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Abstract The polynomial representation for describing the displacement field of the ele-
ments is the main factor that determines the performance of the shear deformable beam
elements based on the absolute nodal coordinate formulation (ANCF). In order to resolve
the locking problem of the ANCF beam elements, the transversally higher-order polyno-
mial representation has been investigated frequently and applied to the displacement field
of the elements by increasing the nodal coordinates of the beam elements. In this paper,
transversally higher-order interpolating polynomials are added into the polynomial displace-
ment field of the elements by using common coefficients which mean that the coefficients
between the higher-order longitudinal and transversal polynomial components are common.
The implementation does not require the increase of the nodal coordinates. Two new kinds of
two-dimensional transversally higher-order ANCF beam elements are formulated by com-
mon coefficients. The effect of transversally higher-order interpolating polynomials on the
performance of the proposed ANCF beam elements is studied by means of certain static and
dynamic problems. It is shown that the transversally quadratic order polynomial component
y2 introduced by common coefficients can also relieve the problem of Poisson locking, and
the proposed beam elements are effective and accurate in the static and dynamic analysis.

Keywords Common coefficient · The Poisson locking · Transversally higher-order beam
element · Absolute nodal coordinate formulation

1 Introduction

The absolute nodal coordinate formulation (ANCF) is developed to study the nonlinear mo-
tion of structural components that undergo large displacements [1]. The ANCF employs
the mathematical definition of the slopes to define the element coordinates. Therefore, the
ANCF elements can be considered as isoparametric elements, and as a result, exact modeling
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of the rigid body dynamics can be obtained. In the ANCF, because the element coordinates
are defined in the global system, not only the need for performing coordinate transformation
is avoided, but also a simple expression for the inertia forces is obtained. The resulting mass
matrix is constant. Nonetheless, the stiffness matrix becomes nonlinear function even in the
case of small displacements.

Continuum mechanics approach [2, 3] was used to derive the expression of the elastic
forces because of its simple formulation of the elastic forces and more appropriateness in
the nonlinear case. But the proposed elements based on continuum mechanics approach have
locking problems, leading to weak performance in the measurement of static and dynamic
responses [4–6]. In order to avoid the locking problem, the accurate representations of the
elastic forces [7–14], locking alleviation techniques [15–17], the polynomial expressions
and the nodal coordinates in the kinematic description of the elements [16, 21, 24–29] have
been studied frequently. An improvement proposal for the use of the continuum mechanics
approach in deriving the expression of the elastic forces of the ANCF beam element was
presented by Sopanen [7]. Reissner’s classical nonlinear rod theory was introduced into the
ANCF and combined with continuum mechanics approach to obtain the elastic forces by
Gerstmayr [8] and Nachbagauer [9–11]. The geometrically exact beam theory was used to
formulate the strain energy by applying accurate curvature models of beam elements to the
ANCF [12–14]. The ANCF and the geometrically exact formulation for nonlinear beams
are compared regarding Poisson locking effects [15]. The strain split approach for ANCF
locking alleviation was proposed by Mohil Patel and Shabana [16]. The shear and bending
independently mode of deformation were evaluated [17]. It is important to note that the
design and research of the polynomial expression and the nodal coordinates in the kinematic
description of the elements has been implemented frequently to improve the performance of
the shear deformable ANCF beam elements.

Presently, several shear deformable ANCF beam elements with different polynomial ex-
pressions have been proposed, including the two-dimensional ANCF beam elements [16,
18–21] and the three-dimensional ANCF beam elements [22–29]. When taking the shear
deformation into account in the absolute nodal coordinate formulation, the polynomial ex-
pressions in the kinematic description of the elements are the terms of longitudinal and
transversal coordinates of the element. A two-dimensional shear deformable absolute nodal
coordinate beam element was firstly proposed by Omar [18]. In this beam element, it is as-
sumed that cubic polynomials are used in the longitudinal direction and linear polynomials
are used in the transverse direction. In order to obtain the unknown polynomial coefficients
of the displacement field, six nodal coordinates need to be used and thus there are 12 nodal
coordinates for an element. Then Kerkkänen [19] presented a linearly two-dimensional shear
deformable beam element ignoring higher-order terms arising in the element proposed by
Omar [18]. Therefore, a better convergence rate is achieved due to its symmetrically poly-
nomial expression and a reduced number of nodal coordinates. The linear displacement
field, nevertheless, leads to a problem called shear locking that the element stores excess
shear strain energy leading to parasitic shear strain under pure bending especially in the thin
structures. It is noteworthy that the shear locking disappears in the element proposed by
Omar [18] because of its cubic interpolation polynomials along the longitudinal axis capa-
ble of describing the correct deformed mode under pure bending. But the shear locking still
exists when the element proposed by Omar [18] is imposed on the linearly varying bending
moment, which exhibits the quadratic shear strain distribution instead of the correct constant
shear strain. To avoid the locking problems, a summary of the locking problems arising in
the shear deformable ANCF beam element was addressed by Garcia Vallejo [20], Sopanen
[7] and Gerstmayr [8, 25] including Poisson’s locking, the linear bending behavior, curva-
ture thickness locking and shear locking. The polynomial component x2y was introduced to
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the new shear deformable ANCF beam element proposed by Garcia Vallejo [20], leading to
linearly varying bending strain and eliminating the curvature thickness locking. But in this
element, the shear locking and the Poisson locking still exist.

As pointed out in the literature, the longitudinal strain and the transverse strain of the
assumed displacement field of the element do not satisfy the generalized Hooke’s law, lead-
ing to the problem of Poisson locking. A remedy to this problem is, e.g., a redesign of the
element by introducing the transversally higher-order polynomial components to its dis-
placement field. Firstly, the transversally higher-order polynomial component x2y2 is ap-
plied by Pengfei Li [21] using an additional nodal coordinate ∂r/∂x∂y, which allows for
new cross-section deformation modes, including the warping effect and different stretch
values at different points on the element cross-section. Then the transversally higher-order
polynomial components y2 is introduced by Patel and Shabana [16] with an addition of a
curvature vector. The transversally higher-order polynomial components are also introduced
into the three-dimensional transversally higher-order ANCF beam elements [24–29] by us-
ing additional nodal coordinates. In these transversally higher-order shear deformable beam
elements, the problem of Poisson locking is well alleviated by using the transversally higher-
order polynomial components. However, the way to introduce the transversally higher-order
polynomial components to the displacement field of the element needs additional nodal co-
ordinates which increase the degree of freedom of the element.

In this paper, the transversally higher-order polynomial components are investigated and
are introduced into the displacement field of the beam elements based on common coef-
ficients. It means that the coefficients between the higher-order longitudinal and transver-
sal polynomial components are common. By this method, the transversally higher-order
beam elements can be produced without additional nodal coordinates and two new two-
dimensional transversally higher-order ANCF beam elements are proposed in this paper.
The problem of Poisson locking of the proposed ANCF beam elements is examined in the
static linear and nonlinear examples and proved to be relieved very well. In addition, the
performance of these proposed ANCF transversally higher-order beam elements in the anal-
ysis of eigenfrequencies and modes, as well as in the dynamic analysis are presented. It is
demonstrated that the results are in agreement with analytical solution and those obtained
by the finite-element software.

Section 2 is devoted to a review of kinematics, inertia forces, elastic forces, external
forces and the equation of motion. Section 3 shows the problem of Poisson locking. Sec-
tion 4 presents two new kinds of two-dimensional transversally higher-order beam elements
which are formulated based on common coefficients. In Sect. 5, static linear and nonlinear
examples, and dynamic examples are examined to study the performance of the proposed
elements. Finally, a summary and conclusions drawn from the present analysis are provided.

2 The shear deformable ANCF beam elements

2.1 Kinematics

The assumed displacement field of the ANCF shear deformable beam element requires the
transversally interpolating polynomials. In the classically ANCF shear deformable beam
element proposed by Omar and Shabana [18], linear polynomials in the transverse direction
are used. The assumed displacement field of this element is defined using the following
polynomials:

r =
[

r1

r2

]
=

[
a0 + a1x + a2y + a3xy + a4x

2 + a5x
3

b0 + b1x + b2y + b3xy + b4x
2 + b5x

3

]
(1)
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Here r is the global position vector of an arbitrary point on the beam, x and y are the
local coordinates of the element, while ai and bi are the polynomial coefficients. The local
element coordinate system is assumed to be located at the point x=0 and y=0 with the beam
x axis initially parallel to the element centerline. This element is a fully parameterized beam
element having a complete set of position gradient vectors in the element nodal coordinates
as follows:

e =
[

eiT ejT
]T

(2a)

ei =
[
ri

1 ri
2

∂ri
1

∂x

∂ri
2

∂x

∂ri
1

∂y

∂ri
2

∂y

]T

(2b)

ej =
[
r

j

1 r
j

2
∂r

j
1

∂x

∂r
j
2

∂x

∂r
j
1

∂y

∂r
j
2

∂y

]T

(2c)

Here e is the vector of element nodal coordinates with two nodes i and j , ∂r/∂x and ∂r/∂y
are the position gradient vectors. The global position vector of an arbitrary point on the beam
can be written as

r =
[

r1

r2

]
= Se (3)

Here the element shape function matrix S is defined as

S = [
s1I s2I s3I s4I s5I s6I

] =
[

S1

S2

]
(4)

Here I is the 2×2 identity matrix and the shape function is defined as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s1 = 1 − 3
x2

l2
+ 2

x3

l3
,

s2 = x − 2
x2

l
+ x3

l2
,

s3 = y
(

1 − x

l

)
,

s4 = 3
x2

l2
− 2

x3

l3
,

s5 = −x2

l
+ x3

l
,

s6 = xy

l

(5)

and l is the element length.

2.2 Elastic forces

Continuum mechanics approach is employed to define the elastic forces of the ANCF beam
elements. The strain-displacement relations are nonlinear. The position gradient can be de-
fined as

J = ∂r
∂r0

= ∂r
∂x

∂x
∂r0

=
[

∂r1
∂x

∂r1
∂y

∂r2
∂x

∂r2
∂y

]
J−1

0 (6)
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Here the vector r0 defines the reference configuration and the matrix J0 is the identity matrix
for initially horizontal beams. The Green-Lagrange strain tensor is used and can be written
as

ε = 1

2
(JTJ − I) (7)

Using the constitutive equation, the stress vector is related to the strain vector by

σ = Dε (8)

Here D is the matrix of the elastic constants of the material. For isotropic homogeneous
material, matrix D can be expressed in terms of Lamé’s constants λ and μ as

D =
⎡
⎣λ + 2μ λ 0

λ λ + 2μ 0
0 0 2μ

⎤
⎦ (9)

Here, λ = Ev/(1 − v2), μ = E/ [2(1 + v)], E is Young’s modulus of elasticity, and v is the
Poisson ratio of the beam material. A general expression for the strain energy can be written
using the strain vector ε and the stress vector σ as follows:

U = 1

2

∫
V

εTDεdV (10)

The elastic forces of the beam element can be defined using the strain energy as

QT
e = ∂U

∂e
= eTK(e) (11)

Here the stiffness matrix K(e) is a nonlinear matrix in the ANCF, even in the static linear
example.

2.3 The equation of motion

The Lagrange equations are employed to formulate the equation of motion. The expression
of the equation of motion of a finite element can be obtained as

Më = Qk − Qe (12)

Here M is the mass matrix and can be obtained as

M = 1

2

∫
V

ρSTSdV (13)

Here ρ is the density of the material, V is the volume of the element. It can be shown that
the mass matrix M is a constant matrix.

Qk is the externally applied force F acting on the element, and can be written as

Qk = STF (14)

Thus the distributed gravity of the finite element can be obtained as

Qk =
∫

V

ST[0 −ρg ]TdV (15)
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Here g is the acceleration of gravity.
Equation (12) is a nonlinearly differential equation. For the static problem, the Newton

iteration method can be applied to find the solution. For the dynamic problem, the Newmark
method can be applied for solving.

3 The strain and the problem of Poisson locking

According to Eqs. (8) and (9), the relationship between strain and stress can be written as
follows:

εx = σx

E
− v

σy

E
− v2 σx

E
− v2 σy

E
(16)

εy = σy

E
− v

σx

E
− v2 σy

E
− v2 σx

E
(17)

εxy = σxy

E
+ v

σxy

E
(18)

The equation is also termed a generalized Hooke’s law. It can be seen in the above equa-
tions that the Poisson ratio v couples the longitudinal strain and the transverse strain. As
pointed out in the literature [26], the longitudinal strain and the transverse strain of the as-
sumed displacement field of the element do not satisfy the generalized Hooke’s law, leads
to the problem of Poisson locking which must be resolved for obtaining the accurate results.
When the Poisson ratio v is nonzero, the residual transverse normal stress is produced which
causes that the beam element predicts overly small displacements.

To explain this phenomenon, the linear strain is used here as follows:

εlin = 1

2
(J̄T + J̄) (19)

Here J̄ is the displacement vector gradient defined as

J̄ = ∂u
∂r0

(20)

Here u is the displacement vector defined as

u = r − [x, y]T (21)

Therefore, the strain can be obtained as

⎧⎪⎪⎨
⎪⎪⎩

εx = ∂r1

∂x
− 1

εy = ∂r2

∂y
− 1

(22)

It can be obtained in Eq. (22) that the longitudinal strain εx and the transverse strain
εy is related with the expressions of ∂r1/∂x and ∂r2/∂y which are determined by the as-
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sumed displacement field of the beam elements. When using the linear polynomials in the
transverse direction [18–20], the expressions of ∂r1/∂x and ∂r2/∂y are written as

⎧⎪⎪⎨
⎪⎪⎩

∂r1

∂x
= a3y + 2a4x + a1 + · · ·

∂r2

∂y
= b3x + b2

(23)

It can be obtained in Eq. (23) that the transverse strain is lack of transversally linear poly-
nomial component y and then leads to inconsistence between the longitudinal and transverse
strain. This discard leads to that the longitudinal and transverse strain do not satisfy the gen-
eralized Hooke law stated in Eqs. (16) and (17). It is considered to be the main reason for the
Poisson problem. In this point, it is pressing need for the transversally quadratic polynomial
component in the assumed displacement field of the element.

In this paper, the transversally quadratic polynomial components are introduced based
on common coefficients and then two new transversally higher-order ANCF beam elements
are produced, which are in detail described in Sect. 4.

4 The two-dimensional transversally higher-order ANCF beam elements
based on common coefficients

In this section, transversally quadratic polynomial component y2 is introduced into displace-
ment field of beam elements to satisfy the generalized Hooke’s law and try to resolve the
problem of Poisson locking. If transversally quadratic polynomial is introduced by using
independent coefficients, additional position gradient coordinates have to be added and lead
to an increase in the number of nodal coordinates of the element. However, common co-
efficients, which are used between transversally and longitudinally quadratic interpolating
polynomials, do not need to increase the nodal coordinates of the element.

4.1 Two-dimensional transversally higher-order beam element with two nodes
(2d2n)

Transversally quadratic higher-order interpolating polynomial is introduced to the displace-
ment field of the beam element by using common coefficient a4 with longitudinally quadratic
higher-order interpolating polynomial. Then the obtained displacement field of the beam el-
ement is proposed as

{
r1 = a0 + a1x + a2y + a3xy + a4(x

2 + y2) + a5x
3

r2 = b0 + b1x + b2y + b3xy + b4(x
2 + y2) + b5x

3 (24)

This element is a fully parameterized beam element having a complete set of position gradi-
ent vectors in the element nodal coordinates as Eqs. (2a)–(2c). There are two nodes and thus
12 nodal coordinates for an element. This proposed ANCF two-dimensional transversally
high order beam element with two nodes is termed as 2d2n for short. Then its shape function
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is obtained as follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s1 = 1 − 3
(x2 + y2)

l2
+ 2

x3

l3
,

s2 = x − 2
(x2 + y2)

l
+ x3

l2
,

s3 = y
(

1 − x

l

)
,

s4 = 3
(x2 + y2)

l2
− 2

x3

l3
,

s5 = − (x2 + y2)

l
+ x3

l2
,

s6 = xy

l

(25)

4.2 Two-dimensional transversally higher-order beam element with three nodes
(2d3n)

In this element, transversally quadratic higher-order interpolating polynomial is introduced
to the displacement field of the beam element by using common coefficient a4 with longi-
tudinally quadratic higher-order interpolating polynomial. Then the obtained displacement
field of the beam element is proposed as

{
r1 = a0 + a1x + a2y + a3xy + a4(x

2 + y2) + a5x
2y

r2 = b0 + b1x + b2y + b3xy + b4(x
2 + y2) + b5x

2y
(26)

This element is a gradient deficient beam element. Its position gradient vector only in-
cludes ∂r/∂y. The vector of nodal coordinates of this element is the same as the vector in
Ref. [20] and expressed as follows:

e =
[

ri ∂ri

∂y
rj ∂rj

∂y
rk ∂rk

∂y

]T
(27)

Here i, j, k are nodes of the element. Therefore, there are three nodes and thus 12 nodal
coordinates for an element. This proposed ANCF two-dimensional transversally higher-
order beam element with three nodes is termed as 2d3n for short. Then its shape function
can be obtained as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s1 = 1 − 3
x

l
+ 2

(x2 + y2)

l2
,

s2 = y − 3
xy

l
+ 2

x2y

l2
,

s3 = 4
x

l
− 4

(x2 + y2)

l2
,

s4 = 4
xy

l
− 4

x2y

l2
,

s5 = −x

l
+ 2

(x2 + y2)

l2
,

s6 = −xy

l
+ 2

x2y

l2

(28)
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Fig. 1 The simply supported
beam structure

5 Numerical examples

In this section, in order to show the effect of the transversely higher-order interpolating poly-
nomials introduced by common coefficients on the relief from the Poisson locking problem,
the static and dynamic problems are investigated.

5.1 The static linear problem

The static linear problem is considered using the simply supported beam structure shown
in Fig. 1. The cross-section of the beam is a 0.1 m sided square and the length of the beam
is 2.0 m. The material of the structure is assumed to be isotropic; the Young modulus of
the material is 2.07*1011 N/m2, and the Poisson ratio is 0.3. A vertical load F (1000N) is
applied to the midpoint of the beam.

In the linear case, the analytical solution of the vertical displacement of the midpoint of
the beam can be obtained. On the other hand, the finite-element software “ANSYS” is used
to solve this linear problem. The results of the proposed beam elements in this paper are
compared with the results of BEAM3, BEAM 188 and the ANCF beam element in Ref. [18]
which has the same nodal coordinates with the proposed element 2d2n and uses the linear
polynomials in the transverse direction. It should be noted that the BEAM3 is based on the
linear theory of small deformations and infinitesimal rotations, while the BEAM188 uses the
linear interpolation and large-rotation theory; the BEAM189 uses the quadratic interpolation
and large-rotation theory. Therefore, the BEAM3 can be used in this linear case, but is not
applicable to the nonlinear case, while the BEAM188 and BEAM189 can also be used in
the nonlinear case.

The results of the midpoint of the simply supported beam structure simulated by the el-
ements 2d2n and 2d3n are obtained using a numerical integration method with two Gauss
points. The results of the ANCF beam element in Ref. [18] are obtained with four Gauss
points. And their boundary conditions are given to eliminate all position coordinates of the
first node and the transversal position coordinates of the last node. The vertical displace-
ments of the midpoint of the simply supported beam structure are shown in Table 1.

It can be shown in Table 1 that the results of the proposed elements 2d2n and 2d3n,
converge towards the analytical solution and the results of the BEAM 188 as the number
of elements is increased. The result of BEAM3 is slightly low. The result of the ANCF
beam element in Ref. [18] seems to suffer from Poisson locking problem. Therefore, it can
be concluded that in the linear case, the proposed transversely high order elements in this
paper, can eliminate the locking problem of Poisson.

The reason for this is related to the transversely quadratic interpolating polynomials y2

which is applied in the displacement field of the element by using common coefficients with
the longitudinally higher-order interpolating polynomials in this study, shown in Eqs. (24)
and (26). Thus, the expressions of ∂r1/∂x and ∂r2/∂y of the proposed two–dimensional
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Table 1 Vertical displacements of the midpoint of the simply supported beam structure [mm]

Elements 2d2n 2d3n The ANCF element
in Ref. [18]

ANSYS:BEAM188

2 −0.073625 −0.071246 0.067056 −0.077871

4 −0.089577 −0.069729 0.083610 −0.092491

8 −0.096061 −0.076859 0.087768 −0.096146

16 −0.097443 −0.087866 0.088817 −0.097060

32 −0.097760 −0.094651 0.089084 −0.097288

64 −0.097841 −0.097006 0.089153 −0.097345

128 −0.097864 −0.097653 0.089171 −0.097359

Analytical result: −0.097285 ANSYS BEAM3: −0.096618

Fig. 2 The cantilever beam
structure subjected to a
concentrated load

higher-order elements 2d2n and 2d3n can be written as follows:

⎧⎪⎪⎨
⎪⎪⎩

(
∂r1

∂x
)2d = a3y + 2a4x + a1 + · · ·

(
∂r2

∂y
)2d = b3x + 2b4y + b2 + · · ·

(29)

It can be seen in Eq. (29) that the transverse strain of the proposed beam elements in-
cludes transversally linear polynomial component y which does not exist in Eq. (23) with
the transversally linear polynomial displacement field, thus the longitudinal and transverse
strains of the proposed elements become consistent. Therefore, the longitudinal and trans-
verse strains of the proposed elements can satisfy the generalized Hooke’s law stated in
Eqs. (16) and (17). Although the transversally quadratic interpolating polynomials are intro-
duced to the displacement field of the proposed elements by common coefficients, they act
powerfully. The above points will be proved again in the next static nonlinear problem.

5.2 The static nonlinear problem

The static nonlinear problem is considered using the cantilever beam structure shown in
Fig. 2. The cross-section of the beam is rectangular and a 0.1 m sided square, and the length
of the cantilever beam is 2.0 m. The material of the structure is assumed to be isotropic,
the Young modulus of the material is 2.07*1011 N/m2, the mass density is 7850 kg/m3, the
Poisson ratio is 0.3. A vertical load F (500000N) is applied to the endpoint of the beam.

The displacements of the endpoint of the cantilever beam structure simulated by the ele-
ments 2d2n, 2d3n, and the ANCF beam element in Ref. [18] are obtained using a numerical
integration method with two Gauss points. Their boundary conditions are given to eliminate
all nodal coordinates of the first node. The results of the proposed elements are compared to
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Fig. 3 The displacements of the endpoint of the cantilever beam structure simulated by the elements 2d2n,
2d3n, BEAM188, BEAM189 and the ANCF beam element in Ref. [18] with the increasing numbers of
elements

Table 2 The displacements of
the endpoint of the cantilever
beam structure using 128
elements

element ux [m] uy [m]

2d2n [128] −0.14594 −0.68367

2d3n [128] −0.14479 −0.68070

BEAM188 [128] −0.14492 −0.68121

BEAM189 [128] −0.14492 −0.68122

The ANCF element in Ref. [18] [128] −0.12435 −0.63275

The number of elements used is given in square brackets

the nonlinear solution of the BEAM188, BEAM189, and the ANCF beam element in Ref.
[18], shown in Fig. 3 and Table 2.

In Fig. 3, the convergence and accuracy of the proposed elements 2d2n and 2d3n are
illustrated with the increasing numbers of elements compared with the BEAM188 and
BEAM189. It can be seen in Fig. 3 that the vertical and longitudinal displacements of the
proposed elements 2d2n and 2d3n are all convergent. The results of the proposed elements,
the BAEM188 and BEAM189 tend to be consistent with the increasing numbers of ele-
ments. However, the vertical and longitudinal displacements of the ANCF beam element in
Ref. [18] tend to a value different from the ones of the proposed elements, the BAEM188
and BEAM189.

In Table 2, the displacements of the endpoint of the cantilever beam structure with 128
numbers of elements are shown and prove that the solution of the proposed elements in this
paper agree well with the solution of BAEM188 and BEAM189. However, the vertical and
longitudinal displacements of the ANCF beam element in Ref. [18] are evidently lower than
the results of the proposed elements, the BAEM188 and BEAM189.

In Fig. 4, the deformed configurations of the beam structure in the linear and nonlinear
case simulated by the proposed elements and BEAM188 are shown. In Fig. 5, the absolute
errors between the proposed elements and the BEAM188 are shown and very small com-
pared with the deformation. Therefore, it can be seen that the deformed configurations of
the proposed elements are identical to the deformed configurations of the BEAM188.
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Fig. 4 The deformed configurations of the beam structure in the linear and nonlinear case simulated by 128
elements

Fig. 5 The absolute errors between the proposed elements and the BEAM188 in the linear and nonlinear
static cases

Therefore, in static linear and nonlinear case, the elements proposed in this paper have no
Poisson locking problem because of the application of the transversally quadratic interpo-
lating polynomials. And the way that the transversally quadratic interpolating polynomials
are introduced by common coefficients are effective.

5.3 Eigenfrequencies

The simply supported beam structure shown in Fig. 1 is used in this section to examine
the deformation modes and eigenfrequencies of the proposed elements. The cross-section
is rectangular, the length of the beam is 2.0 m, the height is 0.4 m, the width is 0.4 m,
the Young modulus of the material is 2.07*1011 N/m2, the mass density is 7850 kg/m3, the
Poisson ratio is 0.3. The analytical values of the eigenfrequencies which are provided in the
reference [8] are employed here to be compared with the eigenfrequencies of the proposed
elements in this paper. Table 3 shows the convergence and accuracy of the eigenfrequencies
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Table 3 The eigenfrequencies of the proposed elements compared to the analytical solution

Elements 1st bend 1st axial 2nd bend 2nd axial 1st shear 2nd shear 1st thick 2nd thick

2d2n

16 93.40 279.05 310.88 806.22 1355.48 1476.97 2968.55 3397.14

32 93.27 278.87 309.76 805.20 1355.48 1476.71 2945.52 3365.60

64 93.24 278.46 309.48 807.58 1355.48 1476.64 2939.36 3358.07

2d3n

16 93.82 279.88 312.94 828.44 1355.48 1477.01 3088.17 3176.72

32 93.38 279.20 310.29 805.21 1355.48 1476.72 3068.30 3205.53

64 93.27 278.72 309.61 802.04 1355.48 1476.64 3052.37 3264.73

Analytical solution 95.63 280.32 332.24 840.96 1766.99 1878.87 3090.98 3090.98

Fig. 6 The free falling flexible
pendulum

of the proposed elements with the increasing numbers of elements. Table 4 shows the modes
and eigenfrequencies of the proposed elements with 16 elements.

Numerical integration method cannot be used to obtain eigenfrequencies because of the
numerical error. Therefore the eigenfrequencies and modes are obtained by the exact inte-
gration.

It can be concluded from the Table 3 that the bending, axial, shear and thick eigenfre-
quencies of the proposed elements are all convergent with the increasing elements, alto-
gether lower than the analytical values. The first bending, axial and thick frequencies is
slightly lower than the analytical values. While the errors between the second bending and
axial frequencies and the analytical values are a little more. The second thick frequency is
slightly larger than the analytical values. It should be noted that the first and second shear
frequencies are observably lower than the analytical values. The reason for this is the use of
the transversally higher-order polynomial component in the assumed displacement field.

5.4 Dynamic analysis: flexible pendulum

In this section, the free falling of a flexible pendulum under its own weight shown in Fig. 6
is considered to demonstrate the performance of the proposed elements. The pendulum is
connected to the ground by a pin joint at one end. The pendulum is initially horizontal with
zero initial velocity. The gravity constant is 9.81 m/s2.

In the first dynamic example, the length of the pendulum is 1.8 m, the height is 0.008
m, the width is 0.03125 m, the Young modulus of the material is 2.07*1011 N/m2, the mass
density is 2766.67 kg/m3, the Poisson ratio is 0.3. In this example, the flexibility of the
pendulum is low. The convergence and accurate of the results of the flexible pendulum
under its own weight simulated by the proposed elements are studied, shown in Fig. 7-10.

Figure 7 shows the position of the tip point of the flexible pendulum simulated by the
elements 2d2n and 2d3n with 4, 8, and 16 elements. It can be concluded from Fig. 7 that
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Table 4 The modes and
eigenfrequencies of the proposed
elements 2d2n and 2d3n

2d2n 2d3n

1st bend: 93.40 1st bend: 93.82

1st axial:279.05 1st axial:279.88

2nd bend:310.88 2nd bend:312.94

2nd axial:806.22 2nd axial:828.44

1st shear:1355.48 1st shear:1355.48

2nd shear:1476.97 2nd shear:1477.01

1st thick:2968.55 1st thick:3088.17

2nd thick:3397.14 2nd thick:3176.72

the results obtained using 4, 8, and 16 elements are all identical and thus are convergent.
Therefore, in the following study, the number of elements is chosen to be 8 elements.

In Fig. 8 and Fig. 9, the positions of the tip point of the flexible pendulum simulated by
the elements 2d2n, 2d3n, are compared with the solution of the BEAM3, and BEAM188.
It can be concluded from Fig. 8 and Fig. 9 that the solutions of the elements 2d2n, 2d3n,
BEAM3 and BEAM188 agree very well and thus the Poisson locking problem is considered
to be not existing in the proposed elements in the dynamic example.

In the second dynamic example, the length of the pendulum is 1.2 m, the height is 0.2530
m, the width is 0.006335 m, the Young modulus of the material is 7*105 N/m2, the mass
density is 5540 kg/m3, the Poisson ratio is 0.3. In this example, the flexibility of the pen-
dulum is higher. Thus in the testing time period, the deformation of the pendulum becomes
large. The flexibility of the pendulum can be obtained in Fig. 10 and Fig. 11 which show the
falling flexible pendulum at different time steps simulated by the element 2d2n and 2d3n
using 8 elements.
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Fig. 7 The position of the tip point of the flexible pendulum simulated by the elements 2d2n and 2d3n using
4, 8 and 16 elements

Fig. 8 The position of the tip
point of the flexible pendulum
simulated by the elements 2d2n,
2d3n, BEAM3, and BEAM188
using 8 elements

Fig. 9 The vertical position of
the tip point of the flexible
pendulum simulated by the
elements 2d2n, 2d3n, BEAM3,
and BEAM188 using 8 elements

Under the case of large flexibility of the pendulum, the results simulated by the proposed
elements 2d2n and 2d3n are in detail compared with the results obtained by BEAM3 and
BEAM188, shown in Fig. 12, Fig. 13, and Fig. 14. And it can be seen that the consistency is
still good between them. However, the absolute errors between the proposed elements and
the BEAM188 shown in Fig. 15, in the first dynamic example with 1.8 m length and low



490 C.H. Zhao et al.

Fig. 10 The falling flexible pendulum at different time steps simulated by the elements 2d2n and 2d3n using
8 elements

Fig. 11 The falling flexible pendulum at different time steps simulated by the elements 2d2n and 2d3n using
8 elements

flexibility, are obviously smaller than the ones in this dynamic example with 1.2 m length
and high flexibility.

The results of the above flexible pendulum and the next standard slider-crank mechanism
are all obtained by the numerical solution function of differential equation-ode45 in the
software “Matlab”, which employs the Runge Kutta algorithm with adaptive step size.

5.5 Dynamic analysis: standard slider-Crank mechanism

In this section, the standard slider-crank mechanism shown in Fig. 16 is considered to
demonstrate the performance of the proposed elements. The bar O1A is assumed to have
a rectangular cross-section, the height is 0.0053 m, the width is 0.0053 m, the length is
0.15 m, the Young modulus of the material is 1.0*1011 N/m2, the mass density is 2770
kg/m3, the Poisson ratio is 0.3. The flexible connecting rod AB is assumed to have the same
mass density, cross-section. The length of the connecting rod AB is 0.3 m, and the Young’s
modulus of the material is 5.0*108 N/m2.
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Fig. 12 The position of the tip
point of the flexible pendulum
simulated by the elements e2d2n,
2d3n, BEAM3 and BEAM188
using 8 elements

Fig. 13 The vertical position of
the tip point of the flexible
pendulum simulated by the
elements 2d2n, 2d3n, BEAM3
and BEAM188 using 8 elements

Fig. 14 The falling flexible
pendulum simulated by the
element 2d2n, 2d3n, BEAM3 and
BEAM188 using 8 elements at
time 0.2 s, 0.5 s, 0.8 s and 1.1 s

The initial configuration of the standard slider-crank mechanism is just as the configu-
ration in Fig. 16. The end of the bar O1A is subjected to a concentrated force F which is
always tangent to the bar. In Fig. 17, the convergence of the proposed elements 2d2n and
2d3n are illustrated with the increasing number of elements. In Fig. 18 and Fig. 19, the
accuracy of the proposed elements 2d2n and 2d3n are illustrated compared with the result
obtained by the software “ABAQUS”, which can implement the dynamic simulation of flex-
ible multibody system. In the software “ABAQUS”, a 3-node quadratic beam element “B32”
is used. It can be seen in Fig. 17 that the vertical positions of the midpoint of the connect-
ing rod tend to be identical with the increasing number of elements, therefore the proposed
elements are convergent. It can be seen in Fig. 18 and Fig. 19 that the vertical positions
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Fig. 15 The absolute errors
between the proposed elements
and the BEAM188 in the two
dynamic flexible pendulum

Fig. 16 The standard
slider-crank mechanism

Fig. 17 The vertical position of the midpoint of the connecting rod for different discretizations

of the midpoint of the connecting rod of the proposed 2d2n element is consistent with the
results obtained in the software “ABAQUS”, and their errors compared with the software
“ABAQUS” are very small.

6 Conclusions

Transversally higher-order interpolating polynomials have been introduced by several re-
searchers to the shear deformable ANCF beam elements to resolve the locking problem
of the ANCF beam elements. In this paper, common coefficients with the longitudinally
higher-order interpolating polynomials are used to introduce the transversally higher-order
interpolating polynomials to the polynomial displacement field of the beam elements. And,
two new two-dimensional transversally higher-order ANCF beam elements are thus pro-
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Fig. 18 The vertical position of
the midpoint of the connecting
rod for different formulations

Fig. 19 The absolute errors in
the vertical position between the
proposed elements and the
ABAQUS

posed, which have the same number of nodal coordinates of the element as the elements in
the references [18, 20] with the linear polynomials in the transverse direction. Therefore,
the way to combine the transversally higher-order interpolating polynomials by common
coefficients can does not increase the number of nodal coordinates of the ANCF element.
This character is very favorable for solution.

Several static and dynamic examples are examined to test the performance of the pro-
posed elements. The convergence and accurate of the proposed elements are in detail stud-
ied. It can be concluded that there is no the problem of Poisson locking in the proposed
elements because of the introduction of transversally quadratic interpolating polynomials
and the proposed elements are all effective in the static and dynamic analysis. Therefore, the
transversally higher-order polynomial components introduced by common coefficients can
act as powerfully for solving the problem of Poisson locking, as the literature [16] in which
the transversally higher-order polynomial components are introduced with independent co-
efficients and thus the nodal coordinates of the beam elements has to be increased.

The way that the transversally higher-order polynomial components are introduced by
common coefficients is feasible in the two-dimensional shear deformable ANCF beam el-
ements. For the three-dimensional shear deformable ANCF beam elements, the approach
of “common coefficients” is investigated in progress to introduce the transversally higher-
order interpolating polynomials to the displacement field of the beam element, which comes
with additional complications. These additional complications will be studied in the future
research.
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