetic potential of the slider, the
translational velocity of slider mass center is

v4,c =
⎛
⎝−L2θ̇2 sin θ2 − L3θ̇3 sin θ3

L2θ̇2 cos θ2 + L3θ̇3 cos θ3

⎞
⎠ . (24)

Then, the system kinetic and potential energies are obtained by Eq. (25):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T = 1

2

[
IG2 + m2b

2
2L

2
2 + (m3 + m4)L2

2

]
θ̇2

2 + 1

2

[
IG3 + (

b2
3m3 + m4

)
L2

3

]
θ̇2

3

+ (b3m3 + m4)L2L3θ̇2θ̇3 cos (θ2 − θ3) + 1

2
IG4θ̇

2
4

U = (b2m2 + m3 + m4) gL2 sin θ2 + (b3m3 + m4) gL3 sin θ3

. (25)

Substituting Eqs. (18) and (19) to Eq. (21), the generalized forces responding to the selected
coordinates can be cast in the form⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Qθ2 = QcL2 sin (ϕ − θ2) + M2

Qθ3 = QcL3 sin (ϕ − θ3)

Qθ4 = Mc

. (26)

The dynamic behavior of the crank is determined by the constant angular velocity ω.
Therefore, the system response is evaluated by the equations of motion for the connecting
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Table 1 Properties of the slider-crank mechanism

Properties \ Bodies Crank Connecting rod Slider Guide

Length (m) 0.05 0.12 H = L = W = 0.05 –

Mass (kg) 0.3 0.21 0.28 –

Moment of inertia (×10−4 kg m2) IG2 = 1 IG3 = 2.5 IG4 = 2.5 –

Young’s modulus (GPa) – – 207 207

Poisson’s ratio – – 0.3 0.3

Table 2 Parameters in the simulation of the mechanism with a translational clearance joint

Bristle stiffness σ0 100,000 N/m Shape factor of Stribeck curve γ 2

Microscopic damping σ1 400 Ns/m Crank speed 5000 spm

Viscous friction coefficient σ2 0 Integration step 1 × 10−6 s

Coefficient of kinetic friction μk 0.11 Simulation duration 10 s

Coefficient of static friction μs 0.1 Clearance size 0.01 ∼ 0.6 mm

rod and slider, which are derived as follows:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
IG3 + (

b2
3m3 + m4

)
L2

3

]
θ̈3 + (b3m3 + m4)L2L3ω

2 sin (θ3 − θ2)

+ (b3m3 + m4) gL3 cos θ3 + QcL3 sin (θ3 − ϕ) = 0

IG4θ̈4 = Mc

. (27)

And the driving torque acting on the crank is given by

M2 = (b3m3 + m4)L2L3

[
θ̈3 cos (θ2 − θ3) + θ̇2

3 sin (θ2 − θ3)
]

+ (b2m2 + m3 + m4) gL2 cos θ2 + QcL2 sin (θ2 − ϕ)
. (28)

The motion solution solved by Eqs. (27) and (28) is started with a proper set of initial con-
ditions obtained from the simulation where all the joints are assumed to be perfect, yielding

{
θ2,t=0 = θ3,t=0 = θ4,t=0 = 0

θ̇2,t=0 = ω; θ̇3,t=0 = −ωL2/L3; θ̇4,t=0 = 0.
(29)

The MATLAB code is conducted to solve the differential equations, where the fourth-
order Runge–Kutta method is employed. The geometrical and initial properties of the mech-
anism are given by Table 1, while the same mechanism was investigated by Flores [16].
Based on the previous studies [10, 11, 28], the parameters utilized in the simulation are de-
termined by Table 2. In the simulations, the integration time step is set as 1 × 10−6 s and all
the computations are performed on the computer with 6 processors of 3 GHz and a RAM of
8 GB.

6 Bifurcation and chaos

As illustrated in Fig. 3, the trajectory of the slider for various translational clearance size
is investigated primarily. The numerical results demonstrate that a minor clearance seems
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Fig. 3 Slider trajectory for the mechanism with a translational clearance joint varying clearance sizes
(ω = 5000 rpm, μs = 0.1): (a) 0.5 mm; (b) 0.3 mm; (c) 0.2 mm; (d) 0.1 mm; (e) 0.01 mm; (f) numeri-
cal results from Flores for ct = 0.01 mm [16]

to correspond to a more periodical system response, which indicates the low complexity
of the mechanism. According to Fig. 3(e) and (f), the simulation adopting the variable-
stiffness model share a similar shape of slider trajectory with the constant-stiffness case.
However, the penetration depth is larger for the variable-stiffness case. Since the stiffness
item evaluated by Eq. (11) depends on the variation of contact region, the minor contact area
during collision actions indicates that the guide is easy to be penetrated.
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Fig. 4 Bifurcation diagram varying the clearance sizes (ω = 5000 rpm): (a) distribution of the sampling
data; (b) PDF of (a)

By characterizing the dynamic response in discrete phase space, the system regularity
affected by various clearance size is analyzed. The bifurcation diagrams for the slider dis-
placement versus the clearance size are depicted in Fig. 4. For a specific clearance, 1000
periods of system responses are obtained and 50 end-periods representing the steady-state
behavior are characterized in the bifurcation diagram. In the presented work, 120 values
of clearance size linearly distributed from 0.01 to 0.6 mm are investigated. Concentrative
distribution of the sampling points is observed in Fig. 4 when the clearance is minor than
0.07 mm, corresponding to the periodic system response. The point distribution also sug-
gests that the slider contacts the guide bottom surface when reaching the bottom dead center
(BDC). For a greater clearance (around 0.1 to 0.15 mm), the densely distributed area of
the points gradually expands to the X-axis and system irregularity occurs. As the clearance
continues to magnify, the slider motion becomes rather aperiodic. It is suggested that the
sampling points fill up the scope defined by the clearance value. Furthermore, the dynamic
response appears to be chaotic within a wide range of clearance. Compared with the rev-
olute clearance joint in the same mechanical system [12], period-doubling and bifurcation
phenomena are not noticeable for the translational clearance joint case.

The concentrate of sampling data may indicate that the system response is more pre-
dictable [29]. The probability distribution of the data points in the bifurcation diagram is
shown in Fig. 4(b). For every specific clearance, 500 endpoints in the discrete phase space
are obtained to evaluate the PDF. It is revealed that when the clearance is greater than
0.3 mm, the probability distribution basically stabilized and the concentration area grad-
ually moves towards the X-axis. On the contrary, the distribution is concentrated for a low
clearance value, while the evolution seems unpredictable with the varying clearance.

System driving speed is another factor that should be given high status. With different
crank speeds, the contact events are constantly in flux and the system behavior could trans-
form from the predictable state into chaos [30]. The presented work explores 150 values of
crank speed linearly distributed within the range from 500 to 5000 rpm to investigate the
system periodicity. Different values of the clearance sizes are selected in the simulation,
respectively, namely 0.1 mm, 0.2 mm, 0.3 mm, and 0.5 mm. Similarly, 500 points in the
Poincaré portrait are employed to conduct the probability density, as shown in Fig. 5 (a) to
(d). For a clearance equal to 0.1 mm, the densely periodic points in Fig. 5 (a) suggest the reg-
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Fig. 5 Probability density distribution of the bifurcation for the mechanism featured by various crank speeds
and translational clearance sizes. (a) ct = 0.1 mm; (b) ct = 0.2 mm; (c) ct = 0.3 mm; (d) ct = 0.5 mm

ularity in the dynamic response for a crank speed lower than 1000 rpm. Uniform distribution
and bimodal distribution are detected with the increase of the crank speed. The concentra-
tions of the sampling points, which shows the exact position where the slider locates in each
period, is mainly focused below the X-axis. When the clearance is enlarged to 0.2 mm and
0.3 mm, the more extensive range of the bimodal distribution is generated for virtually any
speed. However, in the case where the clearance is 0.2 mm and crank rotary speed is chosen
to be 628 rpm, the clustered points indicate that the dynamic response is periodic. As the
clearance size continues to grow to 0.5 mm, the concentrated zones are relatively stable and
approach the X-axis with the increase of crank speed.

Through the overall observation of Fig. 5, it seems that the system behavior performs
unpredictably within a wide range of crank speeds and clearance sizes. The uniform dis-
tribution is also detected in the diagrams, which may be an indicator of stochastic systems.
However, the slider’s vertical displacement is plotted versus the velocity in Fig. 6, the strange
attractors are manifested in the Poincaré map. By projecting the time series into discrete
phase space, Fig. 6 illustrates the system behaviors concerning four different values of the
clearance. Note that each portrait includes 10,000 points, and the driving speed is selected
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Fig. 6 Poincaré portraits for difference translational clearance size for ω = 5000 rpm (10,000 points):
(a) 0.1 mm; (b) 0.2 mm; (c) 0.3 mm; (d) 0.5 mm

as 5000 rpm. The numerical results indicate that the structures of the attractors seem to re-
main unchanged regarding the increase of clearance size. The fractal structure is featured
by a finite scope and infinite details, which denote the main characteristic of chaotic mo-
tion. The point concentration demonstrates that the trajectories are stretching and folding in
theses bounded regions, implying the possible intricate composition. Thus, the complexity
of the strange attractors could not be evaluated precisely through visual observation only.
And mathematical methods for estimating and qualifying the complexity of the attractors is
required.

Within the simulation parameter range chosen in Table 2, the computation costs turn out
to be about 20 minutes (1280.41s) for conducting each bifurcation diagram and 409.97s for
every Poincaré portrait.

7 Quantify the chaos

The time signal from the chaotic system is often, using only visual information, indistin-
guishable from a stochastic process, despite being driven by deterministic dynamics. Gen-
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erally, a time-domain analysis of the time series could not represent the dynamics of chaotic
systems comprehensively [31, 32].

By projecting the time series to a higher dimension, nonlinear dynamic analysis has
provided an effective technique of phase space reconstitution to extract the nature and the
rules of the system. Let x (i) with i = 1, . . . ,N , be the time series with N samples, and the
dataset in the m-dimensional phase space is conducted by

Xi (m) = [x (i) , x (i + τ) , . . . x (i + (m − 1) τ )] . (30)

Then M points are created in the phase space, i.e., i = 1, . . . ,M;M = N − (m + 1) τ . Ac-
cording to the Takens-Mañé embedding theorem [33], the selection of the time delay could
significantly influence the reliability and effectiveness of space reconstruction. In this work,
the mutual information (MI) method is employed to estimate the optimum time delay, due to
its superiority in the nonlinear analysis [34]. The mutual information function is evaluated
by

I (τ ) =
∑

x(i),x(i+τ)

p (x (i) , x (i + τ)) ln
p (x (i) , x (i + τ))

p (x (i))p (x (i + τ))
, (31)

where p (x (i)) and p (x (i + τ)) denote the probabilities for series x (i) and x (i + τ), re-
spectively. p (x (i) , x (i + τ)) is the joint probability density for the two time series. The
optimal time delay is defined by the first minimum of the average mutual information.

A higher correlation dimension usually represents the concretization of a complex
chaotic system, and vice versa [35]. For an m-dimensional phase space, the correlation func-
tion C (ε) is given by Theiler [36]

C (ε) = 2

M (M − 1)

∑
1≤i<j≤M

H
(
ε − ∥∥Xi − Xj

∥∥
p

)
, (32)

where ‖·‖p represent the p norm, and the infinite norm is chosen in this paper. H(k) repre-
sents the Heaviside function, with H (k) = 1 for k ≥ 0 and H (k) = 0 otherwise. According
to the G-P algorithm [37], the dimension D is evaluated by the slope in the logarithmic
diagram of C (ε) versus ε, yielding

D = lim
ε→0

lnC (ε)

ln ε
. (33)

For a chaotic process, the dimension D saturates beyond a certain m [38]. When the value of
D is non-integral or greater than 2, the chaotic oscillation sensitive to the initial conditions
will be generated in the system behaviors [35]. In this paper, Cao’s method is adopted to
obtain the proper embedding dimension due to its objective evaluation [39]. The parameter
E1 (m) is addressed to determine the minimum m

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a (i,m) =
∥∥Xi (m + 1) − Xn(i,m) (m + 1)

∥∥
p∥∥Xi (m) − Xn(i,m) (m)

∥∥
p

E (m) = 1

N − dτ

N−dτ∑
i=1

a (i,m)

E1(m) = E (m + 1) /E (m)

, (34)
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where n(i, m) is the index that responds to Xn(i,m) (m) being the nearest neighbor of Xi (m).
The saturation of E1 (m) beyond a specific m implies the minimum embedding dimension
has achieved. Moreover, another parameter E2 (m) is also established to distinguish deter-
ministic data from random data and is evaluated by

⎧⎪⎪⎨
⎪⎪⎩

E∗ (m) = 1

N − mτ

N−mτ∑
i=1

∣∣xi+mτ − xn(i,m)+mτ

∣∣
E2 (m) = E∗ (m + 1) /E∗ (m)

. (35)

For the time series of a deterministic system, E2(m) is not constant to 1 for any embedding
dimension m.

8 Results and discussion

Primarily, the correlation dimension for the mechanism with different translational clearance
sizes is investigated. Time series of vertical slider displacement for 5 continuous periods are
selected to be the original data, where the crank speed is 5000 rpm. Figure 7 (b) illustrates
the evolution of the MI function varying time delays, where the function reaches the first
minimum for τ = 18. The original dynamic behavior represented by the phase portrait is
depicted in Fig. 7 (a), while Fig. 7 (c) demonstrates the result of phase space reconstitu-
tion. The similar graphs indicate that the methodology could restitute the original system
behaviors effectively. When the embedding dimension increases from 1 to 12, the corre-
sponding correlation functions are evaluated and displayed in Fig. 7 (d). It shows that the
correlation exponent increases before the embedding dimension reaches m = 6, and the
stable correlation dimension is 2.24 in this case. The non-integral fractal dimension authen-
ticates the chaos in the local dynamic response of translational clearance joint. Moreover,
the parameters E1 and E2 in Cao’s method are evaluated for various embedding dimensions
simultaneously, of which the saturation is observed in Fig. 7 (f) for m = 6. As introduced in
Sect. 5, the amplitude variation of parameter E2 testifies that the contact phenomenon in the
clearance joint is described by a determined process, instead of the stochastic system.

It should be noted that before the time series of the slider displacement is considered, the
program conducted in MATLAB to obtain the correlation dimension has been verified by
two classical chaotic strange attractors beforehand. The Lorenz attractor and Henon attractor
were applied to validate the program, and the results corroborated well with Ref. [40].

For the mechanism characterized by different clearance sizes, the correlation dimension
is investigated to estimate the system complexity. Simulations are carried out for 120 val-
ues of clearance size, and the parameters listed in Table 2 are employed. Figure 8 (a) and
(b) illustrate the factor E2 and the dimensions obtained from the numerical results, respec-
tively. When the clearance size is magnified, the mutation of factor E2 suggests that dynamic
performance in the translational clearance joint is determinable invariably. In the previous
studies, a large clearance size was considered to correspond to a more unpredictable system
[1, 28]. However, the dimension D indicates that system behavior does not always become
more complicated with the expansion in clearance size. This finding challenges the conclu-
sion drawn in the literature [16]. The prior study mainly focused on time-domain analysis,
including high peaks in the acceleration-time chart and trajectory branches in the phase por-
traits. This conclusion was based on the investigation for five values of clearance size. The
presented work quantifies the chaotic motion and includes a broader scope of clearance size
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Fig. 7 Correlation dimension determination for the dynamic response of the slider: (a) phase portrait of
the original system response; (b) evaluation of the proper time delay; (c) phase portrait of the reconstituted
phase space; (d) correlation function for different embedding dimensions; (e) correlation dimension varying
embedding dimension; (f) the two essential metrics in Cao’s method
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Fig. 8 Measurement of the correlation dimension of the slider dynamics for various clearance sizes: (a) Pa-
rameter E2 obtained from the Cao method; (b) corresponding correlation dimension

Fig. 9 Correlation dimensions of the slider’s vertical displacement for different clearance sizes and crank
speeds

(120 values). Therefore, the conclusion proposed may be more reliable than based on the
limited information from visual observation only. It is also detected that the fractal dimen-
sion is maintained at a lower level when the translational clearance size is approximately
0.2 mm. The mechanism is supposed to have a low complexity within this range, although
the periodicity is not explicit in the bifurcation diagram.

With a small clearance size, the kinematic joint is considered to share a similar dynamic
response with the ideal joint case [16]. Yet when the clearance is 0.01 mm, dimension D

is still non-integral, which demonstrates that the single periodic state is not achieved. It is
non-deterministic; this phenomenon is attributed to the nature of the clearance joint or the
rounding errors in the simulation.

The dimension D of the system behavior effected by the two quantities, namely crank
speed and clearance size, is depicted in Fig. 9. With regard to the variation of clearance, the
dimension achieves saturation approximately beyond a specific clearance (about 0.3 mm).
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Fig. 10 Representation of the
planar revolute joint with
clearance

With the increase of the driving speed, the evolution of the dimension seems unpredictable
and unstable within the range of a small clearance size. However, steady growth in the
dimension is observed as the crank speed intensifies for the clearance greater than 0.3 mm.

The evaluation of correlation dimension by the G-P method involves the determination
of the curve slope. Thus, the selection of a linear scope can generate errors to some ex-
tent. The slope of the correlation function versus the radius ε is determined through manual
observation to reduce the error.

As mentioned in Sect. 1, the introduction of multiple clearance joints has a complex
compound influence on the system responses. In this part, the translational joint and revolute
joint between connecting rod and slider are modeled to be imperfect simultaneously. In the
planar revolute joint with clearance, the journal and bearing are assumed to penetrate each
other in a dry contact manner as illustrated in Fig. 10. The penetration depth is determined by
the clearance and center distance between the joint elements. The contact forces generated
in the joint are evaluated by the L-N dissipative contact model and LuGre friction model.
For the slider-crank mechanism with a revolute clearance joint, the equations of motion can
be addressed by the Lagrangian approaches reported in Refs. [2, 12]. The reader can find a
more comprehensive investigation of this issue in Tian’s work [1].

Prior to the estimation of correlation dimension from time series, the simulation per-
formed in the presented work should be validated. The numerical results are compared with
those obtained by Flores [4] and Wang et al. [11], as illustrated in Fig. 11. In Ref. [15],
strange attractors are discovered in the revolute clearance joint, and the friction forces could
“smooth” the dynamics-time curve to some extent. Consequently, the system behavior is
supposed to be more stable and predictable. In this work, we aim to explore the combined
effect of the two strange attractors. Therefore, the friction action in the revolute joint ought
to be weakened, and the static friction coefficient is then selected as 0 and 0.05, respectively.

With the changes in friction coefficient and clearance sizes, the correlation dimension
for the slider’s vertical displacement in the mechanism with two clearance joints is investi-
gated. Figure 12 illustrates the numerical results for the system with different combinations
of the parameters. When the translational clearance achieves ct = 0.2 mm, the valley in the
dimension evolution occurs. The variation of the friction coefficient and clearance size for
the revolute joint seems to have a slight influence on the dimension. It shows that the transla-
tional clearance joint has a more stimulating effect on the system outputs than in the revolute
case. By examining the journal trajectories shown in Fig. 13, it is easy to see that the journal
and bearing maintain in the state of continuous penetration contact fairly, even when the
two clearances reach the maximum value simultaneously. The observation is corroborated
by the previous numerical results [4, 12]. However, the relative motion between the slider
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Fig. 11 System response of the slider-crank mechanism with a revolute clearance joint: (a) relative motion
trajectory of the journal center relative to the bearing (cr = 0.01 mm, μ = 0); (b) corresponding results
obtained by Wang [11]; (c) phase portrait of the slider’s dynamic response (cr = 0.5 mm, μs = 0.1); (d) the
corresponding results presented in Ref. [4]

and guide experiences different configurations, including “free flight”, “contact” and “pen-
etrated contact” shown in Fig. 3. When the clearance joint is of the nature of a continuous
contact, the dynamic response of the slider-crank mechanism is similar to the ideal joint
case [1]. Thus, the system complexity may be more likely controlled by the translational
clearance joint.

9 Conclusions

The system chaos of the planar slider-crank mechanism with multiple clearance joints is
examined in this paper. The dynamics of the clearance joint is described by the modified
L-N contact model and the LuGre friction model, and the general formulation of the planar
translational clearance joint is proposed. Then the Lagrangian approach is adopted to derive
the system equations of motion. Time series of the system behaviors are projected into the
discrete phase space to obtain the Poincaré portraits and bifurcation diagrams, which play a
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Fig. 12 Correlation dimensions for the mechanism with different friction coefficient (ω = 5000 rpm):
(a) friction coefficient in the revolute clearance joint equals 0; (b) static friction coefficient in the revolute
clearance joint equals 0.05

Fig. 13 Trajectory of the journal center in the slider-crank mechanism with multiple clearance joints
(ω = 5000 rpm, ct = 0.5 mm): (a) cr = 0.1 mm; (b) cr = 0.5 mm

fundamental role in recognizing the periodicity of nonlinear systems. And the presence of
strange attractors signals the chaos character of the mechanism. Parameter analysis is carried
out to investigate the effects of clearance size and driving speed on the system’s generic
behaviors as well. Furthermore, the system chaos is quantified by the fractal dimension,
where a series of methods are employed to rationalize the controlled parameters.

The numerical results demonstrate that, for a relatively large clearance, the dimension
saturates for the variation of clearance size but increases with the acceleration of the crank.
The valley of the correlation dimension is observed, which indicates that the system com-
plexity is maintained at a low level within this scope of clearance. When the revolute and
translational clearance joints are introduced to the system simultaneously, the correlation di-
mension of the slider vertical displacement is likely to be governed by the translation joint.
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This phenomenon may be caused by the constant transition from penetrated contact to free
flight motion in the translational clearance joint.
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